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Bonding in rock-salt-structure compounds is described. For NaCl, the bonding is in terms of
electrons occupying chlorine p bands, lowered in energy by interaction with the sodium s states, and
an overlap repulsion arises from nonorthogonality of states on neighboring ions. For transition-metal

compounds d-like states are added, with their coupling with the nonmetallic p states. This coupling
is taken to be of the form g~d A (r~rd')' /(md ), with r~ and rd tabulated for each element. An ad-
ditional overlap repulsion, proportional to R r~rd'/(md ) and to the number of electrons occupying
the corresponding bands, also arises from this interaction. The simplest systems, such as KF, CaO,
ScN, and TiC, contain eight valence electrons per atom pair and all but TiC are insulating. The ex-
tra energy from the covalent pd coupling is calculated; it decreases the lattice distance and increases
the cohesion and bulk modulus. With a total valence of 9—12, the excess electrons occupy nonbond-

ing bands making the compound metallic, but not significantly modifying the bonding properties. A
total valence of 13-18 would require electrons in antibonding bands and such compounds appear not
to occur in the rock-salt structure unless intra-atomic Coulomb interactions are strong enough (as in

the heavy-3d-metal compounds) to produce a correlated state, insulating, magnetic, and with

suppressed covalent interactions. The form of the condition for the formation of a correlated state is
written. This same general theory is applied also to f-shell compounds, those of the rare earths and
actinides, with pf coupling proportional to A (r~rj)'~2/(md') replacing the pd coupling of the
transition-metal compounds. The theory suggests that a correlated state of the f electrons may be ex-

pected except for cerium compounds and compounds of the light actinides. The phosphides of the
actinides are predicted to, and found to, have minimum spacing at the uranium phosphide which
occurs as the metal f level drops below the nonmetal p level; the effect is less pronounced experimen-
tally in the nitrides, arsenides, and sulphides. The contribution of the pf bonding to the cohesion in-

creases through the series as long as the f levels do not form correlated states.

I. INTRODUCTION

The electronic structure of alkali halides, and of the di-
valent counterparts in the rock-salt structure, is easily un-
derstood in terms of closed-shell ions. The qualitative
electrical, dielectric, magnetic, and bonding properties are
immediately understandable and can be predicted using
tight-binding theory and universal tight-binding parame-
ters. ' Once the alkali metal is replaced by a transition
metal, a wide diversity of properties arises, rejecting a
diversity of basic electronic structure. A considerable
variety of theoretical analyses have clarified the nature
and variety of this electronic structure, and some of the
properties. There seems to be no simple coherent theory
which allows us to understand simply and predict the
variety of behavior. We seek here to provide such a
theory.

In order to focus on a coherent set of systems, we dis-
cuss only AB compounds, meaning equal numbers of ion
type A and ion type B, and only the rock-salt structure.
The valence of a metal shall refer to the column number
of the element, one for K, two for Ca, increasing by one
each step through the transition-metal series to nickel, of
valence ten. We shall also consider metals in the

lanthanide and actinide series. Nonmetals from columns
4, 5, 6, and 7 (e.g., C, N, 0, and F) will be considered.
The principal concepts and formulas introduced are clear-
ly applicable to other systems and other structures, but it
will be better to limit the discussion here.

We begin with the tight-binding theory of alkali halides,
and extend it step by step to other systems, discussing in
each case the electronic structure and the basic properties
of each system. The principal formulas needed are for the
various contributions to the energy, each written in terms
of tight-binding parameters of the system. These are
quoted and either sources or derivations are given in Ap-
pendicies to this paper. Given these formulas, and the pa-
rameters of the system, the variety of properties may be
directly predicted. The accuracy is low, but is sufficient
to show correctly the variety of contrasts and trends
among these systems.

II. SIMPLE-METAL COMPOUNDS

In the alkali halide the alkali gives up its valence s elec-
tron to the halogen valence p shell, each atom then having
closed shells of electrons. The lowest empty state, the
sodium 3s state, has an energy (which we take to be the
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Hartree-Fock free-atom term value ) of —4.9S eV, 8.83
eV above the energy of the highest occupied state, the
chlorine 2p state with energy of —13.78 eV. This pre-
dicted gap (closer to the observed gap of 8.S eV than in
most of the alkali halides) guarantees the insulating elec-
trical behavior and the optical transparency of rock salt.
The energy gain in the formation, also 8.83 eV from the
electron transfer, is of the order of the observed cohesive
energy of 6.8 eV per atom pair.

In tight-binding theory the forces holding the atoms to-
gether arise from the coupling between the occupied
chlorine p states and the empty sodium s states. The cou-
pling is given by a universal form in terms of the internu-
clear distance d as V,z

———1.42k /md . If calculated in

perturbation theory the energy per ion pair associated
with the attraction is' 12V, /(e~ —e, ). There is also a
repulsion between ions arising from the nonorthogonality
of the orbitals on adjacent ions. It can be taken to be of
the form'

Vo =go ~
Err

~

[R /(m EtGd ) ] (1)
with c;z the p-state energy of the inert-gas atom from
the row in the Periodic Table from which the constitu-
ent atoms come; if the constituent atoms are from two
rows, the average for the two inert-gas atoms is used.
is a dimensionless constant depending upon the row of
the nonmetallic atom, adjusted to give the correct spac-
ing for the corresponding potassium halide (688 for the
fluorine row, 1163 for the chlorine row, 1323 for the
bromine rom, and we use 1684 for both the iodine and
astatine rows). This same form for the repulsion is used
also' for the interaction between nonmetallic ions (e.g. ,
halogen ions) which are second-nearest-neighbor ions in
the crystal. Given the attractive force and this form for
the repulsion, one has a rather crude first-principles
theory of the entire range of bonding and dielectric prop-
erties. ' The theory of the divalent counterpart, such as
calcium oxide, is just the same, with no additional pa-
rameters except the corresponding free-atom Hartree-
Fock term values from the same source.

We shall at this point define notation for this theory'
which can be directly generalized to the transition-metal
systems. We note first the mathematical fact that if we
have three p levels on each nonmetallic ion, coupled only
to a single s level on each neighboring metallic ion, two p
bands become uncoupled and remain at the p-state ener-

gy; these are called nonbonding bands. The remaining p
band becomes a broad bonding band and the s band be-
comes a broad antibonding band. It is this broadening of
the p band from the original atomic p-state energy down-
ward which gives the lowering in energy which we es-
timated above in perturbation theory. The antibonding s
band which broadened upward from the s-state energy is
of no consequence since it is unoccupied.

It will be desirable to obtain a more accurate expression
for the average energy of the bonding band than that
given by perturbation theory. In Appendix A we show
that the second moment of the bonding band, measured
from the average of e, and e~, is (e, —e~ ) /4+n V~, with
n the number of nearest neighbors. We take the average
energy of the band to equal the square root of this mo-
ment. Then it is convenient to call the magnitude of the

coupling, times the square root of the number of nearest
neighbors, the covalent energy, Vz, in this case
Vz ——&6V~ . Half the energy difference is called the po-
lar energy, V3, in this case V3=(c, —Ez)/2. The average
energy of the bonding band, relative to the average of c,.
and E~ then becomes —( Vq+ V3)'~ . With two electrons
in the bonding band this approaches the result of pertur-
bation theory when Vq && V3 and remains valid when Vq

and V3 are comparable.
We shall wish to add various contributions to the total

energy per ion pair. Starting from free atoms we obtained
contributions to the cohesion from transferring electrons
between levels, using free-atom term values. We call that
E„,„,; it was —2V3 per atom pair for alkali halides. We
separate the effect of the covalent energy as
2 V3 —2( Vq + V3 )

' per ion pair. It approaches the
perturbation-theoretic result when Vq is small. Then the
contribution of the sp coupling to the total energy, includ-
ing the overlap repulsion, is

Ep b,„d
——2V3 —2( V~+ V3)' +6Vo(d)+6Vo(&2d)

(2)
per ion pair, to be added to E„,„,. It is a small correction
to the cohesion. The final term is the repulsion between a
nonmetallic ion and its twelve neighboring nonmetallic
ions at a distance &2d away, with d again the nearest-
neighbor distance. Half the energy is associated with each
ion, yielding a prefactor 6. The prime indicates use of
different ER; if the metallic ion comes from a different row
than the nonmetallic ion.

We found in Ref. 1 that there were significant Coulomb
corrections to the cohesion. These arose because the extra
electrons on the nonmetallic atom felt a repulsion U due
to the Z excess electrons on that ion which was not en-
tirely canceled by the Madelung potential —Zae /d from
the neighboring ions. We found that correction to be ap-
proximately —,'Z (Z + 1)U', with U* = U —ae /d. These
were several volts for the simple compounds and we shall
estimate them here for the cohesion of the transition-metal
compounds; their effects on other properties are quite
small.

Given Eq. (2), the free-atom term values, and the four

go listed above, we may immediately minimize the ener-

gy with respect to d to predict the equilibrium d for any
monovalent or divalent compound in the rock-salt struc-
ture. We may also predict immediately the bulk modulus
and Griineisen constant and corrections to the predicted
cohesive energy, E„,„„given above. This exercise was
carried out for simple-metal compounds in Ref. 1. We
have, of course, also the prediction of a large gap, c, —c~,
giving insulating properties and could predict the dielec-
tric and magnetic susceptibilities and other properties in
terms of the same parameters, as done in Ref. 2. Our
goal here is to extend this simple, but general, theory to
the corresponding compounds containing transition-metal
and f-shell-metal ions, using the tight-binding theory of
such systems.

III. OCTET COMPOUNDS OF TRANSITION METALS

We begin by extending the theory to compounds which
also have a total of eight valence electrons (including the



36 ELECTRONIC STRUCTURE AND PROPERTIES OF d- AND f 2697

metallic s and d electrons and the nonmetallic p and s
electrons). The most convenient series of these starts with
the alkali halide, KF, and proceeds by increasing the
atomic number of the metal by one and decreasing the
atomic number of the nonmetal by one, thus holding the
number of electrons fixed. The series is KF, CaO, ScN,
TiC. The extension to CaO is direct, as indicated above,
but Sc and Ti are transition metals, having, respectively,
one and two electrons in d states in the free atom. We
must take account of which atomic states were occupied
when we subtract to estimate the cohesion as E„,„„but
the occupied valence states in the solid are the same, full
nonmetallic p-like bands.

The atomic d state is ordinarily lower in energy than
the atomic s state in the transition metal (it is in Sc and
Ti, but not in K and Ca). Thus in the transition-metal
compound the conduction band becomes d-like and the
gap is determined by the difference between the nonmetal-
lic p-state energy and the free-atom metallic d-state ener-
gy. The gaps predicted for the four compounds by sub-
tracting term values are 15.85, 11.40, 4.49, and —0.03
eV; experimentally for the four they are 10.7 and 7.7 eV,
unknown by us, and less than zero.

The five d levels on each metallic ion, coupled to three

p levels on each neighboring nonmetallic ion by matrix
elements of the type Vpd and Vpd yield two d bands
which are uncoupled and remain at the d-state energy
(unless we include second-neighbor coupling, discussed in

Sec. V); these are nonbonding bands, analogous to the
two nonbonding p bands discussed in the preceding sec-
tion for the sp system. The remaining three d bands be-
come broad antibonding bands and the three p bands be-
come broad bonding bands.

This is illustrated in Fig. 1 where we show the bands of
CrN (not an octet compound) calculated by Papaconstan-
topoulos et al. along with tight-binding bands corre-
sponding to the approximations and parameters used
here. Indeed the two are qualitatively similar and the po-
sitions and widths of the bands, calculated completely in-
dependently, are similar. We show there also the density
of states, and integrated density of states, given by
Papaconstantopoulos et al. The peak at the Fermi energy
in CrN corresponds to our nonbonding band which we
take to be a 5 function in energy; note that the integrated
density of states rises from eight to twelve through that
peak. The four levels, accommodating eight electrons,
below that consist of the lower s band, which we do not
consider here, and the three bonding bands. These are
concentrated at some 5 V below the nonbonding band.
Then the antibonding bands extend upward in energy
from the nonbonding bands, in this case with no gap be-
tween the bonding and antibonding bands.

The coupling between the d and p states gives an addi-
tional attraction between neighbors and reduces the spac-
ing significantly beyond what one would expect from the
sp-coupling theory described above. This coupling may be
characterized by a covalent energy,
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(derived in Appendix A) where n is the number of nearest
neighbors (six for the rock-salt structure) and rz and rd
are free-atom parameters (Appendix B) characteristic of
the nonmetallic and metallic constituents. The polar en-
ergy becomes

V3(pd) = (Ed —c~ )/2 (4)

If the p electrons were coupled only to the d electrons, the
six bonding electrons per atom pair would contribute an
energy, based again upon the second moment of the bond-
ing band, —6[V&(pd) + V3(pd) ]', analogous to the sp-
bonding term we gave before. We may add 6V3(pd) (as-
suming that V3 is positive) to this to obtain just the effect
of the pd coupling. With this attraction of course also
comes a repulsion from shift in the energy of each elec-
tron due to the nonorthogonality of the p and d states.
An explicit form for this repulsion, proportional to 1/d,
is obtained in Appendix C. Adding it for the six occupied
bonds gives the total effect of the pd coupling,

FIG. 1. The electronic energy bands of CrN. (a) Tight-
binding energy bands for first nearest neighbors only, (b) the
self-consistent augmented-plane-wave bands, and (c) the density
of states (DOS) of Papaconstantopoulos et al. (Ref. 9).

Epdb, „d=6V3(pd) —6[V&(pd) + V3(pd) ]'

45nh r rd
+

2~ md
(5)
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TABLE I. Contributions to the cohesive energy for the octet compounds of the transition metals.

KF CaQ ScN

Etrans (~p )

Etrans (dp )

Esp bond

Epd bond

TOtal EtranS+ EbOnd

(Experiment)

—15.9

—0.9

—16.7
( —7.6)

—22.9

—1.4

—23.4
( —11.0)

—16.2
—4.5
—1.4
—2. 1

—24.3

—10.1

—0.1

—1.3
—12.6
—24.0

( —14.6)

Coulomb corrections: U* =6.3 3U* = 13.8 6U = 10.5 10U* =0.9

2.8—

l

OCTET COMPOUNDS

~ EXPE RIME NT

o~
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2.4

G

Cl

02 2

CQ WITH pd COUPLI

It is to be added to the E„,n, and E,~ b nd for the
transition-metal compounds with a total of eight valence
electrons. [This form is valid even if V3(pd) is negative; it
then includes what may formally be regarded as an ener-
gy gain in transferring electrons from the nonmetal p
states to the metal d states. ] We can then directly predict
the bonding properties of any of these systems. E~d b,„d
reduces the predicted spacing and increases the cohesion
of these systems.

In Table I we give Etrans and Etrans+Esp bond for KF,
CaG, ScN, and TiC, as well as the estimate including
Epd b d for the transition-metal compounds, and the ex-
perimental cohesive energy. For these compounds with
nonmetals from the first row we overestimate the cohesion
by a factor of about 2 even for KF and CaO, mainly be-
cause of a large Coulomb correction which is much small-
er for compounds in which the nonmetal is from a lower
row. As indicated in Sec. II, this correction is given by a
net Coulomb repulsion U* times —,

' Z (Z + 1 ), with Z the
number of electrons transferred in the step leading to
E,„,„,. ' U* drops with increasing Z, being near zero for
TiC, while the Z(Z+ 1) factor is growing rapidly making
the correction very sensitive to the approximations made.
The correction is included as one entry in Table I, im-

proving the agreement with experiment, but still leaving it
only semiquantitative. This correction would be much
smaller for octet compounds of the transition metals with
the heavier nonmetals but there are almost no such com-
pounds with which to compare.

In Fig. 2 we show the predicted internuclear distances,
and the experimental values, for this series. (For these
calculations the effect of the Coulomb corrections is small
and they are not included. ) We also show the predictions
for the transition-metal compounds neglecting the effect of
Epd bQnd The additional Pressure due to E~d bond has given
approximately the correct lattice contraction for ScN and
TiO. Our overestimate of the spacing in CaO would sug-
gest some effect of the pd coupling in that system, and
possibly even in KF. However, with the calcium, or po-
tassium, d level we11 above the s level, it seems unlikely
that our transition-metal parameters apply. We conclude
that the simple-compound theory makes errors by ignor-
ing the d states already in CaO, but that our transition-
metal theory has not yet become appropriate.

IV. VARIATION WITH ROW
OF METAL OR NONMETAL

Elements of the same column in the Periodic Table are
chemically equivalent so one does not expect qualitative
differences when the row number of either constituent is
changed, and this is true. Thus we could talk about NaCl
and KF with the same outlook, but using different atomic
term values. Similarly we may use the same formulas as
given above when ScN is replaced by YN, LaN, or AcN.
The repulsion is larger for metals lower in the Periodic
Table, due here to the sma11er c&G in Vo, and the spacings
are larger. The effect is larger when the nonmetallic ion is
changed, as from LaN to LaP, because of the different qo
as well as the different c.~&. We noted also in Sec. III that
very few octet compounds with heavier nonmetals exist in
the rock-salt structure; this may be related to the larger
equilibrium spacing they would have if they existed.

2.0
KF

l I

CaO ScN TiC
COMPOUND

V. NONBONDING ENERGY BANDS,
9—12 ELECTRONS

FIG. 2. The bond lengths for the octet compound series KF,
CaO, ScN, and TiC. The upper curve is the bond-length predic-
tion without pd coupling and the lower curve includes pd cou-
pling. The solid points are experimental values.

In Sec. III we let the column of the two constituents
vary such that the number of electrons remained fixed at
eight. We now fix the nonmetal, say nitrogen, and let the
metallic ion change from Sc to Ti to V to Cr to Mn, etc. ,
adding an electron at each step. Similarly we could hold
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TABLE II. The predicted cohesive energy, bond length, and bulk modulus of the 3d-transition metal
nitrides. Energies are in eV and the bulk modulus is in Mbars. The Coulomb corrections to the
cohesive energy are given by 6U* =6(U —ae /d), where U =13.15 eV for nitrogen and the experimen-
tal value of d was used.

ScN TiN VN CrN MnN

Vq(sp)
V&(pd)
Et„,„,(sp) = —4 V3(sp)
Et„„(pd)= —2 V3(pd)
Ebond (sp )

Ebo„g(pd)
(Etrans +Ebony )

E„h (Experiment)
Coulomb corrections: 6U*
Predicted bond length d
(Experiment)
Predicted bulk modulus

5.44
3.44

—16.24
—4.49
—1.44
—2.09

—24.3

10.8
2.21

(2.22)
1.46

5.99
3.39

—15.6
—2.8
—0.59
—5.59

—24.6
—12.9

7.2
2.10

(2.11)
2.57

6.23
3.18

—15.04
—0.13
—0.11
—8.81

—24.05
—12.

7.2
2.06

(2.11)
3.27

6.30
2.86

—14.5
0.10

—0.05
—12.03
—26.5
—10.3

7.2
2.05

(2 ~ 11)
3.39

6.20
2.59

—14.0
1.43

—0.45
—15.89
—28.93

2.07

2.89

the metallic column fixed and change the column of the
nonmetallic ion, as from LaP to LaS. (We did not use
ScN to ScO as an example since the latter does not exist
in nature. ) Taking a nonmetal of one higher valence in-
creases the electron count by one, just as does increasing
the valence of the metal. The valence bands are already
full so the extra electrons must be accommodated in the
d-like nonbonding conduction bands, those levels which
become uncoupled as indicated in Sec. III.

Indeed now we can accommodate the first four extra
electrons from the transition metals to the right of scandi-
um in the nonbonding band in the nitride and they do not
contribute to the bonding of the compound. Thus the
change in column is of no consequence up through MnN
or the oxide FeO, with a total of 12 valence electrons and
Eq. (5) remains appropriate. The repulsive interaction be-
tween atoms also depends upon which states are occupied,
but is proportional to the coupling (as well as to the
nonorthogonality of the states) and vanishes for the non-
bonding bands. Thus again the additional electrons are
not of consequence to the bonding.

There are of course minor changes arising because the
atomic parameters for each element are a little di6'erent. '

These in fact give a small steady decrease in spacing with
increased valence of the metal, as illustrated for 3d ni-
trides in Fig. 3 and in Table II. There is an even more
substantial decrease in spacing with increased valence of
the nonmetal.

Again the predicted cohesion, listed in Table II, is too
large by a factor of about 2. The pd bonding makes again
a significant contribution to the cohesion, and that of
course only increased the discrepancy. The predicted
bulk moduli also appear in Table II; we did not find cor-
responding experimental values, but found in our earlier
study of the simple-metal compounds' that we underes-
timated them considerably.

One of the changes due to an increase in the valence of
the metal is the lowering of the d-state energy in compar-
ison to the nonmetallic p-state energy until (near CrN, for
example) V3(pd) goes through zero and then the d state
lies below the p state. Then the nonbonding d band lies at

2.6

2.5

I I

TRANSITION METAL NITRIDES

NO pd COUPLING

~ 2.4—
O+

O
ZI-
(g 2.3

UJ

CI2'. 2Z '—
o
CQ

~ EXPE RI MENT

LING

2.1

2.0
Sc
3

I

Ti
4

I

V
5
Z

Cr
6

I

IV@

7

FIG. 3. The bond lengths for the transition-metal nitride
compounds. The upper curve is the bond-length prediction
without pd coupling and the lower curve includes pd coupling.
Z is the total number of valence electrons on the metallic ion.

the top of the valence band, rather than at the bottom of
the conduction band. The same formulas for the contri-
bution to the total energy given above still apply, as we in-
dicated after Eq. (5).

The representation of the nonbonding band as Oat is
only approximate, and came from the inclusion of
nearest-neighbor coupling only. Complete band calcula-
tions, such as those shown in Fig. 1 for CrN, indicate an
overlapping of the bands and a broadening of the non-
bonding band. The principal source of this broadening is
the coupling between neighboring d states, second-
neighbor atoms in the crystal. It is thus much smaller
than the width in energy of the bonding band (and also
the antibonding band). The latter can be obtained from
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Eq. (A6) in Appendix A; when V3(pd) « Vz(pd), which
is usually the case, it reduces to

Wb =2 Vp(pd) .

The nonbonding band width, arising from the coupling
between neighboring d states, is found to be

W'd(nonbond) = 11.98k' rd /(md )

[obtained as was Eq. (B4) for p bands] equal to 1.75 eV
for CrN. This is smaller than the width of the bonding
band by a factor of approximately (rdld r~)', equal to
0.18 for CrN. The partial occupation of these bands gives
an additional pressure, an energy per atom pair given by
—,'ZNB(1 —ZNB/4) Wd(nonbond), which would reduce the
lattice spacing but the effect is small enough that we have
neglected it here. We also then neglect the additional
second-neighbor repulsion which arises from this cou-
pling.

An important effect of the electrons in the nonbonding
band is that they do provide a partially filled band and
metallic conductivity to the compound. This is a major
change in the electrical and optical properties. Because
these nonbonding bands are narrow, and the density of
states at the Fermi energy is therefore high, we may ex-
pect these systems to be superconductors with moderately
high critical temperatures.

Experimentally CrN is antiferromagnetic. This would
appear to be the result of an instability against spin-
density-wave formation of the three electrons per atom oc-
cupying the nonbonding bands, and not a fundamental
change in electronic structure such as we describe in the
following section.

VI. THE CGRREI,ATKD STATE, 13—18 KI,ECTRONS

Let us proceed tentatively as above to FeN or MnO,
with 13 electrons, and put the additional electron in the
antibonding band. This would be energetically unfavor-
able; the bond length would be expanded and the
cohesion would be reduced, both by the excess energy of
the electron in the nonbonding band and the extra overlap
repulsion associated with the antibonding band. Indeed
there are essentially no AB compounds in the rock-salt
structure composed of one transition-metal ion from the
4d and Sd rows and one nonmetal ion, such that the total
number of valence electrons is 13—18. The reason is cer-
tainly the destabilization due to the antibonding electrons.
There are a number of AB compounds of 4d and Sd met-
als in more complicated structures with partly filled
bands, but in these structures the antibonding character
may be less clear. - The corresponding rock-salt —structure
compounds do, however, form for the 3d transition met-
als.

For compounds of the high-valent 3d metals, Cr, Mn,
Fe, Co, and Ni, a new et&et arises which is ordinarily as-
sociated with magnetic behavior, though in some sense the
magnetism is incidental. Whenever two electronic levels
are sufficiently weakly coupled, as when two hydrogen
atoms are spaced widely apart, it becomes energetically
favorable for each electron to reside on one atom, avoid-
ing the Coulomb repulsion of the other, rather than for

the two to occupy bond states in which they inevitably
may be found at some moment on the same atom. This is

the so-called Heitler-London transition. The resulting
state is frequently called a localized state, though we
prefer the term correlated state. The real state in either
case is more complicated but the two concepts represent
diferent starting points for calculation of the state or
diff'erent appropriate physical pictures. When the corre-
lated state is formed we no longer think of bonding, non-
bonding, and antibonding states and the excess electrons
no longer inhibit the formation of the compound. Corre-
spondingly, the necessity of placing electrons in nonbond-
ing states in compounds with 13 or more electrons favors
the formation of the correlated state.

We analyzed such a system, weakly coupled f levels in
a pure f-shell metal, using the unrestricted Hartree-Fock
approximation. " We found the condition for the forma-
tion of a correlated state was that a resonance width,
equal to 0.677 times the band width, must be less than
2U/rr times a function of occupation, sin (Zf~/14) with
a fraction Zf/14 of the f states occupied. U is an intra-
atomic Coulomb repulsion, equal to the change in energy
of an f state when an electron is transferred from an s to
an f state in the free atom. We might say that if this cri-
terion is satisfied [that is, 8'f &0.94Usin (Zfw/14)], the
system may best be described as having formed a correlat-
ed state. We also found that the bonding energy due to
the coupling is reduced by a factor of 8'f/6U (in the
unrestricted Hartree-Fock approximation) when this
correlated state is formed.

Such a criterion is more difficult to construct for the
compound. The width of the bonding band, determined
in the present case by V2(pd), is relevant since it deter-
mines the energy gain from bond formation. Again the
atomic d state U, tabulated by Froyen, ' represents quan-
titatively the tendency for the state to become correlated.
We expect the correlated state to be established when U
becomes sufficiently large in comparison to V2(pd). We
may also expect a counterpart, sin (Zdir/10), of the fac-
tor depending upon filling of the level to apply, but we
have not derived the dividing point. We can however
evaluate Vq(pd) from Eq. (3) for the monoxides from TiO
to NiO, for which we have empirical values for d. These
drop from 9.3 to 4.3 eV through the series. The values of
U for these metals, given by Froyen, rise from 3.7 to S.7
eV through the same series and may be multiplied by
sin (Zdw/10). Indeed U sin (Zqw/10) first rises above
V2(pd) at the compounds MnO, where there are 13 elec-
trons. If we assert that such compounds will be stable
only if the correlated state occurs, we conclude that a
correlated state occurs when U sin (Zd ~/10) exceeds
Vq(pd) for the compound In fact sin (Zd.~/10)U exceeds
Vq(pd) also for FeO, but drops below again for CoO and
NiO, though the observed bond lengths, and insulating
behavior, would indicate that the entire set of compounds
have correlated states. We may count this as an incorrect
prediction for CoO and NiO.

The same evaluation for the nitrides ScN through CrN
gives Vz(pd) va1ues more than twice sin (Zd~/10)U, with
band states expected. All rock-salt —structure compounds
with the 4d- and Sd-transition metals had larger V2(pd)
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and smaller U and were far from forming correlated
states.

When the correlated state appears, each d electron be-
comes associated with a single ion. The correlated state
will ordinarily be insulating or semiconducting, with vari-
ous mechanisms for conduction being possible, as dis-
cussed by Zaanen, Sawatzky, and Allen. The spins on
each ion align, according to Hund's rule, giving a spin per
ion equal to one-half the number of electrons in d states,
—, for CrN. This is an indication of the formation of the
correlated state, though the gain in energy from spin
alignment is small and is not the driving force for the for-
mation of the state. It is the same driving force which
produced the antiferromagnetic state in CrN, in that case
presumably without destroying the bands.

VII. RARE-EARTH COMPOUNDS

Lanthanum, the last element before the rare-earth
series, contains two valence s electrons and one valence d
electron. It is thus electronically the same as scandium,
discussed above. It forms compounds with elements of
the same valence as nitrogen, and also nonmetals of

'

higher valence. We focus here on the nitrides. The d
band in LaN is empty but its interaction with the nitrogen
p bands decreases the internuclear distance and enhances
the cohesion according to Eq. (5). The compound is insu-
lating and nonmagnetic.

Moving in the Periodic Table to the right from lantha-
num, the free atom contains successively additional
valence electrons in f states. We must then consider the f
states interacting with the nonmetallic p states just as we
considered the d states interacting with the nonmetallic p
states above. In fact the Coulomb U for rare-earth f
states is large, varying from 5 to 8 eV through the series. "
The counterpart for pf coupling of Eq. (3) is

1/2
n (V~f +2V&f )

V2(pf) =
3

CeN, for which we have indeed found that U sin (Zfm/
14) & V2(pf) Cerium, the nearest neighbor to lantha-
num, is also the only rare earth to form f bands rather
than a correlated state as a pure metal (actually at low
temperature). We postpone a quantitative analysis of the
efFects of fp bonding to the next section.

The extra electron in this nine-electron compound,
CeN, is placed in a nonbonding band. The coupling be-
tween the f levels and the nonmetal p bands decreases the
spacing and enhances the cohesion. We might expect a
similar contraction in CeO, which would dial'er only by
the addition of a nonbonding electron, but CeO appears
not to exist in the rock-salt structure. If nitrogen is re-
placed by the larger phosphorus or any other element
from the lower rows in the Periodic Table, the increased
spacing decreases the coupling and it is not surprising that
all form correlated states as in the rare-earth nitrides (with
the exception of CeN).

VIII. ACTINIDK COMPOUNDS

The actinides are the Sf series, analogous to the 4f
series of rare earths. AcN is the direct analogue of ScN
and LaN. In order to see if the f levels form correlated
states or bands we may evaluate the covalent energy
V2(pf) for the series of actinide nitrides from Eq. (7). We
use the observed spacing d and obtain values which are
listed in Table III for the phosphides, arsenides, and sul-
phides, as well as for the nitrides; these are also plotted in
Fig. 4. The values of U sin (Zfn. /14) are the same for all
of these compounds and are also plotted in Fig. 4. We

1225n
'" A'(r, rf') '"

~2 md'

The largest value of V2(pf) (taking r~ from Appendix B
and rf from Ref. 19) is for CeN, 0.69 eV and with Zf =1,
the quantity U sin (Zfvr/14) is 0.28 eV, less than V2(pf).
We correctly predict that only for CeN will bands be
formed. Except for this one case, we expect a correlated
state of the f electrons to be formed, removing their con-
tribution to the bonding, and leaving the properties of the
compound almost identical to those of the lanthanum
compound. However, they have a local magnetic moment
on each atom, increasing by one-half unit at each step
beyond lanthanum until the shell is half full and then
dropping by one-half unit to the end of the series, with
some minor irregularities. ' One of these irregularities
gives ytterbium a Zf of 14 rather than 13. Otherwise we
would have predicted an uncorrelated state for YbN as
well as CeN.

Experimentally the bonding and magnetic properties
indicate that all do form correlated states except for

U
K
LU 2

Th Pa U Np Pu Arn Gm

CATION
FIG. 4. A comparison of U sin (Zfsr/14) and the pf coupling

energy Vz(pf) for the actinide phospl. ides, nitrides, sulfides, and
arsenides. V2(pf) is evaluated at the experimental value of the
bond length for the compounds.
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TABLE III. Parameters determining the formation of a correlated f state in the actinide compounds.
All energies are in eV. The U values for the actinides were calculated from Hartree-Fock theory with
relativistic corrections [see R. D. Cowan, The Theory ofAtomic Structure and Spectra (Univeristy of Cal-
ifornia Press, Berkeley, 1981)]. V2(pf) is calculated at the experimental value of the bond length.

V2(pf)

T}1
Pa
U

Np
Pu

Am
Cm

—7.06
—8.67

—10.09
—11.41
—12.64
—13.81
—14.96

3.11
3.32
3.56
3.80
4.03
4.26
4.51

U sin (Zfn/14)

0.15
0.63
1.38
2.32
3.27
4.05
4.51

N

1.65
2.33
1.48
1.27
1.16
0.95
0.81

1.85
1.99
2.51
2.09
1.70
1.24
0.96

As

1.27
1.66
1.00
0.83
0.75
0.67
0.57

1.38
0.88
1.14
0.98
0.86
0.75
0.66

see that V2(pf) is less than Usin (Zfvr/14) at the begin-
ning of the series, crossing the nitride line between urani-
um and neptunium, suggesting that f bands should form
for ThN, PaN, and UN. The crossing occurs further to
the left for the other compounds, but in all cases the com-
parison suggests that bands form at the beginning of the
series but not further to the right. The formation of f
bands in the actinides, but not the lanthanides, corre-
sponds to the trend noted earlier that the heavier transi-
tion elements, because of their small U's, do not have the
same tendency to form localized states in the metal as do
those in the 4f series. In fact it is generally believed"
that of the actinide metals, thorium through plutonium
have f bands but beyond that they do not. Our analysis
of the interatomic spacing will suggest that bands occur
further to the right in these series than the crossings in
Fig. 4 would indicate. Thus our prediction of which sys-
tems form bands, based upon the criterion developed in
Sec. VI for transition-metal oxides, was only qualitatively
valid for the nitrides of the actinide metals.

It is appropriate to proceed with a discussion of the pf
contribution to the bonding for the actinides at the begin-
ning of the series, and for cerium. The contribution to
the bonding from the lowering of the filled nonmetallic p
band, analogous to Eq. (5), is

Epf b,„q——6V3(pf) —6[tVp(pf) + V3(pf) ]'

1050nh rz rf+ ~'md' (8)

per atom pair. As we proceed across the series in which f
bands exist, we add electrons to the lower conduction
bands which are nonbonding d bands or nonbonding f
bands with little expected effect upon the cohesion or
upon the bond length. The contribution from Eq. (8)
reduces the spacing for all compounds. In Fig. 5 we have
plotted the predicted spacing for the phosphides with and
without the efFects of pf coupling. The fact that the ex-
perimental values lie near the prediction which included

pf coupling suggests that bands form further to the right
than suggested by our comparison of V2(pf) and
U sin (Zf m. /14) in Fig. 4. Plots of the nitrides,
aresenides, and sulphides lead to the same conclusion.
Since even with pf coupling we predict an increase in the
spacing to the right of uranium phosphide, we cannot tell

whether the observed experimental increase arises from
this effect of the bands or from a formation of a correlated
state.

It is somewhat of a surprise that the spacing has a
minimum in this series since E,~ b,„z(d) from Eq. (2) is al-
most the same for all compounds of the same nonmetal
and rf decreases steadily with increasing atomic number.
Thus we might expect the e(Feet of the pf coupling to de-
crease steadily across the series, giving an increasing d
with increasing atomic number. In fact V3(pf) is found
to go through zero in each series as the f level drops
below the p level of the nonmetallic atom. The attraction
'dE~f b,„q/t)d from Eq. (8) is dominated by the term

~l V2(pf)'+ V3(pf)']'"
Bl

V2(pf) ~ V~(pf)= —6
V, (pf)'+ V, (pf)']'" ad

3.5: I I I I

ACTINIDE PHOSPHIDES

NO pf COUPLING

o+ 3.0—
O

X
U

UJ

Z 2.5C)

0
Kl

WITH pf

~ EXPER(MENT

2.0 1 I I I I I

ThP PaP UP NpP PuP AmP CmP

COMPOUND

FIG. 5. The bond lengths for the actinide phosphide com-
pounds. The upper curve is the bond-length prediction without
pf coupling and the lower curve includes pf coupling. The ex-
perimental points are taken from Ref. 6.
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TABLE IV. The parameters and predicted bond length d, cohesive energy, and bulk modulus of
the actinide arsenide series of compounds. All energies are in eV and distances in A; the bulk
modulus is in Mbars. The Coulomb correction U* is zero for the entire series of arsenides.

Compound

d min

(experiment)

ThAs

2.82
(2.98)

PaAs

2.71

UAs

2.69

NpAs

2.81
(2.92)

PuAs

3.12
(2.93)

AmAs

3.25
(2.94)

CmAs

3.29
(2.95)

V3(sp)
V3(pd)
V3(pf)

1.85
1.99
1.48

1.80
1.95
0.69

1.75
1.93

—0.02

1.70
1.94

—0.67

1.66
1.96

—1.29

1.61
1.98

—1.87

1.57
2.01

—2.44

V2(sp)
Vz(pf)

&trans (&p )

&trans (pd )

+sp bond

Epf bond

&coh

3.34
1.70

—7.40
—3.99
—0.24
—2.07

—13.70

3.62
1.66

—7.20
—3.90

0.61
—4.39

—14.87

3.67
1.44

—7.00
—3.87

0.74
—7.10

—17.23

3.36
1.02

—6.82
—3 ~ 88
—0.36

—10.47
—21.52

2.73
0.55

—6.62
—3.91
—1.43

—15.82
—27.78

2.51
0.41

—6.44
—3.96
—1.57

—22.57
—34.53

2.45
0.33

—6.26
—4.03
—1.62

—29.28
—41.19

B (Mbars) 0.39 0.80 0.93 0.42 0.13 0.1 1 0.11

and the ratio V2(pf)/[V2(pf) + V3(pf) ]', analogous to
the covalency defined for sp-bonded systems, is maximum
when V3(pf) is zero. This turns out to be the dominant
effect, giving the strongest attraction when this covalency
is unity.

The experimental minimum is most pronounced for the
phosphides and almost nonexistant for the arsenides.
Nevertheless we may illustrate the effect using the theoret-
ical values for the arsenide series. In Table IV we give
the relevant parameters and the predicted, and experimen-
tal, spacings for the arsenides. We also give the contribu-
tions to the cohesion, all evaluated at the theoretically
predicted d. We see that V3(pf) goes through zero at
uranium and that is where the predicted minimum is
spacing occurs. We see in contrast that the contribution
E~f b,„d to the cohesion continues to increase in magni-
tude through the series. This follows also from Eq. (8),
which approaches 12V3 as V3 becomes large and negative.
(The final term is small. ) It is just the derivative, Eq. (9),
which becomes maximum when V3 is zero.

We have no experimental information concerning the
cohesion and bulk modulus for these systems. The other
cases we have considered in this paper suggest that the ac-
curacy of the predictions would be low but that the trends
found may be meaningful.
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APPENDIX A: AVERAGE BAND ENERGIES
FROM THE SECOND MOMENT

To obtain the total energy of the solid we needed a sum of
energies over the lower set of three bands. We wish to
obtain the sum approximately by calculating the second
moment of the bands. This is conveniently formulated by
writing each band state as a linear combination of the five
d states on each of the X metal atoms and of the three p
states on each of the X nonmetallic atoms. This leads to
an 81'&8N Hamiltonian matrix, H;J. If the eigenvalues
are written cq, the second moment measured from
( Ed + ep ) /2 is

(ek ) =(1/8N) g ek =(1/8N) g HJH,;, (Al)

since the matrix H is Hermitian and diagonalizing it
does not change the sum of its diagonal elements cI, .
Since we measure eigenvalues from (8~+ed )/2, the diago-
nal terms are all V3, with V3=(Ed —Ez)/2, contributing
8NV3 to the sum. If we sum over states i on one metal
atom, the sum over the j on neighboring nonmetal atoms
will be independent of which metal atom we selected, and
in fact the sum over i and the j on a single one of the n
nonmetal neighbors will be the same for each neighbor.
Thus,

(sk ) =(n /8) y 2HJHJ, + V3, (A2)

where now i runs over states on one metal atom and j
over states on one neighboring nonmetal atom. This sum
is in fact 2g Vzd, m = —1 to 1. A factor of 2 came
from adding the terms with metal and nonmetal inter-
changed. 8(eq ) is the sum of the Ek over all eight bands.
If we drop the two nonbonding bands at cg = V3, and
divide by 6 to obtain the average of the remaining six we
obtain

The electronic structure of the transition-metal com-
pounds is represented by bands such as those of Fig. 1.

1

~sk )bond (+ /3) y Vpdm + V3
m= —1

(A3)
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The first term on the right is called the square of the co-
valent energy, [Vi(pd)] . For a general pair of bands
based upon orbital angular momentum quantum numbers
l and l' with l & l' the covalent energy is

1

(Vp' ) =[n/(21~1)] g Vii~,
m= —I

with n again the number of nearest neighbors.
We take the average of the lower band energy to be

(Ei+Ei )/2 —(Ei, )' '=( el+ei )/2 (V—p+ V3)

(A4)

We may verify by substituting Eq. (A4) for Vz that for
small V2, an expansion to second order gives exactly the
result from second-order perturbation theory. It follows
that if we are to use the form —( V2 + V3 )

' i, Eq. (A4) is

the correct choice of V2. The sum of energies over the
2(21+ I) electrons (again 1(1') per atom pair occupying
these bonding bonds is

y EI, =2(2i+1)[(e/+Ei )/2 —( V'+ V')' ']
k

(A5)

[( V3+ Wb) —V3]/(3Wb )= Vi+ V3 (A6)

This can be solved numerically and the average energy of
the bonding band, obtained from the corresponding densi-

ty of states, is —V3 —8'b/2. The artificiality of the densi-

ty of states did not seem to justify the added complexity.
We took the simpler form —( V2+ V&)'

APPENDIX B:DETERMINATION OF PARAMETERS

For sp-bonded systems we used universal tight-binding
matrix elements with V,„=1.42iri /md . For d and f
shells we use Andersen's muffin-tin-orbital theory ' as
combined with transition-metal pseudopotentials' to ob-
tain

V ( g2/ )[( 21 —I 2l' —1 )1/2/d /+i'+ 1] (81)

per atom pair. In computing cohesion, this would be sub-
tracted from the sum over the c1 and c1 for the atomic
levels previously occupied by these electrons.

Simple compounds, such as NaC1, are a special case of
this with l =0, l'= 1. Then

g ek ——2[(e~+E, )/2 —( V2+ V3)' ']
k

with V2 ——6V~ and V3 ——(E, —E~)/2 as discussed above.
This was derived earlier' using the Baldereschi special
point method (described in Ref. 2). The result is now
generalized to d- and f-shell systems though the generali-
zation does not follow from the special points method.

In fact a form which may be more accurate than Eq.
(A5) could be obtained by assuming a model density of
states with a uniform density of states 6/Wb in the bond-

ing band of width Wb from (Ei +Ei ) /2 —V3 to
(Ei+si )/2 —V3 —Wb. The same width is assumed for the
antibonding band beginning 2V3 above this, where the
nonbonding band of zero width lies. We may calculate
the (ek ) for the bonding band with this density of states
and equate it to Eq. (A3) to obtain an equation for Wb

where r1 and r1 are distances characteristic of the lth state
of the free atom. Wills' has derived the general form for
the coefficient

X
(2l + 1)(21'+ 1)

(1 +m)!(I —m)!(1'+ m)!(l —m)!

1/2

(82)

W~ =(g/rr)fi rp/md' . (84)

It is interesting that precisely the same result is obtained
[using again (83)] for a body-centered-cubic structure for
which the maximum and minimum appear to be, for ex-
ample, states +

~
p„) on the cube corners and +

i p~ ) on
the cube centers.

In the atomic surface method the band width is given
b 19

W~ = 4irro(A /m)(r)p~/—Br)
~
„ f 4irr p~dr, (85)

where p~ is the angular average of the probability density
for an atomic p state and rp is the atomic sphere radius,
4irro/3=d for a simple cubic lattice. If Eq. (85) gave a
width varying exactly as d, the rz obtained from Eqs.
(84) and (85) would not depend upon the choice of ro
That will only be approximately true but we may choose
an rp such that 0 in@'z/8 lnrp is approximately —3. We
do this using the asymptotic form of the atomic wave
function proportional to r e "" with p given by

cp — A p /2m . The exponent v is near zero and is

dropped and the denominator in Eq. (85) is near one and
set equal to one. Then Bp& /Br = —2ppz and
0 ln 8'z /c) lnrp ——2 —2prp ———3 or prp ———,'. For oxygen,

with c~ = —16.72 eV this gives rp ——1.19 A or d = 1.92 A.
Using Hartree-Fock wave functions and term values we
have evaluated r from Eqs. (9) and (10) and listed them
in Table V for the nonmetallic elements.

It may be useful also to do an approximate evaluation
using the normalized asymptotic form E~ =(p /ir)e
and setting the denominator in Eq. (85) equal to one.
Then letting 2prp ——5 we obtain

r~ =w 5 e /24p, (86)

We will be interested here in couplings where l = 1,

g & [p = 1 /77, g & & ] = —1 /277,

rI i pp = —3& 1 5 /2 ir, i) i i i = 3&5 /2 ir

g ]3p —10&2 1 /w, g i 3 ~
———1 5&7 /2 /w

A procedure has been given' for obtaining r1 from the
free-atom atomic state but a simpler and probably more
reliable method is to obtain both the top and bottom of
the pure metal bands from the atomic surface method'
and choose r1 such that the tight-binding band width is
the same. We already have rd values and rf values ob-
tained in a similar way. ' To obtain r& we may put oxy-
gen in a simple cubic structure and note that the max-
imum and minimum of the tight-binding p bands occur at
k =(ir/d, 0,0) and are +(2V&z —4V& ) corresponding to
a band width [see Eq. (83)] of



36 ELECTRONIC STRUCTURE AND PROPERTIES OF d- AND f 2705

TABLE V. Tight-binding parameters for anion p states. The
tight-binding parameter r~ for the anion p states as defined in
Eq. (Bl) in units of A.

C
6.59

Si
13.7
Ge
14.4
Sn
18.0
Pb
19.8

N
5.29

P
11.4
As
13.2
Sb

16.8
Bi

18.9

0
4.41

S
10.1
Se

12.1

Te
15.9
Po
17.9

0
giving 4.13 A for oxygen, in reasonable agreement with
the more accurate value of 4.41 A from Table V. We see
that r~ varies inversely with the square root of

~
e~

~

.
As a further test of our method we may evaluate

V~q =( —3&15/2ir)(iri /m)(r~rq)' /d

Viq„=(3&5/2m. )(fi /m)(erg�)' /d
(87)

for strontium titanate in the perovskite structure with
d =1.95 A. For titanium r~ ——1.08 A and we obtain
from Eq (87). V~q = —2.30 eV and V~q~=1. 33 eV in
good accord with values —2.43 and 1.13 eV obtained
from a band calculation on SrTi04 by Mattheis. Similar
agreement is guaranteed for KTa03, KMo03, and Re03
since they differ only in rz and the relative values were
checked earlier.

APPENDIX C: THE OVERLAP REPULSION

Vo(d) = —i)oslG[fi /(melGd )] (C2)

with clG the average of the p-state term value for the inert
gas atom following the anion (Ne for 0) and that for the
inert gas atom preceding the cation (Ar for Ca). With this
choice, go was found to depend only on the anion row,
being given by 688 for the oxygen row, 1163 for the
sulphur row, 1323 for the selenium row, and 1684 for the
tellurium row. The combination of this repulsion and the
bonding attraction stabilizes the structure. We shall use
this same Vo for d- and f-state metal compounds but need
to add the repulsion from the nonorthogonality of the d
states and the neighboring anion p states.

The corresponding d bands are only partly occupied

The sum of the electronic energies in Eq. (Al) came
from a Hermitian matrix, and therefore orthogonal orbit-
als. The average energy of all levels is then not shifted by
the coupling. Real orbitals on neighboring atoms are not
orthogonal and the overlap

Sum = f it'im(r)4(m(r d)d r- (Cl)

causes an upward shift in the average energy and thus a
repulsive "overlap interaction" between atoms. For sp-
bonded ionic solids we used the virial theorem to suggest
that this repulsion was given by' 5c= —n/(21+1) g Vii Sii (C3)

Here we have also multiplied by the number of neighbors
n, taking the shifts to be additive. Special cases of
I =I'=2 and I =I'=3 were derived earlier. ' '

Wills' has derived formulas for the nonorthogonality

(
2l —I 2l' —1

) I/2/d I + I' —1 (C4)

with

o i& ~ ———
—,
' (1+1')[1+(4m —1)/(21 —1)(21'—1)]ilia ~ .

(C5)

These may be substituted back into Eq. (C3) to give a

and we must treat the repulsion in a different way. In
particular we must see what the effect of nonorthogonality
of neighboring orbitals is on the energy bands.

We begin with two coupled levels, such as the 1s states
on two neighboring hydrogen atoms. We may form
bonds as even and odd combinations of these two states
and evaluate the energy as

( g ~

H
~
i)j) /( P ~

@)=a+ ( I
~

H
~

2) /(1+S),
where e, =(1 [H )

1)=(2 (H )
2), and S=(1)S=(1/

2)
~

2) is the nonorthogonality. The plus obtains for the
bonding state (the coupling (1

~

H
~

2) is negative) and
the minus for the antibonding state. We define the co-
valent energy to be half the diff'erence, Vz ——( 1

~

H
~

2) /
(1—S ), which is given by universal parameters. The
shift in the average is then seen to be —SV2, a positive
shift, and the overlap repulsion is this shift times the
number of electrons in these states. This same —SV2 is
also correct even if there is a difference in energy be-
tween the two coupled states, a V3 ~

'

Similarly we may construct pd bands, as illustrated in
Fig. 1. At each wave number each band consists of a
linear combination of some p Bloch sum X~ exp(ik r)

~

p.
~ )

and some d Bloch sum of the same wave number and we
again evaluate ( g ~

H
~
p) /(g

~
ll ). If because of symme-

try, as at k =0 in Fig. 1, the two Bloch sums are uncou-
pled, we obtain simply the c~ or c.~ with no shift due to
coupling nor to nonorthogonality. For this symmetric
case the two Bloch sums are also orthogonal, but at more
general points in the zone where the Bloch sums are not
orthogonal, there will be no shift —SVq(k) when the cou-
pling is zero. Thus the nonbonding bands are not shifted
by the nonorthogonality and do not contribute to the
overlap repulsion even when they are occupied. The aver-
age shift of bonding and antibonding bands is a direct
generalization of the results for pure metals, ' ' it is
—I/(21+1)X Vii Sii with the sum over —1(m (l.
Again we have taken I & I'. As in the two-level case, one
effect of the nonorthogonality is to modfy the couplings
which produce the bands [as for the V2=(1 ~H ~2)/
(1—S ) in the two-level case]; this has already been taken
into account by using universal matrix elements. The
other is to provide an overlap repulsion equal to the sum
of the number of electrons occupying the bonding and an-
tibonding bands times the average shift of these bands,
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shift for pd coupling of 5s=(175n le )(A Im)rzrfld (C7)

5E=(15n I4tr )(A' Im)rzrd ld

and for pf coupling of

(C6)
These are to be multiplied by the number of electrons per
atom pair occupying the bonding and antibonding bands.
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