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Monte Carlo study of a triangular Ising lattice-gas model with two-body and three-body interactions
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The behavior of a triangular Ising lattice-gas model with both two- and three-body coupling be-
tween nearest neighbors is studied using Monte Carlo methods. The phase diagrams in both field-

temperature space and coverage-temperature space are determined for a wide range of interactions
and are compared with the predictions obtained using various theoretical approaches.

I. INTRODUCTION

The triangular Ising model with antiferromagnetic
nearest-neighbor (NN) coupling has long been of interest
because of its highly degenerate ground state and the lack
of a transition in zero magnetic field. ' In the presence of
a magnetic field two ferrimagnetic ordered states become
stable and are separated from the disordered state by lines
of second-order phase transitions. ' It can be easily
shown that this model is identical to a lattice-gas model
which is useful for the understanding of adsorbed mono-
layers of rare-gas atoms on graphite. ' In Fig. 1 we show
equivalent representations of the ordered (&3X&3)
structure in magnetic and in lattice-gas language. This
structure may be understood by dividing the lattice into
three equivalent next-nearest-neighbor (NNN) sublattices
and filling one sublattice with down-spins (occupied sites)
and two sublattices with up-spins (empty sites). In zero
field this ferrimagnetic spin-up structure is equivalent to a
state with all spins reversed to form a ferrimagnetic spin-
down state, i.e., a (&3X&3)* state with —', of the sites
filled and —,

' of them empty. In order to understand the
behavior of potentially more realistic models, studies have
been made including NNN interactions ' or three-body
coupling on a NN triangle. '" ' The effect of adding
three-body coupling was first studied using mean-field
theory by Froyen et al. ' However, since mean-field
theory has been inaccurate in its predictions for a number
of models with competing interactions, ' '' its predic-
tions for this model must be viewed cautiously. More re-
cent and more sophisticated treatments '"' are likely to

be more reliable. In addition to its application to ad-
sorbed monolayers, the model which includes three-body
coupling has also been used to describe lithium intercala-
tion in transition-metal dichalcogenides. '

In this paper we report the results of extensive Monte
Carlo studies on the triangular Ising lattice-gas model
with nearest-neighbor two-spin and three-spin interactions
in the presence of a magnetic field. We shall compare our
results with the predictions made by Schick et al. using
real-space renormalization-group (RG) calculations as
well as those obtained using interface' and variational
methods. ' Real experiments on magnetic systems are
carried out by controlling magnetic field and temperature
while experiments on adsorbed monolayers generally in-
volve fixing the coverage (i.e., magnetization). In present-
ing our results we shall therefore show phase diagrams in
both thermodynamic planes. Our intent was to determine
phase diagrams for a wide range of interactions; therefore,
the data which will be presented are of modest accuracy
for each set of couplings. In Sec. II we present back-
ground on the model and methods used, and in Sec. III
shall present our results.

II. BACKGROUND

A. The model

We have studied the triangular Ising model with two-
spin coupling J between nearest-neighbors and three-spin
coupling P between sites at the vertices of a NN triangle.
A magnetic field H is included and the Hamiltonian is
thus:

t t i t

t

t l t

t t
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~ 0 0 ~ 0
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~ 0 0 ~ 0
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where o.; = + 1. The model can be transcribed to an
equivalent lattice-gas model involving site occupation vari-
ables c; = 1,0 with

c; = —,'(l —o;)

and NN two-body coupling PNN and three-body coupling

FIG. 1. Equivalent ordered structures: (a) ferrimagnetic
structure with net magnetization + —,'; (b) lattice-gas structure
with —' of the sites occupied (occupied sites are shown by solid

circles) ~
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(a)
J&0

= 0.5Jl

puting averages for each data point and near phase transi-
tions as many as 2000 MCS were retained. Data were ob-
tained along paths of constant temperature T, constant
field H, or constant H/T; in all cases data were obtained
while moving in both directions along the path chosen.

Several of the phase boundaries turned out to be first
order and showed pronounced hysteresis. In order to
determine the actual location of the phase transition we
used a method of free-energy comparison which has prov-

20en very successful for the fcc Ising antiferromagnet.
The free energy is given by

F(T,H)= U(T, H, ) —I MdH (6)
1

if H& is very large; and for small H& we use the usual
thermodynamic relation

F(T,H) =F(T,H, ) —J MdH, (7)
1

where F(T,H, ) is determined from internal energy and
integration of the low-temperature specific heat. Starting
from either side of the hysteresis, we can use Eqs. (6) and
(7) to obtain the two branches of the free energy. The in-
tersection of these two branches yields the location of the
first-order transition.
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FIG. 5. Apparent hysteresis at a second-order phase transi-

tion for P/ J =0.5 with J &0. The actual critical field is
H /l J

l

= —86.
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III. RESULTS

A. Antiferromagnetic two-spin coupling: J & 0

1. P=0

-10 -8

In the case where there is no three-spin coupling (i.e.,
P =0) the model described by Eq. (1) reverts to the sim-
ple triangular Ising antiferromagnet. In Fig. 2(a) we com-
pare our Monte Carlo results for the phase diagram in

(b)
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FIG. 4. Phase diagram for P/l J
l

=0.5 with J &0: (a)
field-temperature space; (b) coverage-temperature space.
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H-T space with those of Metcalf as well as with the real-
space RG values of Schick et al. and the transfer-matrix
result of Kinzel and Schick. ' (The phase diagram is
symmetric about H =0; we have showed all results only
for H &0. ) Our estimates, for L =36, agree well with
those of Metcalf, for L =99, for keT!

~

J
~

& 1.0. At
lower temperatures, although the error bars for the two
sets of data overlap, our estimates fall consistently outside
of those of Metcalf particularly near H!

~

J
~

=0. Since
our lattices were smaller than those used by Metcalf we
expect some of the difference to be due to finite-size
effects. Indeed the high field slope of the phase bound-
ary which we obtained was a =0.96 [see Eq. (5)] which is
substantially higher than the exact value of 0.83 obtained
from the critical fugacity of the hard-hexagon model.
For small H the behavior of T, is not inconsistent with
the linear approach to zero suggested by Kinzel and
Schick ' and confirmed by Nienhuis et al. In Fig. 2(b)
we also show the phase diagram in the coverage-
temperature plane. Note that the phase diagram is sym-
metric about n =0.5. Our Monte Carlo data lie between
the renormalization-group (RG) and transfer-matrix
curves but differ noticeably from both. Our estimate of
n, =0.25 for the lower critical coverage is slightly below
the exact value (obtained from the hard-hexagon results )

of n, =0.276. We have not attempted to accurately deter-
mine the critical magnetization for H =0 but a reasonable
extrapolation supports the conclusion of Kinzel and
Schick that a gap exists in the critical coverage for the
two ordered phases.
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state is preferred and the same results are obtained by re-
placing H by Hand n by 1——n )The. resultant phase
diagrams for P/

~

J
l

=0.2 are shown in Fig. 3. The
asymptotic T~O phase boundaries at large fields are vir-
tually identical: a+ ——0.89, a =0.90. In the coverage-
temperature plane [Fig. 3(b)] we find that the critical cov-
erages for large fields are quite near to each other in mag-
nitude: n+ =0.73 (M+ = —0.46) and n, =0.25 (M,
=0.50). From our results, it also appears that the two
ordered phases do not coexist at n =0.5 for T =0; there
appear to be two distinct critical coverages (n'+ -0.52,
n

' =0.48) with a region of disordered phase in between.
By the time P/l J

l

=0.5 the net spin-up state has

completely disappeared. The phase boundary in field-
temperature space [see Fig. 4(a)] is quite symmetric and
the T~0 slopes are even the same a =0.90. In
coverage-temperature space [Fig. 4(b)] a single ordered
phase exists in a relatively narrow region. At T =0 the
critical coverages are n, =0.73 (M, = —0.46) and
n,

' =0.55 (M,' = —0. 10). The low-temperature data at
first suggested that the transition might be first order for
H &0. As shown in Fig. 5 the magnetization showed
pronounced hysteresis as the field was swept up and
down. Longer runs showed that the apparent hysteresis
was due to the formation of rnetastable domain states.
These states, such as that shown in Fig. 6, disappear only
slowly due to the relatively slow motion of the domain
walls. Note that the domain walls shown in Fig. 6 are
not the same walls discussed by Kardar and Berker and
by Huse and Fisher in regard to chiral Potts behavior.

The phase diagrams for P/
l

J
l

=1 are shown in Fig.
7. For H &0 the phase boundary is first order and is

separated from the second-order boundary by a multicriti-
cal point (tricritical point) at kii T, /

l
J

l

—1.6. The low-
temperature slope for H &0 is a =0.88. In coverage-
temperature space the first-order transition opens up into
a large coexistence region in which the (i/3&& i 3)* state
coexists with the lattice-gas state. At T =0 the critical
coverage for the pure (i 3X i/3)* phase is n, =0.74
and corresponding critical magnetization is M, =0.48.
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FIG. 12. Critical behavior for P/J = 1.7, J & 0 with

k~ T/J =0.5: finite-size-scaling plot for the order parameter
with P=0. 11, v=0. 83.
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B. The Baxter-Wu model: J =0

When only three-spin coupling is present this model,
known as the Baxter-Wu model, is exactly soluble in
zero field with T, =2.269 J/k. The full phase boundary
obtained from the Monte Carlo calculations is shown in
Fig. 8(a) where it is compared to the predictions of several
approximate theories. The mean-field phase boundary is
not only quantitatively but also qualitatively incorrect.
Although the other theoretical predictions are qualitative-
ly correct, they show noticeable differences with respect to
our results and to each other. The low temperature slope
of the phase boundary is given by a =0.88. A very large
coexistence region exists in n Tspace [Fig-. 8(b)] and the
pure ordered phase is confined to a narrow strip with

n, =0.73.

20+q
10

16+q 12+q B+q —4+q -B&q
0

05— —025

in n-T space is now interesting in that it shows two coex-
istence regions as well as an ordered phase. Note that
n, =0.73 and the single-phase region occupies an ex-
tremely small fraction of the overall coverage temperature
diagram. We studied the critical behavior for k&T/J
=0.5 using finite-size scaling. In Fig. 12 we show a

C. Ferromagnetic two-spin coupling: J )0 Mo- —o5o n

For P =1.0 we find only a single first-order boundary
in the II-T plane terminating in a critical point T, . The
data, shown in Fig. 9, show quite distinct hysteresis below
T, . Both the width and height of the hysteresis loop de-
crease as T, is approached and disappear at T, . The
phase diagrams are shown in Fig. 10. In n-T space there
is a single coexistence region and no single-phase ordered
region.

For P = 1.7 in addition to a first-order phase boundary
we found a small low-temperature pure ordered phase
bounded on one side by the first-order transition and on
the other side by a second-order phase transition (see Fig.
1 1). The asymptotic slope a is 0.89. The phase diagram

—05
kT
J

20 ~
30
55 X

—10 -10 10

H

J
FIG. 14. Hysteresis at the first-order transition for P/J =2,

J)0.
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finite-size-scaling plot for the order parameter using q = 3
Potts exponents. The scatter is random indicating that
any deviations from scaling are statistical and not sys-
tematic.

The features of the phase diagrams for P =2.0, shown
in Fig. 13, are qualitatively similar to the previous case.
Here we found that the hysteresis was so pronounced (see
Fig. 14) that if we swept through the first-order boundary
for T & T, by making the field more negative, we never
saw the (&3X&3)* phase. Hence the locations of both
phase boundaries were determined by starting the system
in the (v'3X&3) phase. Note that in this region the RG
prediction was that a disconnected first-order region
would be found.

For P =4 the qualitative features (Fig. 15) are again the
same as for P/J =1.7 and 2.0. According to RG theory
in this region the critical point should occur at the critical
endpoint, but our data show that the critical point is
clearly higher in temperature. For P =6 (Fig. 16) the
qualitative trend developed in Figs. 11, 13, and 15 is con-
tinued and the critical endpoint and critical point move
yet closer together.

In Fig. 17 we plot the dependence of the critical point,
critical endpoint, tricritical point, and maximum tempera-

FIG. 18. Schematic phase diagrams in (T,H, P) space. First-
order surfaces are shown by closely spaced lines. Second-order
surfaces are shown by widely spaced contour lines.

ture for the &3&&&3 phase on the three-body coupling.
The most complete theoretical predictions (Ref. 14), also
shown for comparison, are systematically too high in tem-
perature over most of the range of P.

IV. SUMMARY AND CONCLUSION

Using Monte Carlo simulations we have determined the
phase diagrams for the triangular Ising lattice-gas model
with two-spin and three-spin interactions between nearest
neighbors. In Fig. 18 we show a three dimensional
(T,H, P) view of the phase diagram; separate representa-
tions are shown for J &0 and J ~0. The various phase
diagrams which were shown in the previous section are
constant P slices of these diagrams. We see that the phase
diagrams show qualitative changes due to the addition of
the three-body interaction. In some cases the mixed
phase regions become substantially larger in coverage-
temperature space than the pure phase regions. A com-
parison with various theoretical approaches shows that
none of them properly predict the phase diagrams over
the entire range of coupling strengths.
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