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Green s-function theory of the anisotropic Heisenberg model in a transverse field
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The S = —' anisotropic Heisenberg model in a transverse field (AHMTF) is studied by means of
double-time Green's functions. A new approximation scheme is employed which is based upon the

assumption of the statistical independence of the ordering operator. The basic approximations are re-

quired to satisfy all relevant operator and correlation identities. Emphasis is placed upon obtaining
accurate approximations for those Green's functions which are related to the ordering susceptibility.
The scheme is relatively simple to use and applicable to a wide variety of systems. Standard
Green's-function techniques are shown to provide results for the critical transverse field for Ising-like

systems which violate S = —' identities. They are also shown to be not applicable to the ordered phase

of XY-like systems. In contrast, the new approximation provides reasonable results for all tempera-
tures and couplings for the S = —' AHMTF.

I. INTRODUCTION

Double-time Green's functions' (DTGF) describe the
linear response of many-body systems to external fields
and treat quantum and thermal fluctuations on the same
level. They provide a suitable framework for the con-
sistent treatment of the physics of many-body systems at
all temperatures. The development of approximation
schemes for DTGF has focused on decoupling their equa-
tions of motion. Ideally, such schemes should be well
defined (the decoupling criterion should be clear), con-
sistent with all relevant operator identities, and generally
applicable to a wide variety of systems.

The first step in the standard decoupling approach is to
use the equations of motion of a basis set of operators to
form the equations of motion of the DTGF. This results
in a hierarchy of equations which must be decoupled to
provide a closed set of equations for the DTGF. The ap-
proximate DTGF thus obtained are required to satisfy an
identity in common with their exact counterparts. The
decoupling is usually chosen for convenience or for
reasons which are essentially ad hoc. The consistency of
the basic decoupling approximation with relevant operator
identities is not always assured.

This paper describes a new scheme which also begins

by forming the DTGF equations of motion but, in addi-
tion, uses the operator equations of motion to form a set
of correlation identities which are not considered in the
standard procedure. The decoupling scheme is based
upon the assumption of the statistical independence of the
ordering operator and is, therefore, well defined and can
be applied to a wide variety of systems. As part of the
new procedure, the decoupling approximations are re-
quired to be consistent with all relevant operator identi-
ties. This requirement produces a set of correlation ap-
proximations. The decoupled hierarchy and correlation
approximations are then used to determine the DTGF
which are associated with the susceptibilities describing
the response of the system to the ordering field. The ac-
curacy of these approximate DTGF is assured by requir-

ing them to satisfy an identity in common with their exact
counterparts.

The S=—,
' anisotropic Heisenberg model in an external

field transverse to the ordering direction (AHMTF) is an
important application for any DTGF approximation
scheme. The presence of the transverse field allows the
determination of those DTGF which are directly related
to the ordering susceptibilities of the system. Most
currently available schemes have been developed for the
case of vanishing transverse field (AHM) and, thus,
do not provide approximations for those DTGF which are
directly related to the ordering susceptibilities. Those
schemes proposed most recently have improved on
earlier versions through increasingly more complicated,
ad hoc decouplings and are not generally applicable to
other systems. Special cases of nonvanishing transverse
field [i.e., the XY (Ref. 8) and Ising models in a trans-
verse field] have been treated within the standard approxi-
mation scheme by symmetric (random-phase) decoupling.
It will be shown that adherence to the standard procedure
forces unacceptable results for the Ising-type AHMTF
[az&a, in Eq. (3.1)] and precludes the study of the or-
dered phase of the XY-type AHMTF [a» az in Eq.
(3.1)].

In contrast to previous approaches, the new general ap-
proximation scheme provides a DTGF-based treatment of
the AHMTF which is valid for all T and all values of the
coupling constants. Decoupling the DTGF equations of
motion in first order, expressions are obtained for the crit-
ical curve and for the magnetization in the ordered phase.
The parameters of the critical curve, i.e., the critical trans-
verse field and the critical temperature in vanishing trans-
verse field, compare very well in the pure Ising and pure
XY limits with those obtained by high-temperature expan-
sion techniques. ' '" The ground-state order parameter is
obtained for all values of the coupling constants.

II. DOUBLE- TIME GREEN'S FUNCTIONS

The retarded (p=+ I ) or advanced (p= —1) commuta-
tor (g = —1 ) or anticommutator (r) = + I ) double-time
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Green's function is defined by

(( A(t);B(t') )) i,",= ——[(p+1)e(t —t')

+(p —1)e(t' —t)]

x ( [A(t),B(t')]„),

where

A ( t ) e iHt Ae —iH/

[A,B]q——AB+YiBA,

(2.1)

(2.2)

CZ] CXp

Ho ——— g J;J(S S~'+S»SJ») — g J,&S,'Sf',
t,J l,J

(3.1)

[Si",SJ ]=t5;i.6'„gS) (3.2)

where 6„„i is the Levi-Civita symbol with 8„»,=1.
For S=—,', [S/'] also satisfies

(3.3)

where [S/'), iLt=x,y, z are the familiar dipolar spin opera-
tors which satisfy (6=1)

and e(t) is unity for t &0 and zero for t &0. The single
angular brackets in Eq. (2.1) denote thermal average. It
follows from Eq. (2.1) that (( A(t);B(t')))ii"~ is a function
of t —t' only.

The Fourier transform of (( A (t);B )) ii"~' is defined by

(( A;B))P+, ,——f dt exp[i(E+ipe)t]

H, = —Q, QS; (3.4)

and

H3 ———Q3+S (3.5)

The effects of uniform fields coupling to S; and 5 are de-
scribed by

x « A(t);B))',;,', .-o
and satisfies the equation of motion

E(( A;B))P'= &[A,B]„)+ &([A,H];B&)P'' .

(2.3)

(2.4) H =Hp+Hi (3.6)

The case of z ordering in the presence of a transverse x
field, for which the full Hamiltonian is given by

c'-'=0,
where

Ci~i=»m E(&A;B&)Pi
E~o

The correlation (BA(t) ) may be calculated from

(BA(t)) =-,'(1—il)C'

(2.5)

(2.6)

The Green's function (GF) on the right-hand side of Eq.
(2.4) is generally of "higher order" than the GF on the
left-hand side and must be decoupled so that a closed sys-
tem of equations is obtained. The Fourier transformed
GF as defined in Eq. (2.3) is sectionally holomorphic; the
retarded (or advanced) GF is analytic in the upper (re-
spectively, lower) half of the complex E plane. ' ' It has
been shown' that the commutator GF cannot have a pole
at E=O, i.e.,

is considered in detail in this section and in Secs. IV and
V. In Sec. VI, results are also reported for the case of x-y
ordering in the presence of a transverse z field, for which
the full Hamiltonian is given by

H'=Hp+H3 . (3.7)

Usually z ordering in a system described by Hp is
studied by using H' and letting 03~0 and x-y ordering is
studied by using H and letting Q&~0. Such procedures
clearly preclude the study of the effects of a transverse
field on the ordering process. As will be seen in Sec. V,
the presence of a transverse field also allows the deter-
mination of those Green s functions which are directly re-
lated to the susceptibilities which diverge at the critical
point.

Using Eq. (3.2), the equations of motion of the spin
operators are

f" dE(e~ +g) 'e
277 —oo

[S;,H]= —iai g J; S S» +ia2+ J; S»S' (3.8a)

x 1 ((& A;B)&P,'„
e~p+

[S, ,H ]=i $), ,S +i a) g J; S S" i a~ g J;—S; S'

—&(A;B))P' „), (2.7) (3.8b)

X (E)= »&( A;B&)'—
e o+

(2.8)

where P= ilk T.sThe response of the system to an
external field coupling to B is described by the generalized
susceptibility' '

[S,H]= —iQ,S»—iai g J; (S»S" —S; S» ) . (3.8c)

(aq —ai) g J; ($»S' ) =0, (3.9a)

Taking the thermal averages of both sides of each member
of Eqs. (3.8a) —(3.8c) yields the correlation identities

III. ANISOTROPIC HEISENBERG MODEL

The anisotropic coupling of nearest-neighbor spins is
represented by

Q,z —(a2 —a, ) g J; (S;"S' ) =0,

Qiy=0,

(3.9b)

(3.9c)
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where, by definition and translational symmetry,

p, =(s/'), p=x, y, z .

Equation (3.9c) clearly gives y =0 for all T if II,&0.
Defining

Gg'" =«SP;R, ))P, L,~'"I= ([S—,",R ]„),
p=x, y, z,

(3.10)

(3.11)

and

(RJS,"(t)S'(t) ) =p(RJS'(t) ) +v(RJS,"(t) )

+R(&s;s.' & -2p-)

+ (R,s/'(t)s' (t) ), , (4.1b)

where i&m, p&v, R =(R;) and the subscript c stands
for cumulant average. The cumulant averages can be
written in terms of the fluctuations

+ia, g J; ((S,~s';R, ))P (3.12a)

EG~ '~'=L~' '" +iAG' ',"'+ia ~ J ((S'S' R )) "'
lj tJ ] ij ] ~ ij i m~ j F.

and using Eqs. (3.8a) —(3.8c) in Eq. (2.4) gives the Green's
function equations of motion

FG,R(Ti) L,R(q) y J ((S SJ .R )) I@I

as

b.";(t)=S/' —p, p =x,y, z

6; =R; —R,

( S/'(t)S ' (t)R, ), = ( b/"(t)b, (t)b, ~ ) ,

(R,s/'(t)S" (t) ), = ( bJ b;"(t)b ' (t) ) .

(4.2a)

(4.2b)

—ia, y J, ((S;S.';R, »~~I,

z, R( /) I z, R('/ —l B Gp. , R( t/)

V U 1 IJ

, y J,.((&S,~S:;R,))"
—(&s,"s&;R, &) p'') .

While Eq. (2.7) gives

(R S/') = —,'(1 —t)) lim E((s/', RJ ))z"

(3.12b)

(3.12c)

The assumption that one of the operators appearing in
((S/'S';RJ ))pj is statistically independent of the others
gives'

(S/'(t)S'(t)R, ), = (RJst"(t)s (t)), =0 (4.3)

and is equivalent to the assumption (in the calculation of
the fiuctuation correlations) that two of the fiuctuation
operators interact with the average of the third. When
used in Eqs. (4.1a) and (4.1b), Eq. (4.3) gives the approxi-
mations (i&m, p&v)

(S/'(t)s'(t)R, ) =p(S'(t)RJ ) +v(s/'(t)RJ )

—((SP;R, ))P „) . (3.13)

\

+ dE e~ +g ' lim S,~;Rj +,,2' e-0+

+R ( (S,"S' ) —2pv),

(RES/(t)S (t)) =p(RJS (t))+v(R, Sp(t))

+R((S/'S' ) —2pv) .

(4.4a)

(4.4b)

g, , „(E)= —lim g ((S;;SJ"))z+', „v=x,y, z .
+e 0

(3.14)

From Eq. (2.8), the response of the system to a uniform
magnetic field in the p direction (p=x,y, z) is given by

((S/'S' ) —2p, v) . (4.5)

Using Eqs. (4.4a) and (4.4b) gives the cumulant decou-
pling approximation

((SJS~ .R )) pG v, Rtq)+ GP, RIg)

IV. CUMULANT DECOUPLING —STANDARD
PROCEDURE

The Green's functions on the right-hand sides of Eqs.
(3.12a) —(3.12c) are of the form ((S/'S';R ))Pr' ' and are of
higher order than the basic Green's functions in Eq.
(3.11). They must be approximately decoupled to provide
a closed, soluble set of equations to replace Eqs.
(3.12a) —(3.12c). The decoupling scheme used in this
treatment is based upon the concepts of cumulants and
statistical independence. The cumulant averages of
(S/'(t)S (t)RJ ) and (RJS/'(t)S (t)), the correlations ap-
pearing in ((S/'S';R, ))P~, are defined by'

Lx R( —)+ Lz R( —) 0X Z 14 (4.6)

(which is an identity in this case for all R; =S;,S, ,S ) and

Inspection of Eqs. (3.12a) —(3.12c) shows that RJ is the
only operator that appears in all of the Green's functions
which are to be decoupled by Eq. (4.5). Therefore, the as-
sumption that a single operator of the set IS,SJ',S ] is

statistically independent of the others requires that Rj be
chosen to be the statistically independent operator. Using
Eq. (4.5) in Eqs. (3.12a) —(3.12c), solving the resulting
decoupled equations, and requiring that the commutator
Green's functions (i) = —1) have no zero-frequency poles
[cf. Eq. (2.5)] gives the conditions

(Sp(t)s'(t)RJ ) =p(S'(t)RJ ) +v(sp(t)RJ )

+R(&S,~S. &
—2pv)

[II)+(ai—aq)XJO]Lg' =0 (4.7)

+(S/'(t)S (t)R, ), (4. 1a)
and the cumulant decoupling approximation Green's
functions
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Gx, R(g) 1
k

C (E) k 2 0 1 k 2[EL ' ("'+ia zJ (1 —a y /a )L(' "']
k

(1+r))
[z (a2 —a, )RJ(1[2(a2—a1)xJo —SI(]N~k, 0+[+1+a(xJ0(1—a2yk/a1)]~ k ]

R

E&k(E)
(4.8)

G f,
'"'"' =

I EL f, '"'+i (I+ I) )Rz [2(a2 —a1)xJo —Il (P'~ko
Nk(E)

—i[a2zJp(1 —a(yk/a2)L k' ' —[&(+a(xJ0(1—a2yk/a()]L k' ] l (4.9)

Gz R(g) [ELz R(j) i[@ + a xJ (1 y )]Lg,1

(E) k 1 1 0 k

+ (1+21)z [A(R[2(a2 —a1)xJo —Q(]%5k,o pJ0(1 a1j k/a2)~k I
R

E4k(E)
(4.10)

In Eqs. (4.6)—(4.10),

GIi, R(zi) ~ ' ij Gj, 'z(Rq)
tj )

l,j

Lg. , R(71) ~ ' 'zijL jz, R(zj)

1,J

tkr,
Jk ———ge "J;, ,

l,j

a "=—pe "&R S()Ek'r
k ~ t J

l,j

(4.1 1 a)

(4.11b)

(4.11c)

(4.11d)
X, , = —G(1' '(E =0) (4.13)

sidered unsatisfactory.
The source of the failure of the standard procedure is

the choice R;=S~, i.e., the assumption that S~ is the sta-
tistically independent operator of the set [S;",Sj',S I. This
choice leads to the determination of all information from
GP("1. From another point of view, the use of Eq. (3.13)
within the standard procedure serves to assure that the
approximate version of Gf, '~ ' satisfies Eq. (3.13) in com-
mon with the exact GP '. However, on the critical
curve for z ordering,

and

rk Jk~jo

@k(E)=E —cok,

[+(+alxJO( 1 yk)]+ k'

+a2zJo(1 —a(yk/a2)a k',.

(4. 1 le)

(4.11f)

(4.11g)

+(a2zJ0) (1—a(yk/a2) (4.11h)

tok=[&(+a(xJp(1 —yk)][II(+a(xJ0(1 a2yk/a1)]

is diverging, while Go' ' '(E =0) remains finite. The
dominant Green's function in the neighborhood of the
critical curve is thus Gf," ', not Gf;j'( '. An improved
approximation scheme would allow the use of Eq. (3.13)
to assure the accuracy of an approximate version of
Gk" '. Such a scheme would clearly require the choice
R; =S, i.e., the assumption of the statistical independence
of the ordering operator. In addition, the standard pro-
cedure for implementing Gf," ' and Eq. (3.13) must be
replaced since the standard procedure only yields useful
results for the choice R; =S,~.

The standard procedure for implementing the approxi-
mate Green's functions, Eqs. (4.8) —(4.10) is to use them in
Eq. (3.13) and apply the S= —,

' identity, Eq. (3.3), to ob-

tain approximate correlation expressions. Following this
procedure (cf. Appendix) forces the choice R; =Sj' in or-
der to obtain useful information. All information is then
generated from the approximate G('~("'. Serious
difhculties with this standard procedure become apparent
when its predictions for the critical curve are considered.
In particular, the result for the critical field, i.e., the value
of 0,

&
for which the critical temperature vanishes, violates

the fundamental property of S=—,
' systems

V. NEW APPROXIMATION SCHEME

The new approximation scheme is based upon the as-
sumption of the statistical independence of the ordering
operator. As discussed in Sec. IV, this dictates the choice
R;=S and is equivalent to the assumption that in the
fluctuation correlation, & bf (t)A' (t)Aj ), the fluctuations
6", (t) and 6" (t) interact with the mean ordering field.
For R;=S, the basic decoupling approximations, Eqs.
(4.4a) and (4.4b), become (i&m ).

&SP(t)S"(i)S; ) =t &S"(i)S;)+v&SP(t)S;)

p =x,p, z (4.12)
and

+z(&SPS" ) —2pv), (5.1)

Thus, while the standard procedure has apparent advan-
tages (e.g. , cumulant and symmetric decoupling coincide
and commutator and anticommutator Green's functions
provide the same result), because of the violation of in-
equality (4.12), the standard procedure must be con-

&Sj'SP(t)s" (t) ) =((2 &Sj'S'(t) ) +v&Sj'SP(t) )

+z( &
Sj'S" ) —2@v) . (5.2)

In the new scheme, the basic decoupling approxima-
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tions are required to be consistent with the S=—,
' identity,

Eq. (3.3). Using Eq. (3.3) in the t =0 forms of Eqs. (5.1)
and (5.2) gives the two-site correlation approximations

with g= —1, i.e.,

Gk' '= [&i+aixJo(1 —yk)]+k(E)
(5.6)

(S;S' ) =vz, i&m, v=x, y, z .

Using Eq. (5.3) in Eq. (4.11d) gives

6„, lkak"= ' —zp(1 —N6ko)+, D, „k.

(5.3)

(5.4)

Using Eqs. (5.4) and (5.5) with Eq. (4.10) gives

lim EGk" ' ——2z N5k o+E~o x (1—yk)+z (1 —a, Yk/a2)

Using Eq. (5.3) in the correlation identities Eqs.
(3.9a) —(3.9c) yields X( —,

' —x' —z') . (5.7)

z[A, —(a2 —a, )xJo]=0 . (5.5)

Next, the cumulant decoupling approximation for Gk"
the Green's function associated with the ordering suscep-
tibility, X, , is obtained by setting R; =S; in Eq. (4.10)

Finally, the approximate Gk" ' is required to satisfy Eq.
(3.13) in common with its exact counterpart. Thus, using
Eqs. (5.6) and (5.7) in Eq. (3.13) and summing over k
gives

1 x
4 2N

&i+ad»o(1 —yk) piok 2 . 2 2 1 1 —aiyk/a2
coth +z 1+(—,

' —x —z )
COk 2 ' N k x (1 —yk)+z (1 —aiyk/a2)

(5.8)

X...= fl ] —(a2 a| )xJo

while Eq. (5.8) becomes

(5.9)

Equations (5.8) and (5.5) determine the single site terms x
and z in the new procedure and together with Eq. (5.6)
determine the DTGF associated with the ordering suscep-
tibility.

Above the critical temperature (T3), z=O and Eqs.
(5.6) and (4.13) give the z susceptibility 1/2

1 —0']y'k/a2

N „1— 1/2 (5. 17)

Equation (5.17) gives for ai (a2

real solutions for P3 and cok3 are obtained from Eqs. (5. 13)
and (5.14) only if inequality (5.16) is satisfied. Thus, this
solution predicts z ordering only if 0,'z) u].

The critical value of x, again denoted by x3, is obtained
from Eq. (5.13) by letting p3~ ao this gives

1 x
2

Qi+alxJo(1 —yk) pro kcoth, T) T3
2

(5.10) (5.18)

where

cok ——[0,+aixJo(1 —yk)]

X [A, +aixJo(1 —a2yk/a, )] . (5.1 1)

as required by the basic spin- —,
' relation, Eq. (4.12). The

dependence of x3 on a]/nz is depicted in Fig. 1. The
value of T3 for vanishing 0&, denoted by T3 is obtained
by letting x~O in Eq. (5.13) to give

The critical curve is determined by the divergence of 7,„
i.e., from Eq. (5.9),

1/4
F( —1)

(5. 19)

f1, —(a2 —ai)xJo~O T~ T3+ (5.12) where the Watson sums, F(n), are given by'

Using Eq. (5.12) in Eq. (5.10) gives the expression for the
critical curve

F(n)= —g(1 —y„)" .
1

N
(5.20)

1 1

2 N

1/2
P3Q)k3

coth
1 —pk 2

for all k only if

0,'i ( CXp

where P3 ——1/k~ T3 and

~k3 a2xJO(1 yk) (1 alyk/a2)

Since

(5.13)

(5.14)

(5.15)

(5.16)

For the isotropic-Heisenberg-zero-field case (0,
&

——0,
a, =a2), Eq. (5.19) reduces to the result of Tahir-Kheli. '

These results for T3 agree to about 1% with the results of
high temperature series expansions. ' The results of the
new scheme for the critical curve parameters x3 and T3 in
the special case a, =O, a2 ——1 (IMTF) are presented in
Table I along with the results of high-temperature series
expansions (HTE) and other current approximation
schemes. Only the two-spin cluster variation result corn-
pares more favorably than the current scheme with the
HTE results. However, the two-spin cluster approxirna-
tion is suitable only at higher temperatures while the
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0.50 the operator equations of motions are

[S;",H']=i QqS,» —ia1 g J; S S +ia2 g J; S»S'

(6.1a)

048 [S, ,H'] = i—fI3S;"+ia1g J; S S" i a—
2 g J; S; S'

(6.1b)

[S,H']= ia—, g J; (S,»S" —S;"S» ) . (6. lc)

046
O.O 0.5

Taking the thermal average of both sides of Eqs. (6.1a)
and (6.1b) yields the correlation identities

FIG. 1. Dependence of critical field (x3) on coupling ratio
(a~/a2) for a bcc lattice, Ising-like coupling (a~/a2 & 1).

Q3y —(a, —aq) g J; (S S» ) =0,

$13x —(a1 —az) g J; (S S ) =0

(6.2)

(6.3)

present scheme is appropriate for all temperatures.
For T & T3, z&0 and Eq. (5.5) gives

n, =(az —a1)xJo .

Using Eq. (5.21), Eq. (5.8) becomes

(5.21)

where

1 —o' &y&/az
Di ——

2x (1—yk)+z (1—a1yk/az)

and

(5.23)

~k (a2JO) (1 a irk/a2)

2

4 4
—'=z +z ( —' —x —z )—g Dk+ g Dk coth2 2 i 2 2 X CO g

N k 2N k 2

(5.22)

(S;"S1")=xv, i&l, v=x,y,z,
(S»S ) =yv, i&l, v=x, y, z .

Using Eqs. (6.4) and (6.5) in Eqs. (6.2) and (6.3) gives

(6.4)

(6.5)

Using cumulant or symmetric decoupling within the stan-
dard procedure as described in Sec. IV provides two equa-
tions for the three unknowns a ~'", a ~'" and a i,

' which, in
the ordered phase, do not provide a unique solution for
any member of the set (ak ",ak», ak') for any R. Thus,
the standard procedure does not allow the study of the or-
dered phase for XY-like coupling in a transverse field.

The new approximation procedure is based upon the as-
sumption of the statistical independence of the ordering
operators, S" and S . Using cumulant decoupling under
this assumption requires, as in Sec. V, the choices R; =S;"
and R; =S~. Requiring that cumulant decoupling be con-
sistent with the S=—,

' identity, Eq. (3.3), now gives

Yk)+z (1 a irk/a2)] (5.24)

The ground-state magnetization in the bcc lattice as a
function of x for a1/az ——0.5, obtained by taking p~ ~ in
Eq. (5.22), is presented in Fig. 2.

y[03 —(a1 —az)zJo] =0,
X[f13 (a1 —a2)zJO]=0

while using Eqs. (6.4) and (6.5) in Eq. (4.11d) gives

(6.6)

(6.7)

VI. APPLICATION TO XY-LIKE
COUPLING (a1 & aq)

In this case the Hamiltonian is given by Eq. (3.7) and

TABLE I. Comparison of results obtained by high-
temperature expansion and various current-approximation
schemes for the critical field (x3) and the critical temperature in
vanishing applied field (kg T3/Jo) for the IMTF, sc lattice.

High temperature
expansion (Refs. 10 and 21)

Cluster-variation (Refs. 20 and 22)
Present (DTGF)
Effective field (Ref. 23)
Mean field

0.430

0.446
0.449
0.392
0.5

kB T3/Jo

0.188

0.206
0.165
0.212
0.25

O.O 0.5

FIG. 2. Dependence of ground-state magnetization (z) on ap-
plied field (x) for a bcc lattice, Ising-like coupling, a i /a2 ——0.5.
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6
X,)M

4
I A.—xp(1 —N6k p)+ (6.8)

where

gk 113+ 2 0(1 a irk/a2) (6.20)
6px lk—yV(1 —N&k, p)+

2
&,,„,~ (6.9) The critical curve is determined by the divergence of 7

and Y, i.e., from Eq. (6.18)

+y alJ0(1 —a2yk/al)I, (6.10)

Forming the Green's function equations of motion with
Eqs. (6.1a) —(6.1c) and using the cumulant decoupling ap-
proximation, Eq. (4.5) gives

1
Gk 2 2 Iz[+3+a2zJ0(1 —a irk/a2)]E —gk

A3 (al —a2)zJ0~0 as T~ T l+ (6.21)

1 z Pl lkl—= —g coth
2 N k 2

(6.22)

Using Eq. (6.21) in Eq. (6.19) gives the expression for the
critical curve

1
G$' =

2 2 Iz[03+a2zJp( 1 —a lyk/a2)]

where f3l
——1/kll T, and

alki ——a,zJll(1 —yk) . (6.23)

and

+x'a iJp(1 —a2rk/a l) I (6.1 1)

The critical value of z, denoted by z&, is obtained from
Eq. (6.22) by taking Pi~ oo. This gives z, = —,

' for all

az/u&. The value of T& for vanishing 0,3, denoted by T&,
is obtained by taking z~O in Eq. (6.22) to obtain

lim EGk' '+'=2x N5k p+2x ( —,
' —x —y —z )Bk,

E~O
lt g T] 1/4
al Jll F ( —1)

(6.24)

(6.12)

lim Gf'~'+'=2y N6k p+2y ( —,
' —x —y —z )Bk, (6.13)

F.~O

where

9k [+3+ 2 Jp( Irk/a2)1

For the special case a2 ——0 (pure XY model in a transverse
field), Eq. (6.24) is identical to the result of Austen and is
within 2%%uo, 1.7%, and 1.4% of the HTE results" for the
sc, bcc, and fcc lattices, respectively.

For T & T, , x and y do not vanish and Eqs. (6.6) and
(6.7) give

and

+(alJ0)'(x'+y')(1 —rk)(1 a2rk/al) (6.14) Q3=(al —a2)zJp, T & Ti

Eq. (6.17) now becomes

(6.25)

z (1 —yk)+(x +y )(1—a2yk/al)
(6.15) —,'=x +x ( —,

' —2x —z )
—QBk

k

Using Eqs. (6.10)—(6.13) in Eq. (3.13) and summing over
k gives

&]Jo 1 2+ y [z (1 rk)+x (1 a2rk/al )]
2N

and

x =y2= 2

1 1 1
I z [Q3+a2zJp( 1 —a l yk/a2) ]4 2N

(6.16) Prik
&& coth

2

where, now,

ilk=(aiJ0) (1 —rk)[z (1—yk)+2x (1—a2yk/al)],

(6.26)

2 Vk+x a l Jp(1 —a2yk/a, ) I coth
2

+x +x ( —,—2x —z )
—QBk .z z i z z

N
(6.17)

z
+X,X

Q3 (a l
—a2)zJp

while Eq. (6.17) becomes

—=—g coth
1 z Prik

2 N k 2

(6.18)

(6.19)

Above the critical temperature (denoted by T, ),
x =y =0 and Eqs. (6.10), (6.11), and (3.14) give the sus-
ceptibilities

T & Ti . (6.27)

The ground-state magnetization in the bcc lattice as a
function of z for az/a& ——0.5 is presented in Fig. 3 and the
dependence of the ground-state magnetization on az/0. ]

for z~0 is shown in Fig. 4.

VII. CONCLUSION

The new DTGF approximation scheme is based upon
the assumption of the statistical independence of the or-
dering operator, requires the consistency of the basic ap-
proximation with all relevant operator and correlation
identities, and emphasizes the accuracy of the DTGF
which are related to the ordering susceptibility. It has
been used to study the AHMTF for all T and all values of
az/0. &. In contrast to the standard approach, it provides
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reasonable results for the AHMTF critical transverse field
for all values of a2/n& and is applicable to the ordered
phase in the case of XY-like coupling. The results ob-
tained in the special cases of pure Ising and pure XY cou-
plings in a transverse field compare very favorably with
those obtained by HTE in these special cases. The new
scheme is reasonably simple to apply and is based upon
ideas which are well defined and generally applicable to a
wide variety of systems.

APPENDIX: STANDARD APPROXIMATION
PROCEDURE (az & a()

The standard procedure uses Eqs. (4.8) —(4.10) in Eq.
(3.13) and applies Eq. (3.3) to obtain approximate correla-
tion expressions. Following this procedure, both Gk'
and Gk' '"' when used in Eq. (3.13) lead to the same ex-
pression, i.e.

a2zJO( 1 a I Vk/az)+ k [+(+a1xJO( 1 azl k/a1)]+ k

P~k 2 zR( —)

Lf; ' 'coth + +Rz [2(az —a1)xJp —Sl, ]N6k p, (A 1)
2[&1+a(xJ0(1—yk)]

while using Gf, ' (" in Eq. (3.13) gives

R
Lg, R( —)

[azzJo(1 —a(yk/az)L k' —[&1+a1xJo(1—azyk/a1)]Lf, ' '
] coth

2cog 2

Equations (Al) and (A2) must be supplemented by the
analyticity condition, Eq. (4.7).

Clearly, Eq. (Al) does not generally permit the deter-
mination of separate solutions for a~' and ak'. Atten-
tion is thus focused on Eq. (A2) which becomes, for
R; =S;, S~, and S, respectively,

1 1 2
I a2JO( 1 all k/a2)z

COg+ [0,, +a,xJo(1 —azyk/a1) ]x ] coth
2

(A6)
a k'~=iz/2,

IazJp(1 —a(pk/az)z
1 2

2') k

PQ7 k+ [Q1+a,xJp ( 1 —a 2y k/a, ) ]x I coth
2

(A3)

(A4)

Thus, practical considerations [the extraction of useful in-
formation, i.e., Eq. (A6)] within the standard procedure
dictate the choice R; =S~. Use of the standard procedure
within other decoupling schemes (e.g. , symmetric decou-
pling ) leads to the same conclusion. For R; =Sf, the re-
sults of cumulant and symmetric decoupling are identical
and the analyticity condition, Eq. (4.7), becomes

ak~ ———ix/2 . (A5)
[Q(+(a, —az)xJp]z =0 . (A7)

Summing over k and using Eq. (3.3), Eqs. (A3) and (A5)
give identities while Eq. (A4) gives

Equations (A6) and (A7) represent the standard
cumulant-symmetric decoupling solution for this case.

Serious difficulties with this solution become apparent

0.5
0.55

0.34

0.53

Q.O
0.0 0.5 1P

FIG. 3. Dependence of ground-state magnetization (x) on ap-
plied field (z) for a bcc lattice, XY-like coupling, a2/a 1

——0.5.

FIG. 4. Dependence of ground-state magnetization (x) on
coupling ratio (o.2/al) for z~0, bcc lattice, XY-like coupling
(aZ/al ( 1).
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&i =(az —ai)xjo

and Eq. (A6) becomes

(A8)

1 1

2 N

2
' 1/2

alykIa2)z +(1 yk)x
1 —~irk/~2

coth
2

when its predictions for the critical curve are considered.
For z&0, Eq. (A7) gives

where T3 denotes the critical temperature and

p3 ——1/ktt T3.
The critical field is defined as that value of 0& for

which p3~0o. For values of Q, greater than the critical
value, no ordering takes place. Since 0,

&
and x are related

by Eq. (A8), a critical value of 0, implies a critical value
of x (denoted by x3) which is obtained by letting p3~00
in Eq. (All) to give

While using Eq. (A8) in Eq. (4.11h) gives

rok —(a&J&) (1 —a&ykIaz)

X l(1 —a lykIa2)z'+ (1 —yk)x '1 .

(A9)

(A 10)

1

N

Since, for a& (aq,

1/2
1/2 (A12)

The expression for the critical curve is obtained by letting
z~O to obtain

1/2
1 —j k (1,

1 —a ~yk/aq
(A13)

1 x
2 N

' 1/2
1 —yk

1 —&iyk«z

X coth aux jo(1—atykIaz) (1 —yk)'
2

(A 1 1)

Eq. (A12) gives

(A14)

which violates the fundamental property of S= —,
' systems,

Eq. (4.12).
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