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Deformation potentials at the valence-band maximum in semiconductors
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The deformation potentials do and d' are calculated for 22 elemental and compound serniconduc-
tors. The calculations are based on the self-consistent relativistic linear combination of muffin-tin or-
bitals band-structure method. It is demonstrated that perturbations caused by strain-induced

changes in the nonspherical potential are significant. Chemical trends are discussed in terms of po-
tential parameters relating to a first-principles tight-binding scheme.

I. INTRODUCTION

The deformation potentials of the electronic states at
the Brillouin-zone center (k=0) for semiconductors play
an important role in many physical phenomena of these
compounds. A review of the importance of these quanti-
ties, their definition, ' and methods of calculation was
given recently by Blacha et al.

The valence-band maximum in the zinc-blende-type
semiconductors is a 1 8 state at k=(0,0,0). It is fourfold
degenerate (counting spin), and splits under uniaxial
strain into two doublets. In the presence of a phonon
which changes the bond length along [111]by an amount
u, this splitting, Scop, is related to the optical-phonon de-
formation potential dp through

0
p —dp

ap

where ap is the lattice constant.
A pure rhombohedral strain (6) (i.e. , a trigonal defor-

mation with an [111]direction as strain axis) produces a
splitting of I q, 6co, related to the deformation potential d
through

6co=2&3d6 .

Ri =[E—g(E —1)]Ri, (3)

where E is the transformation matrix for the Bravais lat-
tice expressing a volume conserving rhombohedral strain.

The deformation potentials d and dp are related linearly
through the internal-strain parameter:

d =d' ——,'gdp . (4)

Experimentally it is relatively straightforward to obtain d
by means of optical techniques under strain. A direct

The relation between d and dp is complicated by the fact
that the anion and cation sublattices do not "follow" each
other in a rhombohedral strain —there is an in ternal
strain characterized by the internal strain parame-ter g.
This parameter, which was introduced by Kleinmann,
specifies for the strained lattice the position, R], of
the atom which in the unstrained crystal is at
R~ = (1,1,1)ap/4 through

measurement of g, on the other hand, is rather difficult
since it requires the measurement of the intensity of an x-
ray reflection forbidden in the unstrained crystal. There-
fore only few experimental data for g, not all in agreement
with each other, are available. The extraction, ' "of
dp from observed Raman intensities is possible, but usual-

ly associated with considerable uncertainty. Other tech-
niques, such as transport measurements' and deductions
from Lorentzian widths of optical structures, are also in-
direct and not very reliable. We have earlier ' '' calcu-
lated d' and dp for several compound semiconductors
from first-principles self-consistent linear muffin-tin-
orbital' (LMTO) band structures. It appeared that the
calculated dp values, in general, came out considerably
smaller than those determined experimentally. For
GaAs, for example, we calculated ' dp=18 eV, whereas
experimental values as high as 41 eV are quoted. The
values of g which we deduced, using the relation (4) to-
gether with measured values of d and calculated d' and
dp, also seemed to disagree with experiments. For Si and
GaAs, however, our g values were in good agreement
with the theoretical predictions' ' obtained from self-
consistent pseudopotentials. These calculations simul-
taneously gave values of dp smaller than those derived
from Raman data, but still somewhat larger than ours;
Nielsen and Martin' calculated for GaAs, dp =23 eV.

Since the quantitative values of the deformation poten-
tials in semiconductors are important we felt that the con-
troversies indicated above required a new investigation of
the accuracy of our calculations. One may, of course, in-
voke inaccuracies in the experimental data to explain our
low values of dp obtained with the LMTO method. Nev-
ertheless, the observation that these values ' ' are also
systematically lower than those derived with the pseudo-
potential method remains particularly disturbing. The
present work will show why the LMTO values are too
low, typically by amounts of the order of 5 —9 eV.

It may be conjectured that the source of the
differences between the LMTO and pseudopotential re-
sults is the different treatment of the nonspherical parts
of the potentials in the two schemes. The pseudopoten-
tial method applies a potential which is nonspherically
symmetric around the atomic sites. The LMTO scheme,
in the form which we used, averages the potentials
spherically. Some compensation is, however, obtained
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by the introduction of "empty spheres, " and the applica-
tion of the "combined correction" term. ' It was, in
fact, found' that for (unstrained) Ge and GaAs, one ob-
tains almost identical bands when the same prescriptions
are used for construction of the exchange-correlation po-
tential in the two schemes. Nevertheless, the present
work shows that the strain-induced changes in the non-
spherical parts of the potential are significant. This is
demonstrated by applying to the LMTO calculations a
simple perturbation scheme. These corrections turn out
to have just the effect of bringing the do values in close
agreement with those found by Nielsen and Martin. ' '
We also examine (as we did in the cases of Si and GaAs)
the effects of the self-consistent charge transfer among
the atomic spheres induced by the strain. These are
negligible. It is only the redistribution on each site (in
the ionic case mainly on the anion site) of the p, versus
the p and p components of the wave functions (z is the
strain direction) that matters.

The nonspherical corrections are separated into a Har-
tree contribution from the electrons in the atomic cells
plus a term arising from the motion with strain of the
remaining part of the lattice, i.e., a nonspherical
Madelung-type term. The perturbations take only the
Coulomb parts into account.

The first-principles values are compared to empirical
pseudopotential and tight-binding results. Furthermore,
they are also calculated from a simplified' version of the
first-principles tight-binding schemes. Chemical trends
are illustrated by means of a first-principles ionicity
scale' and the theoretical sp bond orders. ' ' '

Section II describes briefly the calculation methods.
The calculated values of the deformation potentials are
given in Sec. III, which also describes the chemical
trends. Conclusions and discussions not already given in
this introduction follow in the summary (Sec. IV).

II. CALCULATION OF d' AND dp

In this section we describe the perturbation calculation
of the corrections to the deformation potentials produced
by the changes in the nonspherical crystal potential when
the strain is introduced. We only consider effects of the
Coulomb potentials, i.e., we neglect the changes in the
nonspherical part of the exchange-correlation potential.
We need to calculate shifts in the strain-split levels of the
type

(jk
~

b, V(r)
~
jk),

where b, V(r) contains two contributions

KV(r)=b, V (r)+b, V (r) .

The first term b, V ("Hartree term") is due to the change
in the nonspherical electron distribution upon strain, and
b, V (r) is due to the change in the nonspherical part of
the potential from the part of the crystal outside the atom
considered ("Madelung-type term"). This last term is cal-
culated as the strain-induced change in the nonspherical
Coulomb potential assuming that the main effect due to
the surrounding lattice is due to the monopoles only. An
extension to include higher-order multipoles is straightfor-

ward, but not necessarily within the present approxima-
tions.

Using (5) and (6) we get the deformation potentials as

do —-d" +Ado +Ad

d'=d LMTo+ AdH +Ad~

(7a)

(7b)

where do is the result from the LMTO calculation us-
ing the self-consistent spherical potentials, and Ado and
b d 0 are the corrections due to 6 V and 6 V

A. Calculation of Ed' and Ed'

The electronic structures are calculated within the
local-density scheme, and the effective one-electron
wave equation is solved self-consistently by means of the
relativistic LMTO method. The combined correction is
included, and as is usual for the zinc-blende structures,
we include empty spheres, i.e., atomic spheres without
nuclear charge. Thus the crystal is treated as an fcc
Bravais lattice with four atoms in the basis. These are,
taking ZnS as an example, Zn at (0,0,0), S at (1,1,1)ao/4,
E&. ( —1, —1, —1)ao/4, and Ez.. (1,1,1)ao/2. Here E&
and E2 denote the two (in general inequivalent) empty
spheres. In this way a crystal potential which is spheri-
cally symmetric [atomic sphere approximation (ASA)]
inside each sphere is generated. We could now, from the
LMTO eigenvectors generated in the last iteration of the
self-consistency cycle, construct the full nonspherical
charge distribution (see, e.g., Refs. 15, 21, and references
therein), and then calculate a nonspherical potential by
solving the Poisson equation. Instead of proceeding in
that way, we repeat the ASA-type calculation for the
strained crystal, and from the eigenvectors obtained
from this new calculation and that of the undeformed
crystal we find the strain-induced change in the non-
spherical charge. This change is still calculated within
each atomic sphere; it is obtained from the truncated
one-center expansion of the wave functions. This means
that we neglect the corners of the atomic polyhedra, but
since we only need the changes in the nonspherical po-
tential we assume that the errors caused by this approxi-
mation are less serious than would be the case if the full
nonspherical terms were needed.

The wave functions which we use are of the form

yk( ) y( gk@pk ( )
L, q

where L—:(I,m) is a combined angular momentum quan-
tum number q atomic-sphere index (for the sphere cen-
tered at Rq), and j is the band index. The functions 4
are

NLkq(r) =+q(rq ) Yp(rq ) (9)

Here the radial function +k evaluated at the eigenenergy
E~" is obtained from the Taylor expansion in terms of P
and P (see, e.g. , Ref. 16), and rq:—r —Rq.

Now we choose a coordinate system with the z axis
pointing along the direction of the trigonal strain, i.e.,
z~~ [111]. The strain does not change the charge in the
spheres, but it produces a redistribution of the occupan-
cies of the p, versus the (p,p~) orbitals as compared to
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bnq(rq)= g g A ~'iq
~
+q(rq)

~
[Y ~'(rq)] (10)

the unstrained case. Thus denoting by Y ~' (I =1,2,3) the
real spherical harmonics (I = 1, x ~ =x, x2 ——y, x3 =z), the
strain-induced change in the nonspherical electron density
in sphere q is

OCC 3

OCC 3F)(r)= g 8n
16~

5

hnq(r) =Ff(rq ) Yq(rq ),
where

1/2

~

C&')q (r)
i

A ))q .

(15)

(16)

and (I =1),
j,ki=j The perturbing Hartree potential EVq (r) in sphere q is

obtained from Poisson's equation (Ry units, e =2):
3

A,";,=2 ~cj", ~' —,y Ici", I'

1
kgi

A~,'Jq—= ~. X A~, jq (12)

The L„ index in (11) is now the combination of I and I in-
dices. [The factor 2 in Eq. (11) is due to the spin].

The k space summation in Eq. (10) is performed here in
the simplest possible way. We just sum over the star (kz )

of single Baldereschi points (24 points). With the relation 1 a, OUI
r

r2 lr c)r

I(I+1)

V [b, Vq(r)] = —gqrbnq(r),

giving [only the (I,m) =(2,0) part]

6Vq (r) = UP q(r)Y2(r) .

The radial part UP(r) satisfies

(17)

(19)

and noting that

2
(13)

with FP given in our case (I =2) in Eq. (16).
In solving Poisson's equation (17)—(19), we impose the

boundary condition that the potential should be continu-
ous at the sphere surface (r =Sq ), i.e., that it matches the
multipole field outside the sphere. This implies that

we have

OCC

hnq(rq) = g A ~ iq ~
4~q

~
[( Y |) ——'( Y f) ——'( Y~j) ]

J with

U)(Sq ) = qf,
5 S,'

(20)

(14)
q$= f 'r hnqdr .

0
(21)

We have used the same radial wave function C&iq (I =1)
at all k~, a fact which is only strictly correct for the un-
strained crystal. Rewriting the term in square brackets in
(14) we get

Now we obtain the Hartree perturbation to the p-like state
at I (k=0, but we retain the band index and k as labels
for clarity) as

(jk
~

b V (r)
~

jk) = g f r dr!,&jq(r)
~

U)(r) —(
i

C$"
~

~ ——'
~

CJIk
i

2 ——'
~

C~Ik
~

~)
0 5' (22)

The eigenvectors C in Eq. (22) are those of the strain-split
state considered as obtained from the LMTO calculation
for the strained lattice. It is immaterial whether the radial
functions &0 in Eq. (22) are taken from the self-consistent
calculation from the strained crystal or from that of the
undistorted case.

I

where V0 is the contribution from the cell no. i itself,
and the sum represents the rest. The coe%cients UL
are

j(~i) j rl

B. Calculation of h, do and hd~

V(r;)= Vo(r;)+ g UL,*r Yl (r;),
L

(23)

Assuming that the solid is divided into atomic polyhe-
dra ("cells" ) with volumes Qj, we can write the Coulomb
potential in cell i as

Yi+i (R;, )g ( —l)™giALL
j(&ij L' IJ

where R;~ is the vector connecting the atoms i and j.
The Q's represent the multipole moments of the charge

distribution p and

(21+1)(I+I'+m —m')!(I +I' —m +m')!
(2l +2I'+ l)(21'+ l)(I'+m')!(I' —m')!(I +m)!(I —m)!

1/2

(25)
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(26)

where q~ is the charge on sphere j.
The perturbation 6 VM(r) for the phonon mode relating

to do is first derived. Using the coordinate system with
origin on the atom which we wish to consider, and
z=(1,1,1)/V3, x=(1,—1,0)/&2, and y=(1, 1, —2)/V6,
the nearest-neighbor atomic positions (labeled below by
a 1) in the rhombohedrally strained zinc-blende crystal are

ao&3„
R) =(1+5) z,

4

&3 2&6 ao
R,= 35—1 z — y

3 3 4

&3 &2 &6 ao
R3 = (35—1) z — x+ y

(27)

Here we approximate the cells by atomic spheres, and we
wish only to include the monopole contributions
L ' = (0,0). Thus

~ VNN(r) =—8~
5

5

16~ (ao&3/4)

(28)

We have here only considered the four nearest real atoms
(al). The same shell of the undistorted crystal also con-
tains four empty spheres. We let these empty spheres fol-
low the atom which is considered in the displacement.
Therefore they will not contribute to AVNN. The next set
of spheres that contribute to b, VM(r) consist of the four
empty spheres, labeled e2, at (2+5)&3ao/4z, etc. [The
empty spheres e2 will be either of type E~ or E2 (Sec.
II A) depending on whether the potential at the anion or
cation site is to be calculated. ] Letting q' denote the
number of electrons in these empty spheres, the strain-
induced change in the Madelung potential becomes, with
inclusion of the contribution in Eq. (28),

The total number of electrons minus the atomic number
in these atomic spheres is called q". The difference be-
tween the potential (in Ry units) created by point charges
at these positions for 5&0 and for 5 =0 is [only
(l, m) =(2,0) important]

1 /2

Rg = (35—1) z+ x+ y

2

b, VM(r) = ——",,'(240vr)' 5(q" + —,', q' ) Y2(r) .
ao

(29a)

TABLE I. Optical-phonon deformation potentials d0, and corrections Ad 0 and Ad 0 as described in text. The fourth column (d0)
gives our theoretical values. The next three columns are tight-binding results d0, our first-principles TB values (Ref. 15); d0,
d0 *, sp, and sp s* TB results from Ref. 3; d0 . empirical pseudopotential calculation (Ref. 3). The first-principles pseudopotential
calculations from Refs. 18 and 26 (NM) are given in the next column, and the last column contains experimental data. All values are
in eV.

Compound

C
Si
Ge
A1As
Alp
A1Sb
BN
BP
Beo
CdTe
GaAs
GaP
CxaSb
InAs
InP
InSb
MgS
Sic
SiCxe
ZnS
ZnSe
ZnTe

d LMTO
0

52.5
20.9
22.4
14.9
14.4
16.1

32.0
28. 1

13.1
5.7

16.8
16.2
18.7
13.8
10.1
14.3
6.7

18.7
21.4

5.2
7.1

10.3

Ad

1.90
0.97
2.43
3.43
3.68
2.55
3.50
0.63
5.94
7.11
4.80
4.37
2.35
4.95
5.48
2.85
6.79
2.80
1.65

10.97
7.25
2.08

6.85
5.20
4.45
3.63
4.01
2.68
4.50
7.07
2.39
6.01
3.40
3.73
2.43
2.04
4.51
2.60
1.76
9.30
5.12
7.40
4.91
1.43

do

61.3
27. 1

29.3
22.0
22. 1

21.3
40.0
35.8
21.4
18.8
25.0
24.3
23.4
20.8
20. 1

19.7
15.2
30.8
28.2
23.5
19.2
13.8

a FP-TB
cc 0

68.7
36.0
33.9
30.5
29.5
29.0
55.9
46.4
31.8
14.8
31.4
31 ~ 1

30.5
21.3
24.8
25, 3
16.0
41.5
32.7
17.9
23.7
22.2

d 0

106.2
45.8
42.3
36.2
37.9
31.8
95.9
65.1

19.4
36.3
38 ~ 1

32.2
29.5
30.5
26.9

66.5

28.7
27.0
23.6

d TB
0

74.7
32.9
29.8
20.9
21.4
19.0
60.2
45 ~ 1

9.2
20.9
21.5
19.2
16.1

16.3
15.2

42.2

13.8
13.1
11.5

d EPM
0

90.4
35.0
34.7

34.0
28.2
60.3

22.8
36.4

32.3
33.3
35.6
26.8

24.4
25.2
26.3

NM
0

63.1

29.8

23.5

Expt.
do

90, 69
40, 27'
34, 39'

37

22
48' 41'
44 47'
32
42
35
39

4
12, 27'
23

'All other experimental data are taken from Landolt-Bornstein, Ref. 11.
C. Canali et al. , Ref. 12.

'P. Lawaetz, Ref. 13.
C. Jacoboni et al. , Ref. 27.

'M. H. Grimsditch, D. Olego, and M. Cardona, Phys. Rev. B 20, 1758 (1979).
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2

b. VM(r) = —'„",(240~)'~ 5(q'+ —„'Oq' ) Yq(r) .
ap

(29b)

III. NUMERICAL RESULTS

Table I contains the dp values of selected elemental and
compound semiconductors as well as the corrections
caused by the perturbing potentials described in Secs. I
and II. The values dp are those obtained from the
self-consistent spherically symmetric potentials. Empiri-
cal pseudopotential results, d p, were obtained by
Blacha et al. , and the same authors also calculated dp
(dP, do *) from sp and sp s* tight-binding (TB) mod-
els. 2, 25 Within the TB model, dp is given by

H„Vy
3&3 t[(E,. E„)y2]—'+H. I'" (30)

where the matrix elements are as defined in Ref. 2, and
E~, and F~, are the anion and cation p-level energies.
Equation (30) further assumes that the interatomic p ma-

The more distant neighbors give vanishingly small contri-
butions to the perturbing potential b, VM(r).

The Madelung perturbation used in the calculation of
AdM has a similar form:

trix elements scale with the inverse bond length to the
second power. The column labeled dp lists dp values
obtained from the same equation (30), but with H, V ~,
Ez„and E~, as derived from our first-principles TB po-
tential parameters. '

The calculated values of d' are given in Table II. In
some cases we have also listed experimental values of d
and the values of the internal-strain parameter g which we
obtain from Eq. (4) using the calculated d', do, and the
experimental d.

The nonspherical corrections (Tables I and II) to do
and d' are appreciable. For CdTe, for example, we find
Adp as well as Adp almost as large as the "uncorrected"
deformation potential d p . The valence-band max-
imum is the anion p state I g. The corrections Ad p to the
splitting of this level are particularly large for the most
ionic compounds. This is also to be expected since the
number of valence electrons on the anion site is largest for
the most ionic compounds, i.e., b, V (r) is large. The
chemical trends in Adp are illustrated in Fig. 1 showing
Ad 0 versus the first-principles ionicity values f . ' lt
may appear surprising that Adq does not follow similar
trends, but this is simply due to our particular way of di-
viding space into real-atomic spheres and empty-sphere
regions. Thus, in diamond, for example, the two
equivalent C sites have the same positive charge and the

TABLE II. Theoretical values (in eV) of d' and the nonspherical corrections Ad~ and AdM as explained in text. Experimental
values, d(expt), of the deformation potential for the splitting of I 8 are given in the fifth column (also in eV). The internal-strain param-
eter g is derived from d(expt) and our calculated d' and do according to Eq. (4), whereas g(NM) gives the theoretical values calculated
by Nielsen and Martin. Experimental internal-strain parameters are given in the last column, g (expt).

Compound

C
Si
Ge
A1As
AlP
Alsb
BN
BP
BeO
CdTe
GaAs
GaP
GaSb
InAs
InP
InSb
MgS
SiC
SiGe
ZnS
ZnSe
Zn Te

d LMTO

—2.72
—2.90
—1.90
—3.90
—3.62
—3.17
—4.19
—3.65
—3.55
—2.79
—2.67
—3.21
—2.72
—2.25
—3.14
—2.83
—2.90
—5.54
—2.84
—3.05
—3.02
—2.83

0.27
0.13
0.18
0.70
1.09
0.67
2.61
1.18
4.67
1.78
1 ~ 36
2.04
1.33
1.46
2.06
2.04
0.47
2.25
0.12
4.00
2.76
1 ~ 51

AdM

0.65
0.49
0.42
0.34
0.38
0.25
0.42
0.67
0.22
0.50
0.32
0.35
0.22
0.22
0.43
0.24
0.17
0.90
0.47
0.84
0.56
0.20

d'

—1 ~ 80
—2.28
—1.30
—2.86
—2.16
—2.25
—1.15

1.80
1.34

—0.51
—0.99
—0.82
—1.17
—0.57
—0.65
—0.55
—2.26
—2.39
—2.25

1.79
0.30

—1.12

d(expt)'

—5.3
—5.0

—4.3

—4.8
—4.5
—4.5
—4.6
—3.6
—5.0
—5.0

—3.7
—3.8
—4.6

0.45
0.51

0.38

0.91
0.56
0.88
0.99
0.58
0.87
0.90

0.93
0.73
1.01

((NM)

0.108b

0.53'
0.44'

0.48'

g(expt)

073 054
0.72 0 54

0.76'

'Landolt-Bornstein, Ref. 11.
O. H. Nielsen, Ref. 26.

'O. H. Nielsen and R. M. Martin, Ref. 18.
References 7 and 8.

'Koumelis et al. , Ref. 9.
Cousins et al. , Ref. 29.
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ZnSe~ MQS

FIG. 1. On-site correction Ado to the deformation potential
plotted vs the (first-principles) ionicity f;* (see Ref. 15). [The
figure does not include ZnS for which Ado (Table I) is anoma-

lously large. ]

empty spheres contain negative charge.
A plot similar to that of Fig. 2 was presented earlier, '

where, however, only the uncorrected do values were
discussed. Figure 2 shows the theoretical do potentials
plotted against the sp bond order. This is calculated'
by projecting out the sp bonding (S ) and antibonding
(A ) components and subsequently integrating over k
space. The bond order b is b =S—A. The increase of
do with b is what one would intuitively expect. A cer-
tain relative displacement of the sublattices produces a
larger splitting of the bonding state in a compound with
a strong sp bond (large value of b) than in a compound
with a weaker bond.

IV. SUMMARY AND CONCLUSION

By means of simple perturbation calculations it has
been shown that the strain-induced changes in the non-
spherical potential are essential in determining the split-
ting at the valence-band maximum. In general, the "on-
site term" (Ado ) is of the same order of magnitude as the
correction to the surrounding lattice (Ado ). The magni-
tude of the on-site term increases with ionicity because the
I 8 state is predominantly of anion character. In the cases
where a comparison is possible, the theoretical do values
presented here are now closer to those obtained by Niel-
sen and Martin. ' ' ' For C, Si, and GaAs their first-
principles norm-conserving pseudopotential calculations
gave do ——63. 1, 29.8, and 23.5 eV, respectively. Our re-
sults (Table I) 62.5, 28.8, and 25. 1 eV are in excellent
agreement with these. We therefore assume that our
theoretical values for the other semiconductors are also
quite accurate. Thus when comparing to experimental
data as derived from Raman intensities and other experi-
ments, we suggest that the large discrepancies between
theory and experiment found in some cases essentially are
due to an overestimate of the values as deduced from ex-
perimental data. In the case of Si this assumption is fur-

I i I i i I I i i i J i i i

0.6 0.7 0.8

FIG. 2. "Chemical trend" of do illustrated by plotting it
against the sp bond order b (see Ref. 15); b—:X—A. , where S
and A are the bonding and antibonding sp' projections integrat-
ed over the Brillouin zone.

ther supported by the large spread in the experimental
data. The lowest values of do are =27 eV, ' ' i.e., much
lower than the Raman value 40 eV. Only the low values
agree with our theoretical data for Si ~

Our theoretical results for do are in most cases also
lower than the tight-binding calculations, do of Ref. 3.
The sp's* (TB') calculations gave somewhat lower values
for ZnSe, InSb, CdTe, A1As, InAs, and InP even lower
than ours. The general trends in do are essentially repro-
duced by our crude' first-principles tight-binding calcula-
tions (do ). We use here the relation Eq. (30), al-

though we know' that the hopping matrix elements do
not scale with bond length as assumed by Harrison.
However, our scalings' were calculated from the volume
dependence of the first-principles matrix elements, and
our TB scheme has vo1ume dependent diagonal matrix ele-
ments' (the band-center parameters). In Harrison's TB
model the E~'s [Eq. (30)] are fixed (atomic) levels with no
volume dependence. Thus, a direct comparison of the
volume dependence of our V~ and those of Refs. 3 and
25 is not very relevant. In the calculation of do we do not
need the volume dependence for V ~ H but rather their
bond length dependence for distortions with fixed volume.
This kind of scaling may be quite diferent from that of
Ref. 15, and in view of the work by Brey et al. , we as-
sume that it is in fact close to the d (d is here the bond
length) scaling used by Harrison. This is the reason
why the estimates do were evaluated with Eq. (30).

The d' values are also increased by the nonspherical
perturbations (Table II). Although d' as well as do both
are afFected by the corrections, we still find [from the ex-
perimental values of d with Eq. (4)] (Table II) internal-
strain parameters g close to the values obtained ear-
lier. ' ' In the few cases where experimental data exist
(apart from very recent data, see note added) (e.g. , Si,
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Ge, and GaAs) they are substantially larger than ours.
The calculations by Nielsen and Martin' ' ' yield elastic
constants, higher-order elastic constants, and phonon fre-
quencies in excellent agreement with experiments. They
also give, simultaneously, the theoretical values of the
internal-strain parameter, and it would be dificult to ex-
plain why this particular quantity should be in error in
their calculations when the other data are that close to ex-
periments. The g values of Refs. 17 and 18 are close to
ours. We suggest that the experiments have overestimat-
ed g for Si and GaAs.

Mote added. At the time of submission of the present
paper, Cousins et al. have published results of careful

analyses of surface effects in uniaxially stressed Si and Ge
crystals. They find that such effects strongly influence the
internal-strain parameters, and their revised values of g
agree extremely well with theory (see "f" in Table II).
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