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A new technique is used to obtain the Gutzwiller ground-state energy functional for the Anderson
lattice model with no orbital degeneracy (ALM). For the Hubbard model, known expressions are de-
rived with ease and simplicity. For the ALM, we derive the ground-state energy functional of Var-
ma, Weber, and Randall. As a check on our Gutzwiller functional, we find an independent analyti-
cal upper bound for the ground-state energy of ALM with a dispersionless f band. For the case of a
dispersionless f band and momentum-independent hybridization, in the Kondo regime, we derive
analytical expressions for the ground-state energy, charge, and magnetic susceptibilities. For the spe-
cial case of infinite Coulomb repulsion, we recover results of Rice and Ueda and of Fazekas and
Brandow, notably the negative value of the magnetic susceptibility. The negative magnetic suscepti-
bility persists in the entire Kondo region, i.e., finite-U eftects do not stabilize the nonmagnetic Kondo
state. This suggests that nonzero orbital degeneracy in the Anderson lattice model must be retained
to describe heavy-fermion materials with a normal Fermi liquid ground state.

I. INTRODUCTION

V=gDC (1.2)

was originally used to investigate magnetic transition in
this system. D is the total double-occupancy operator
defined in (1.1) and g is a variational parameter allowed to
vary between 0 and 1. Both the parameter g that de-
scribes the decrease in the number of doubly occupied
sites due to H~, and the parent state N are to be deter-
mined variationally by minimizing the expectation value
of the energy, F. = (4

~

H
~

'P ) /(4
~

+ ).
For a nonmagnetic case, one takes 4 to be the ground

state of Hp. For a ferromagnetic case, with
X, —X, =Lm, one takes + to be the lowest-energy eigen-
state of Hp for a given m. L is the number of sites in a
lattice, and X is the number of spin-cr electrons. This
approach has been extended by Ogawa et al. , who inves-
tigated the antiferromagnetic transition. For an antiferro-
magnetic parent state N, they take the ground state of a
Hartree-Fock approximation for H. However, there are

The Gutzwiller trial wave function' (WF) has been
widely used to describe ground-state properties of electron
systems with a strong but screened Coulomb interaction.
These are encountered in narrow-band metals and are de-
scribed approximately with the Hubbard Hamiltonian:

H =Hp+Hi ——Hp, +Hp, +H),
Ho ——g e, (k)ak~aq

k

H~ = UD= U g a;,a;,a;,a;, ,
i E'0

where the a band is a narrow nondegenerate band with
single-particle energy E, (k), U is the on-site Coulomb
repulsion, and 0, is the set of all lattice sites. The
Gutzwiller trial WF

open questions regarding the application of the Gutzwiller
method to antiferromagnetic states. In particular, at
half-filling, Gutzwiller-type calculations ' and second-
order perturbation theory predict that the antiferromag-
netic transition occurs at U=U, )0, while mean-field
and path-integral calculations predict U, =0.

Even the most transparent published derivations of the
Gutzwiller ground-state energy functional for the Hub-
bard Hamiltonian ' are not simple and cannot be extend-
ed in a straightforward manner to more complicated
Hamiltonians. In this paper, we introduce a projection
operator method to derive easily the energy functional to
be minimized. The only approximation we use is that
matrix elements involving real-space configurations with
N electrons are replaced by the same matrix element
averaged over all configurations with X electrons. This
allows us to extend the Gutzwiller approach to a more
complicated case of the Anderson lattice Hamiltonian
with no orbital degeneracy.

Recently, a number of rare-earth compounds were
found to have very heavy conduction electrons at low tem-
peratures. A central problem for the understanding of
heavy-fermion materials is the nature of the quasiparticle-
energy band structure. A theoretical model that presum-
ably describes some properties of these materials is the
Anderson lattice Hamiltonian. It describes a lattice of
deep f levels of small dispersion, which experience strong
Coulomb repulsion U, and hybridize with a featureless
band of sd electrons. If one neglects orbital degeneracy of
the f level one obtains the Anderson lattice model with no
orbital degeneracy (ALM). Because of its relative simpli-
city, the ALM is of interest in its own right and has been
a subject of several theoretical investigations. It is impor-
tant though, to find out, to what extent the ALM ac-
counts for heavy-fermion materials.

The ALM Hamiltonian is of the form (1.1) but with
Hp given by
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~0 = g [E (k)+kafka+ sba(k)bkvbka
k

+ V (k)(ay~br, ~+H. c. )] . (1.3)

N, =N, (+N„,
N, ~= gag al,

k

Therefore the densities

(1.4)

The a bands stands for a narrow nondegenerate f band
and the b band represents a wide nondegenerate sd band
in heavy-fermion compounds. The Coulomb repulsion for
the wide band is neglected.

One approach to extract information about the ground
state of this system is to use an adequately modified
Gutzwiller trial function, as done by Rice and Ueda, '
Varma et al. ,

" and Fazekas and Brandow. '

The general philosophy is as follows: The f band lies
below the Fermi surface and in the absence of correlation
U it plays no role. At nonzero U, however, the presence
of doubly f-occupied sites in the uncorrelated
configurations will raise the energy and it may be
worthwhile to promote some electrons from the f band to
the Fermi level and then take advantage of hybridization
to delocalize the f electrons, thereby lowering the energy.
In the Gutzwiller technique, one projects out the doubly
f-occupied sites to an extent determined variationally (all
of them at U~ co ).

The work of Rice and Ueda (RU) and Fazekas and
Brandow' (FB) is limited to the infinite-U case; while it
suggests the correct physics, the extension to finite U is re-
quired when comparison with real materials is wanted.
Finite-U effects have been investigated by Varma, Weber,
and Randall" (VWR) and Rice and Ueda. ' However, in
neither paper is the density of heavy electrons treated in a
consistent manner. Rice and Ueda work with a fixed
(average) number of heavy electrons; this leads to
convicting results for the hybridization matrix elements.
VWR do not discuss the decrease in the density of heavy
electrons caused by suppression of configurations that
have many sites with two heavy electrons. To see this, let
us denote by g* and N* the best choice at the variational
parameter g and the parent state 4. VWR assume that
the density of heavy electrons in the state N* is equal to
the density of heavy electrons in the state (g*) 4*. How-
ever, in general the best values are such that g* ~1 and
that the state N" has a nonzero hybridization, i.e., @' is
not an eigenstate of the total number of heavy electrons

ward manner to the ALM Hamiltonian.
In Sec. III we obtain the Gutzwiller ground-state ener-

gy functional for the ALM. To accomplish this, we re-
place matrix elements in a given configuration by their
average values, which are these matrix elements averaged
over all configurations with the same number of heavy
electrons. These latter quantities are evaluated in a
Gaussian approximation, modified so that some important
constraints are satisfied (MGA). The energy functional
then has the same form as that of VWR. However, al-
though all the observable quantities are the same in two
approaches, the meaning of variational functions that
enter the respective functionals is different.

We derive equations for the extrema of the energy func-
tional and use them to show that a two-parameter varia-
tional ansatz for the (effective) hybridization angle used by
VWR reproduces the exact extremum. Extremal equa-
tions reveal how the effective hybridization and the
effective position of the a-level change with the discon-
tinuity in the total density of particles at the Fermi level.
We also give an alternative form of the energy functional,
which contains the starting point of Rice and Ueda as a
special case when U is infinite and the heavy band is
without dispersion.

In Sec. IV we specialize to the heavy a band with no
dispersion and the light 6 band with a Oat density of
states. First we introduce a simple analytical upper
bound on the ground-state energy, which completely
disregards the hybridization, but is independent of the
Gutzwiller approach. This approximation is at its best in
the large-U limit, where hybridization effects are reduced,
and it is in this region that it predicts that the magnetic
susceptibility is infinite and that the change susceptibility
has the noninteracting light band value. Then we return
to the Gutzwiller energy functional and in the Kondo re-
gime solve equations for the nonmagnetic minimum. This
is the regime where the deviation of the a-particle density
(per one spin projection) from —, and the density of sites
occupied by two a electrons, as a function of hybridiza-
tion, are exponentially small. We derive analytical ex-
pressions for the ground-state energy, and charge and
magnetic susceptibilities. In the special case of infinite U
our results are in agreement with RU and FB. Moreover,
for any finite U such that we are still in the Kondo re-
gime, we find that the magnetic susceptibility is negative.
Thus, within the Gutzwiller mean-field theory, the ALM
does not have a (nonmagnetic) Kondo ground state.

II. ENERGY FUNCTIONAL
FOR THE HUBBARD MODEL

and The Gutzwiller ground-state energy functional for the
Hubbard model is

(@AH ie) (2.1)
will be different. The fact that for nonzero hybridization,
n, )n, , will be referred to as the density depletion effect.

The structure of the paper is as follows. In Sec. II we
introduce a new technique for finding a Gutzwiller
ground-state energy functional for the Hubbard Hamil-
tonian. This approach involves no density matrices, very
little combinatorics, and can be extended in a straightfor-

1 ik. R;a;= ga1e ', i=1, . . . , L .
VL

(2.2)

where H and + are given by (1.1) and (1.2). In order to
evaluate matrix elements appearing in (2.1) it proves con-
venient to work in a basis of L sites:
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Then the energy E is a function of matrix elements in the
state '0 of operators 1, a; a;, a; a~, and a;,a;,a;,a;„where
the first three are spin diagonal. In order to evaluate
these averages one needs to express the parent state 4 in a
form suitable for application of the operator g . We in-
troduce an "identity insertion" technique which accom-
plishes this by inserting various forms of the identity
operator in appropriate places. For example:

(S
~

GG
~

S) =(S GG ~S),„= ~~Gj, N,

L
N,

(2.6)

since (~ ) is the number of configurations G with N, sites.
1

Our approximation of replacing every (S
~

GG
~

S) by its

average value can be summarized by

1.1 Q (~1~1++ 'I& r)
i6Q

a;,a;, a;,a;, ,
G iEG iEG

(2.3) &~(G),X,
(iP

~

iII) y 2 IGI)

Gl

&v(r), x,
L (2.7)

Replacing all matrix elements in (2.5) by their average
values, one finds

where II is the set of all lattice sites, gG denotes the sum-

mation over all possible subsets G of 0, , and G=AgG
is the complement of G in 0, . Symbolically,
II,~G a;,a;, G and Q, Era;,a;, I, so that

1„=g GG, 1„=Q I I
G r

Then

~'I'&=g ~+&=g 1„1„~+&=gag GGrr ~a )
G I

= g g g'"'GGrr
~

e),
G I

Let us denote by [L /D, A „A, I the number of
configurations [G, I ) such that v(G) = A, , v(I ) = A, ,

v(GI ) =D in the space of L sites:

[L /D, A „A, '(

D!(A, —D)!(A, —D)!(L +D —A, —A, )!

(2.8)

Then, Eq. (2.7) reduces to

(2.4)

where v(A) is the number of sites in a set A. [In Eq.
(2.5), A =GI is the intersection of the sets G and I . ]

We first consider the norm of
~

0'):

( ql
~

qi ) = g {L/D, N„N, )g
L L

N,

(2.9)

(q ~q)=gag" "(N~GGI I ~C)

=gag ' '(s ~GG s)(x~rI ~x),
(2.5)

where in the second step we assume that N is a direct
product of a spin-up state S and a spin-down state X (re-
call that the up and down spins decouple at U=O). Re-
stricting ourselves to translationally invariant phases, we
remark that in the Gutzwiller mean-field approach one
neglects all configurational (set G) dependence of the ma-
trix elements (S

~

GG
~

S), except for the dependence on
the number of sites in G. In the Hubbard model, this last
dependence is particularly simple: (S

~

GG
~

S) is

nonzero only if v(G)=N, , where N, is the number of
electrons in state S.

The ( S GG S ) value, averaged over all con-
figurations G with fixed number of sites v(G), is zero if
v(G)&N, . The v(G)=N, average value follows from

1=&s ~s&=&s 1., ~s&= y &s
~

GG ~s)

= g fi,.(GI, ~, (s (
GG )S)=

N (S
(
GG (S),„,

G

In the thermodynamic limit, the summand of Eq. (2.9)
will be a sharply peaked (Gaussian) function of the inten-
sive variable d =D/L. We replace the sum by its dom-
inant term multiplied by a factor P, which comes from the
Gaussian weight in D,

( ~II
~

iP ) =P [ L /D, N „N, I g
'L
N,

(2.10)

where the right-hand side is evaluated at its stationary
point with respect to D. Actually, the prefactor P appears
in all required averages and so it cancels in all contribu-
tions to (0'

~

H
~

ql)/(qi
~

4). We drop it henceforth.
The stationarity condition for Eq. (2.10) at large L is

d (1 —n„—n„+d)
(n„—d)(n„—d)

(2. 1 1)

where n, =N /L, . It will be referred to as the "dom-
inant term" equation (condition) since it relates the D
value of the dominant term in Eq. (2.9) to the variational
parameter g.

The evaluation of other matrix elements proceeds in a
similar manner. For example,

(ql
(
a;,a, „)4) =(4

[
l, „l„g a;,a)„g 1„1„[C)

(4&
~
GiGil iI ig a;,aq, g G2Gpl 2I p

~

N)
Gl, G2, I l, I P

g
' ' ' '(S ~GiGia;, a, GqGq ~S&&r

~

r, r, r, r, ~r& .
Gl, G2, I"l, l 2

(2.12)
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Let us introduce 6 =G&Q;J, where 0,;J is 0 without sites i and j. Then the spin-up matrix element is zero unless
Gi =6+ Ii}, Gz=6+ Ij },and v(6)=X) —1. The spin down matrix element is zero unless I z ——I i (=I in what fol-
lows), and v(G) =X). Denoting the complement of G in fl,

& by G =II;i/6, we find

&4
~
a;,aj, ~

4) = g'~'gg &S
~
GGa;,a,

~
S)5~G))v, )&X

~

I I
~

X)5(i )x, , (2.13)
G

where I Ai is the intersection of I and sitei, and the su-

perscripts l and j on the summation over 6 remind us
that 6 and 6 both belong to Q;~.

The &S
~
GGa;, aj,

~

S) value, averaged over all
configurations with fixed number of sites v(G), in the
space 0;~ of L —2 sites, is zero if v(G)&N, —1. The
v(G) =IV( —1 average value follows from

&4
~
a;,a, , ~

4&) = &S
~
a;,ai,

~

S) = &S
~
l, „a;,ai„~ S)

= g'J'5~G) )v i &S
) GGa;„ai,

)
S &

G

I. —2'
&S

i
GGa;, aj, i S),„.

The approximation of replacing every & S
~
GGa„a, , ~

S )
by its average value can be summarized by

&S
i
GGa;, aj, i

S)= &5
i
GGa„aj„

i
S),„

~v& G),N
T

—1

XT —1

(2.14)

The spin-down matrix element in (2.13) is evaluated as in
(2.6). Finally, we find

t
~

) ~(;)~ z (Gi)+ (rfl')+ (i ') &4) a. a (N)'0 a;TaiT 0' = '
g v(G), N

T

—1

G I
,
XT —1

1
- &gr), N, .

cV,

(2.15)

By counting the number of I 6, I } configurations in 0;I for a given configuration I" in Iij },we obtain

& 4
~

a;t(aj,
~

4 ) = g ( I L —2/D, X„—1,%, } +2g I L —2/D, X, —1,%, —1 }+g I L —2/D, X, —1,X, —2 } )
D

Xg &%~a;,aJ, ~e&2D f I —2' I
T l

(2.16)

where D =v(GI ). The dominant term in the above sum
again is given by Eq. (2.11), and in the thermodynamic
limit the sum on the right-hand side is approximated by
its dominant term.

The other matrix elements in &4
~

H
~

'P),
& 0'

~
a;,a, , } q(), and & 4

~
a;,a;„a;„a,,

~

(Il), are evaluated in
an analogous manner. Our results may be summarized
by

&a; a, ) =[q (1 —5;, )+5J]&4
~
a; a,

~

&0),

&a;,a;,a;,a;, ) =d,

I

which shows that q is the discontinuity in the spin-o.
particle density at the Fermi surface. The ground-state
energy functional for the Hubbard model follows from
Eqs. (1.1), (2.1), and (2.17) through (2.19):

E= g s, (k)&a),. ak )+Up &a;,a;,a&, a~, )
k, o

= g [(1—q )n, Lc, +q ps, (k)n, (k)]+ULd,

(2.20)

where the angular brackets
=&q

~

&
~

q &/&q
~

q ), and
mean

where

n, (k) = & N
~

a)t a),
~

(I) ),
qo- = n,a~ —d

1/2(1 n„n„—+d)—
n, (1 —n, )

d(n, —d)

naa d

E, =(1/L) gq s, (k)

is the mean position of the spin-cr a level. Expression
(2.20) is the standard result for the Gutzwiller ground-
state energy functional for the Hubbard model. ' '

To obtain Eq. (2.18) we have used the dominant term
condition (2.11) to express g, the original variational pa-
rameter, in terms of d, the new and more convenient vari-
ational parameter.

From (2.17) it follows that

&ak ak ) =(1—q )n, +q &N
~

ak a),
~

@), (2.19)

III. ENERGY FUNCTIONAL
FOR THE ANDERSON LATTICE MODEL

For the ground state of the Anderson lattice, a natural
form of the Ciutzwiller trial wave function is also given by
Eq. (1.2) where, for the nonmagnetic case, the parent state
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I
Ar &= g &w, , (G}GG ~s& .

G

The norm of this state is

(3.1)

r
&= Xb„«,&S

i
GG ~S& .

G

In the spirit of the Gutzwiller approach, we neglect the
configuration dependence of (S

~

GG
~

S) and replace it
by its average over all configurations having v(G)= A,
spin-up a particles. From Eq. (3.2) we obtain

N is the ground state of the U=O problem. However, for
nonzero U, the minimum expectation value of energy can
be considerably decreased if we enlarge the space of trial
parent states. " We shall allow N to vary among a class
of eigenstates of some trial Hamiltonian Ho, which differs
from the original U=O Hamiltonian (1.3) by the replace-
ments (E, , V)~(E,', V') which are variational functions of
k. This approach allows some quasiparticle renormaliza-
tions of the single-particle part of the effective Hamiltoni-
an due to correlation effects, and is similar in spirit to the
effective Hamiltonian approach of RU.

The expectation value of energy is a function of matrix
elements in state 4 of the following operators: 1, a;a;,

first seven are spin diagonal. Below, we derive an expres-
sion for the norm of %. The matrix element
('I'

~

a; b~
~

4') is derived in Appendix A. Other matrix
elements may be evaluated in a similar manner.

Equation (2.5) for the norm of 4 still holds in the
present case. Again, we restrict ourselves to translational-
ly invariant phases. In the Gutzwiller mean-field ap-
proach, one neglects all configurational (set G) depen-
dence of the matrix elements (S

~

GG
~

S). However, the
dependence on the number of sites in G should not be
neglected. In particular, when hybridization V goes to
zero one would like all matrix elements (S

~

GG
~

S) in-
volving G with v(G) different from N, , = (S

~

N„r S) to
vanish (we assume states S and X are normalized to uni-

ty).
We now argue that while neglecting the configuration

dependence, it is possible to approximate Eq. (2.5) for
(4'

~

'P) by its dominant term in such a way as to include
the desired dependence on the number of sites. To
achieve this, we introduce a state

~
A, ) which is the pro-

jection of
~

S) onto the space of the number A, of spin-

up a particles:

(%~%)=IL/D, A„A, Ig (A,
~

A, )(A,
~

A, )
'L ' L
A

(3.5)

where the right-hand side is evaluated at its stationary
point with respect to A, D. In the above equation and
elsewhere we ignore a factor P which comes from the
Gaussian weights in A, D. As in the Hubbard case, P
appears in all required averages and so cancels in all con-
tributions to ('0

~

H
~

0) /('I'
~

0').
The dominant term equations for the summand of Eq.

(3.4), or the stationarity conditions for Eq. (3.5) at large
L, are

d (1—n„n„+—d)
(n„—d)(n„—d)

(n, —d)(1 n, )—
f'( A ) =ln

n, (1 —n„—n„+d)

(3.6)

f'(A. )=f/, (A. )=f.'(A. )=ft, (A. ) . (3.8)

Let us assume that this is the case. Then, using (3.6), we
find

where f'(A )=f(A +1) f(A )— and f (A )

=ln( A
~

A ). The quantity f'( A ) has a finite nonzero
limit when L~ce with n, fixed, although f(A ) does
not. We shall return to the deterinination of f'( A )

below.
The treatment of the other matrix elements proceeds in

a similar manner. We give a detailed evaluation of the
most intriguing, (0'

~

a; b/ ~%'), in Appendix A. For the
others, we quote the results in Appendix A. The dom-
inant term conditions for all the matrix elements have the
same form as those for (4

~

'p) in Eq. (3.6) except that
the function f ( A ) is modified as follows:

f(A )=ln(A
~

A ) for 1, ata;

fb(A )=ln( A~+ I
i
a; b/

~

A ) for a; b~
(3.7)

f, ( A~)=l (nA~
~

a; az
~

A ) for a;t ai, i~j
fb (A~ ) = In( A~

~
b;~bi~

~

A~ ) for b; bz

Functions f are in general complex, but in the thermo-
dynamic limit their derivatives f' are real. In order that
matrix elements of the above bilinear operators corre-
spond to the same d =D/L and n, = 3 /L, it is obvious
from (3.6) that it is necessary and sufficient that

&s
~

GG ~s&=&s
~

GG ~s&,„= (3.3)

With Eqs. (2.8) and (3.3), we evaluate (2.5) as

&q ~q)= y [L/D, A„A, )g'D(Ar
i
A, )&A,

~
A, &

&a.b). ) =V'q. &a.b,.& g,
&b;ta/ &=V'q &b;ta/ &~,

(a; ai ) =[q (1—5J)+6~](a; a~ ) ~

& b,'.b,.) = (b,'.b,.), ,

(3.9)

L L (3.4) where q is defined by Eq. (2.19), and A averages are
defined as follows:

In the thermodynamic limit, the summand of Eq. (3.4)
will be a sharply peaked (Gaussian) function of the inten-
sive variables n, = 3 /L and d =D/L. We replace the
sum by its dominant term

(A +ABC iA )

((A +A,
~

A +k)&A
~

A )}' '

for [N, , C' ]= A.C (3.10)
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o
&ak aka) =(1—q )n, a+qan, kae /Z, k

& akabkcr ) = (qg ) pka/Zakcr
1/2 0

&bk bk )=nbk e /zbk
0

l1a la lr

where

o ~~/'2 o
Zaka =nakae + ( 1 naka )e

o —~~» o
zbk =nbk e +(1 nbk )e—
n k =&+ ~ak ak

nbk. = & ~
~
bk.bk.

~

~ &,

pk =&+ ~ak bk

(3.11)

Thus, n, counts the a electrons and nb the b electrons.
The MGA dominant term conditions are

2 d (1—n„n„+d)—
(n„d)(n„——d)

p, nao(1 nay naJ+d)
(n, —d)(1 —n, )

(3.12)

The parameters p are obtained in terms of d from the
second of Eqs. (3.12) and the condition

o= g &akaak ) A = g nak e /Zakcr
k k

(3.13)

Comparing our results with those of VWR, we notice
that VWR in exPressions for &akaaka), &akabka), and
&bk bk ) have n,k, pk, and nbk where in Eq. (3.11) we
have

o
&ak ak &A =n, k e /Z, ka,

& akabka ) A Pka/Zaka
0

o
&bk bk & A nbk e /zbk

(3.14)

Note that rIt, =0 for a a and b b, and A, = 1 ( —1) for a b
(b a)

We next have to find a suitable approximation for the
A averages which appear in Eqs. (3.6) and (3.9). This is
carried out in Appendix B. In Appendix B, we returned
to the Bloch basis and considered matrix elements of
ak~bk, ak ak~ and bk~bk~. The results of Appendix B,
the modified Gaussian approximation (MGA), can be
combined with Eqs. (3.9) to give the relevant expectation
values in &H):

The answer is affirmative, as we shall demonstrate in what
follows.

The trial noninteracting Hamiltonian, H p =H p(E,
~s,', V~V'), is diagonalized by a unitary transforma-
tion

ak COSOk~

—sinOk

sinOk a
cosOk~ bk

(3.15)

0 0 2 0 2
naker n pko S111 Ok~ +n ak(T COS OkrJ

0 o
pka = (n aka —n pk )stn8kcrcos8k

0 0 2 0 2
nbka n pko-cos Oko. +n akcrsln Oka

(3.16)

Equation (3.16) shows that the two variational functions
(k) and V' (k), that define H p and the trial parent state

4, in the ground-state energy functional E appear only in
the combination Ok . This means that the density of dou-
bly occupied sites d and the hybridization angle function
Ok comprise the complete set of independent variational
parameters with respect to which E is to be minimized.

When nk =n k +npk is 0 or 2, from (3.14) and
(3.16) one easily finds that & akaaka ) A

=
& bk bka ) A =

—,'nk and &ak bk ) A =0. When nk is 1, using (3.14) and
(3.16) one can check that z,k =zbk, 0« ak ak )A &1,0« bkgbka) A & 1 &ak a$ ) A + &bkabkcr)A =1
&ak ak ) A &bb bk ) A = &ak bk ) A. These relations
show that for arbitrary momentum k the following repre-
sentation for the 3 averages is possible:

0 . 2 0 2
& akaako & A = n pka Sin 8ka + n aka COS 8ka

& ak bka & A =(n aka n Pka )»n8kaCOS8kcr

&bkabko & A =nPk COS 8k + n akaSin'8k

(3.17)

Comparison of Eq. (3.16) with Eq. (3.17) shows that there
exists some effective noninteracting Hamiltonian
Hp=Hp(s, ~s, , V~V), with 4& as its ground state, such
that &akaaka)~, &akabka&A, and &bkabka) A are matrix
elements of ak ak, ak bk, and bk bk in the state +.
The effective hybridization function Ok that appears in
Eq. (3.17) is related to functions e, (k) and V (k) that
define the effective Hamiltonian Ho through

where a and /3 denote the upper and the lower band of
Ho, and the hybridization angle Ok is given by
tan(28ka) =2 V ('k)/[s ',(k) —Eba(k)]. Since 4 is an
eigenstate of Hp, then n k =&4

~

aj ak
~

N) and

npk = &4 ~i3k pk
~

4) take values 0 and 1 only, while
&4&

~
akaPka

~

4) is zero. The corresPonding exPressions
for n ~k~, pk~, and n pk~ are0

We recall that n,k, pk, and nbk stand for averages of
ak~ak~, ak~bk~, and bk~bk~ in the state N, where 4 is the
ground state of the trial noninteracting Hamiltonian

tan(28k ) = 2V (k)

e, (k) —Eb (k)

Hp =Hp(c.,~E,', V~ V') .

In order to draw a comparison with the VWR method,
we need to check if A averages in Eq. (3.14) can be writ-
ten as matrix elements in some state N, which is the
ground state of some effective noninteracting Hamiltonian

Hp =Hp(e, ~s„V~V) .

From Eqs. (3.14), (3.16), and (3.17), for momenta k such
that nk ——1, one can relate Ok and the hybridization an-
gle Ok characterizing the parent state:

(3.18)

We notice that it is possible to use d and Ok instead of
d and Ok as independent variational parameters. If we
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do that then our expression for the energy functional be-
comes identical to that of VWR. However, there is an
important difference in the interpretation of the variation-
al function that enters the ground-state energy functional.
In the approach of VWR the variational function is the
hybridization angle 0k characterizing the parent state N
of the trial wave function %=g +. In our approach it is
the function 0k that depends both on the parent state +
(through angle Oq ) and the amount of density depletion
(through p ).

Once we choose d and 0k as independent variational
parameters, the density depletion variables p completely
disappear from the energy functional. In particular, the
global constraint, Eq. (3.13), then serves to define
n, =n, (Oq ) while before it served to determine p in
terms of d and 0k .

The energy functional in (d, O~ ) variables is given by

We recall that n, g = (4&
~

aq aq
~

4&) and that
n, =(I/L)(N

~

1V',
~

N) is the ao. density in the best
parent state @. The coefficient of the g —1 term has a
finite limit when L~ co for n = A /L fixed. Not having
checked the L dependence of higher-order coefficients of
the g —1 expansion, this does constitute a rigorous proof
that n, (g)=(I/L)(N, )s is g dependent in the thermo-
dynamic limit. However, precisely the same small g —1

behavior follows from the MGA dominant term equations
(3.12).

In order to obtain further evidence for the density de-
pletion effect we have examined the n, =n, (g) depen-
dence for L =2 and Ã, =X, =4 numerically, using the
Gutzwiller expression for the trial wave function and as-
suming that E.,' (k) and V' (k) are spin and k independent
while Eb (k) is spin independent. We find that the g
dependence of n, for this small sample qualitatively
agrees with a corresponding MGA result for an infinite
sample at 50% electron filling (two electrons per spin pro-
jection per site).

The energy functional to be minimized, in (d, O& ) vari-
ables, is given by Eqs. (3.19) and (3.17). It depends on
the function Oq, but only for those pairs (k, o ) such that
the total particle number in the parent state,
n~ ——(4

~
a& a& +b& bz

~

N), is equal to 1. For such
pairs (k, o. ) the stationarity equation with respect to Oq

can be written as

E= g (1 —q )n, LK, +q QE, (k)(a~ a& )z
CT k

+ g&b~(k)(4oba~&~
k

+2(q ) g V (k)(a~ b~ )~ +ULd,
k

(3.19)

where E, =(1/L) g& E, (k) and the A averages are given
in Eq. (3.17).

Once the best (extremal) values of d and Oq for the
above energy functional are known one can find parame-
ters p from the second dominant term equation (3.12).
This and Eq. (3.18) then allows one to find the hybridiza-
tion function 0k characterizing the parent state N, use
Eq. (3.16) to calculate the density of a particles in this
state, and compare it with n, which is the density of a
particles in the state %.

Since the parameters p drop out of the energy func-
tional (3.19) one may feel uncomfortable with the above
prescription for evaluating (1/L)((4

~

N,
~

N)
—(0'

~

N,
~

4) )/('0
~

0') and doubt the very existence of
the density depletion effect. After all, we find the same
energy functional as VWR, who do not consider the 3
stationarity equation and make no distinction between 0k
and 0k~.

The density depletion effect may be examined by look-
ing at the g dependence of the quantity

n, (g)=
(C&~g N, g ~C&)

(3.20)
L(C& ~g ~

@)

2(q )' V (k)
tan(20'~ ) =

q~E~~(k) —eb~(k)+ C,~+ Cv~
(3.21)

where

dlnqp
C, = g (h, ~ n, ~E,~)+(I——q )r.,

P
na

(3.22)
Blnqp

Cv = —,
' g 'hvar

P
Bn,

Above,

h, p
——(1!L)g E,p(k) (agpagp)

k

and

hvar=(2/L)

g V&(k)(a~&ha&)
k

are spin-p average a-particle energy and spin-p average
hybridization energy, while E,~=(1/L) g& E,z(k) is the
mean position of the spin-p a level.

We remark that in general, regions in k space where
nk takes respective values 0, 1, and 2, do not have to be
invariant under changes in U, since the best parent state
N itself changes with U. Moreover, the entire derivation
of the energy functional is valid even when we enlarge the
class of parent states N to include all eigenstates of the
trial Hamiltonian Ho. (Then the state @ is a correspond-
ing eigenstate of Ho. ) A motivation for this more general
class of trial parent states comes from the possibility that
at large U it may be advantageous to transfer some of the
particles from the flat portion of the P band, where they
experience a large Coulomb repulsion, to the steep portion
of the a band, where they have larger single-particle ener-

For the fixed best parent state N, this quantity evaluated
at the best g value, and at g=1, should have the same
value if the density depletion effect is absent.

For sufficiently small U, the best value of g is close to
1. Then for a fixed finite L, the right-hand side of Eq.
(3.20) can be expanded in a Taylor series which gives
without approximation

+O[(g —1) ] .

n, (g)=n, +2(g —1)n, gn, q~(1 n,q~)— —
L
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gy but the Coulomb repulsion is absent. If this were to
happen one would have, for example, a possibility of
interaction-induced conductivity: an insulator at low
values of U might become a conductor at higher values of
U.

We remark that in the present case of several bands, the
Luttinger theorem' says only that the total volume under
the Fermi surface is unchanged by interactions; it does
not forbid the above exotic scenario. However, in what
follows we shall discuss a less unusual case and assume
that regions in k space, where nq =0, I, and 2 do not
change with U.

We notice that Eq. (3.21) indicates that the effective hy-
bridization V (k) and the effective dispersion of a parti-
cles E, (k) can be chosen as

When ~p~ =n, g~+ npj, ~ is two (zero) then states ako and
bkoar'e both occupied (empty) and the energy is indepen-
dent of Hq~. For such values of ko, gi, , V (k),
e, (k) are not defined, and may be chosen at one's con-
venience. Our choice of functions gk, V (k), and e, (k)
is such that relations (3.21) and (3.23) hold regardless of
whether nk is 0, 1, or 2. Equations (3.23) show that the
effective noninteracting Hamiltonian Ho, in comparison
with Ho, has a bandwidth reduced by q, hybridization re-
duced by &q, and the mean position of spin-cr a level
raised by

Blnqp
Cv~+ g (h, p

—n, pE,p) .
P nao

V.(k) =(q. )'"V.(k),
e..(k) =q.e..(k)+ C..+Cv. .

(3.23) Using Eqs. (3.21)—(3.23), one can transform the
ground-state energy functional (3.19) into

E= N Ho V~~ q~
'

V~ + 1 —q~ ca~ —c~~ k ak ak~
a k

+Used . (3.24)

2(q )' V (k)
tan(20k~) = —ci, (k)+Cv

(3.25)

We recall that VWR have minimized their e, (k) =e, ,
V (k) = V, and Ei, (k) = Eb(k) Anderson lattice energy
functional in the space of functions Oq that can be
parametrized by

tan(20k ) =
a —cb(k)

(3.26)

When E, (k) is independent of k and U~ oo this form re-
cues to the energy functional of RU. Explicitly, H, ff(nf)
and IC,ff of RU in our notation are Hp[ V ~(q )' V ]
and Ho[e, ~E, , V ~(q )'~ V ]. This latter Hamil-
tonian is just Ho with V eliminated using the first sta-
tionarity equation (3.23), and its ground state is @ as well.
The last two terms in Eq. (3.24) are absent in RU (Ref. 9),
because they assumed a dispersionless a band and infinite
U.

The energy functional (3.24) has V (k) eliminated
through the stationarity condition V (k)=(q )'~2V (k).
The ground-state energy can still be obtained by minimiz-
ing it with respect to 8 (k) and d. But now, for the in-
dependent set of variational parameters, one may also
choose e, (k) and d, or, in the spirit of Rice and Ueda,
one may choose (ak ai, ~) z and d.

For a dispersionless a band, h, [defined below, Eq.
(3.22)) becomes n, E, and Eq. (3.21) simplifies to

In the next section we shall also need the stationarity
condition for the functional (3.19) with respect to d. It
is of the form

Blnq & BlnqO=U+g (h, —n, E, )+g-
Bd ' '

2 Bd

(3.27)

For a dispersionless a band the middle term in the above
equation vanishes.

We conclude this section with a brief comparison of our
work and the most recent paper of Rice and Ueda. '

They work with a (fixed) average number of heavy elec-
trons which does not allow for a proper derivation of the
hybridization matrix elements. In particular, their expres-
sions for (b; a; ) and (a; b; ) [Eqs. (2.10) through
(2.13) of Ref. 10] are such that the identity
(b; a; ) = (a; b; )* is satisfied only when d =n„n„.
The dominant term D equation then implies g= 1, regard-
less of the value of U. Rice and Ueda avoid this contrad-
iction by replacing both (b; a; ) and (a; b; ) by their
geometric mean. However, in the expression for the
ground-state energy functional the above matrix elements
appear as a sum, not as a product. Thus the work of Rice
and Ueda is a heuristic way to make plausible the
ground-state energy functionals given by our Eqs. (3.19)
and (3.24).

They found the best values of parameters a and v by
minimizing the ground-state energy with respect to a and
v. With the understanding that their angle Ok does not
describe the parent state N, but corresponds to our angle
9k, our Eq. (3.25) shows that their ansatz for the hybridi-
zation angle has a form appropriate for finding the non-
magnetic minimum of the energy functional.

IV. MAGNETIC INSTABILITY OF HEAVY FERMIONS

In this section we specialize to e, (k) =e, , V (k) = V,
and Eb (k) =e(k) restricted to the interval [—W/2, W/2]
and having a constant density of states. We first describe
a simple upper bound on the ground-state energy, which
completely disregards hybridization but has a virtue of be-
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1

I.Eab =2ca &a + ~b ( + E,b l +d U (4.1)

ing free of any Gutzwiller-type approximation.
For large U and/or small V one can expect very small

effective hybridization. Then we may choose the trial
ground state 4' to be a direct product of +, and Nb,
where 4, is an arbitrary a-particle state with a sharp
number of a-electrons and +b is a Fermi sea of b elec-
trons. The expectation value E,b of 0 in this state is
given by

region in the Gutzwiller approach. We shall see below
how small but nonzero effective hybridization in this re-
gion translates this marginal stability into a true magnetic
instability.

When n & 1, the parent state 4 has the e band empty
and 13 band populated for momenta such that c.=E(k) lies
between ep= —W/2 and EF~= W(n ——,'). Introducing

Rp =[(e, —Ep) +4V ]' and RF =[(E, —EF )'
+4V ]'~, from Eq. (3.19) we derive the energy function-
al per site:

where n, = —,'(n„+n„) Fq
———,

' Wnb (1 —nl, ), n, and nz

are spin-cr densities of a and b particles, and d is the den-
sity of sites occupied by two a electrons. We recall that
n, ~+nb~ ——n~+ —2'o. m where o. =+1 and n is the total
density per one spin projection and m is the total spin
density.

We choose n, and d as variational parameters, subject
to constraints 0 & n, & min(l, n ) and max(O, n, ,

+n„—1) &d &min(n„, n„). It is an easy task to find

the nonmagnetic minimum of (4.1) and evaluate the
response functions

d E,b

2L dn~

and

h =dU+ gh

h =h, +hb~+hv

1 1
h, =En, =E, n+ — (RF~ —Rp )

2 2W

hb = (eF —ep)
2 2

48
1

48' [(c +EF )RF —(c +ep)Rp ]

V o- RFo-+ EFcr —Eao
ln

Rp +c.p —Iao-

, ~, Vo- V RFcr+EFo- —~ao-
h v~ = —2(q~ ) ln

Rp +op —c.,

(4.2)

d E,b
X$ dm'

in this state.
For very low density, such that for U=O the a band is

empty, there is no U dependence and the charge and spin
susceptibilities have noninteracting b-band values
X, = 1/8' and g, =2/8'.

For low density, such that for U= 0 we have
n„+n, «1, again there is no U dependence and the
response functions (in the m =0 state) are X, =X, = oo.

For intermediate density, such that for U=O we have
1 & n„+n„&2, again 7, =7, = oo as long as
U & U, =c, + W(n —1). In this region n, =n —

—,
'

—(E, + U)/W and d =2n, —1 drop from their U=O
values to —,

' and 0, respectively. For U & U, we have

n, = —,', d=0, 7, = ~, and 7, = 1/O'. The system is stable
against compression, but it can be polarized with no
effort.

For high density, such that at U=O the b band is filled
above the c., level, for U & U] ——n ——,

' —c., /8' we have

g, =2+, =2/8' and d =n, =1. In region U~ & U & U,
we have 7, =7, = oo with n, and d decreasing linearly to-
ward —,

' and 0. And for U ~ U, we have 7, = oo,

7, =2/8' with n, = —,', and d =0.
Apart from establishing the V~O checkpoint for the

Gutzwiller energy functional, this simple model is of little
value for small U where hybridization is essential. How-
ever, an important point to be learned from the above
analysis is that for large enough density, there is a critical
U above which compressibility takes the free b-band value
and the nonmagnetic state is marginally unstable against
magnetism. This region corresponds to the heavy-fermion

VVa ~qa RFa +&Fa ~aa
eacT Eaa

W(q ) Bn~ Rp +ep E,

VVa ~qa RFa+ ~Fa ~aaU=g, ln
W(q )' ' ~d R, +E,—E,

(4.3)

In the spin symmetric (m=0) case, these equations imply

Y., —c, 1 dq/Bn,
U 2 Bq /Bd

(4.4)

Next we assume that we are in the Kon do regime:
5= —,

' —n, and d are non-negative and small, with no as-

sumptions about their relative magnitude. To leading or-
der, Eq. (4.4) gives

2t2
6, where t =

1 —2t
(4.5)

We recall that the expression for n, in Eq. (4.2) implies
that to leading order c, = c. ,*+8 C6. Here,

E,*=W(n —1),
8V n —1

C =1+ 8" n —-'
2

Equations (4.3) also imply

~g —Ea RF +~F —~a=V ln
Bq /Bn Rp+ gp —p

(4.6a)

(4.6b)

(4.7)

The stationarity conditions (3.23) and (3.27) now be-
come

V =(q )' V
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To leading order in 6, straightforward calculation gives

W (n ——,') (7. ,' —E, ) W
(1 —2t)exp — (1 —t)

SV 4V

(4.8)
dm

V 5 at V ay
2 dE, dn

W 1 —2t dm W dm

= —4(1 —t) (E,*—e, )5—16 t5, (4.12)
1 —t+t ~ V

1 —2t '
W

The corresponding energy per site and charge susceptibili-
ty J', are given by

h = E, + W(n ——')(n ——')—8V 6
(4.9a)

W

4V
2 2W

n —
—,
' (1—2t) U

+ (4.9b)

The most interesting thing about finite-U corrections is
the continuously varying exponent in Eq. (4.8). We ex-
pect a similar result to hold for the Anderson lattice mod-
el with orbital degeneracy. There, the U-dependent ex-
ponent may be observable through the magnetic suscepti-
bility. Equation (4.9) also shows that, compared with
infinite U, finite U increases both the condensation energy
[h ( V—+0) —h] and the charge susceptibility.

The density of a particles in the parent state 4 can be
calculated as described below Eq. (3.19). In the Kondo
regime, the leading-order result is

n = —'+ —'r ——Op
2

(4.10)

where r =(2V/W)[i/I —2t l(1 —t)] and Hq ——tan '[r I
(2n —1)]. It is interesting that n, = —,

' —6 lies below —,
' by

an amount exponentially small in V, while n, lies
above —,

' by a term of order V.

One can also evaluate discontinuities at the Fermi en-
ergy in the particle occupation numbers of a, b, a, P, a,
and /3 particles. Here a and /3 denotes operators defined
as in Eq. (3.15) but with 0 substituted for 0. At the Fer-
mi energy 0 = vr /2 —( 2 V/ W) i/q, 0= —,

' —( 2 V / W) ( 1 —t I
&1 2t )q, which im—plies a =a=b and /3=/3= —a.
In obvious notation, to leading order, discontinuities are
bn (a)=hn (a)=bn (b)=(4V /W )q and bn (/3)
=An (P) =An (a) =q.

We proceed by calculating the magnetic susceptibility
in the nonmagnetic state. The (d, Hk ) form (3.19) of the
energy functional implies that the magnetic field for a
given m quite generally is

d (E/L)
IB(m)=

dm
( EF/3t EFpl )

n~t

dm

These equations show that finite U increases 7, ' com-
pared with its U = op value, but that 7, stays negative in
the entire Kondo region, where 5 and d are small due to
the exponential term in (4.8) (not because of the prefac-
tor). We remark that this treatment recovers formulas of
Rice and Ueda and Fazekas and Brandow, ' as a special
case when U = m (t=0).

When 1&n & —,', the parent state N has the /3 band
completely filled and a band populated for momenta such
that E =E(k) lies between Eo and EF = W(n ——', ). (For
n & —', the energy diverges as U goes to infinity. ) Rather
than writing down many lengthy expressions, we shall de-
scribe what changes occur in the previous formulas.

We introduce e~ = W/2 and R
~ =[(e, —E~)

+4V ]'~ . Then in Eqs. (4.2), (4.3), and (4.7) one should
replace Rp by RF~ Eo by cF~, RF~ by R &, and ~F~ by c3.
The only exception is the first term of hb, which stays
unchanged (recall co= ——,

' W).
Equations (4.4), (4.5), (4.6a), and (4.9a) remain un-

changed, while n ——,
' in Eq. (4.6b) becomes n ——,'. The

density n, is given as in Eq. (4.10) but with angle Hp re-
placed with HF ——tan '(r). At the Fermi energy, angles
describing (a, /3) and (a, /3) particles are approximately
given by 0=(2V/W)i q and H=HF, indicating a=a
and /3=b To lead.ing order, discontinuities are hn (a)
= hn (a) =q, hn (/3) = An (b) =(4V /W )q, bn (a) = [q/
(1+r )][1+(2V/W)r], and bn(/3)=[q/(I+r )](r—2V/W) . For infinite U, r =2V/W, and the discon-
tinuity in the /3 occupation number vanishes. Presum-
ably, this indicates that for infinite-U particles in the
lower band of the parent state are localized.

W ( —,
' —n)

8V
(1 —2t)exp

(Y. ,*—E, ) W

4V
(1 —t)

W 2 2W
4V~ n ——,

' (1—2t)U

Because of their importance, we write down explicitly
expressions for 5, g„B,and g, :

= —,'( Wm +E„—e„—RF, +RFi) (4.1 1)

where EF~~ = ( E,~+ EF~ —Rp~ ) /2. We recall that sta-
tionarity of E with respect to (d, Hk ) allowed us to re-
place the total m derivative in the above equation with the
partial m derivative.

Taking the total m derivative of Eqs. (4.3) and evaluat-
ing them at m=O, we find that the derivatives of c, and
V are odd in o. while the derivative of d vanishes. This
allows us to solve for de„/dm and d V, /dm in a straight-
forward way. In the Kondo region, using the results for
the m=0 state, we find to leading order

B (m)= ,'(eF~, —eF~, ) —=—,'( Wm +E„—E„+RFt RF, ), —
(4.13)

8V Q dE~) V dn~)

W 1 —2t dm W dm

d&a) 1 —t +t= —4(1 —t) (E.*—e. )6+16 (1 —t)5,
V2

dm 1 —2t W

dna T 1

dm 2
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Here EF~~=(e,~+eF~+RF )/2. When U .is infinite,
X, '=32V /W5 —4(E,* —c., )fi&0. Finite U leads to
larger g, ', but as long as we are in the Kondo regime, g,
stays negative. A negative zero-temperature value of 7, '

means that the high-temperature nonmagnetic state be-
comes unstable at a nonzero critical temperature.

We have shown that within the Gutzwiller mean-field
theory, the nonmagnetic heavy-fermion solution of the
ALM is unstable against ferromagnetism. A natural
question to ask is whether fluctuations stabilize the
heavy-fermion nonmagnetic state. Recently, Shiba' em-
ployed a variational Monte Carlo method to evaluate
ground-state properties of the U= ao nonmagnetic solu-
tion of the ALM. Because of diA'erent band-structure and
dimensionality used by Shiba, one cannot obtain a useful
comparison between his and our values of c, , V, and q in
the U = ao limit. Also, at zero temperature, spin-spin
correlation functions in the optimal nonmagnetic state,
evaluated by Shiba, do not give a clue as to whether this
state is unstable against ferromagnetism at a nonzero tem-
perature. The variational Monte Carlo method should be
extended to include spin-flip processes in order to investi-
gate magnetic instabilities of the ALM.

It has been pointed out that within the Gutzwiller ap-
proach, a large enough degeneracy in the f band (a band
band in this paper) can stabilize the nonmagnetic state,
even in the Kondo limit. While this is true, it is impor-
tant to note that in some heavy-fermion compounds, not-
ably those that are cerium based, ' the lowest f state has
only the Kramers degeneracy. Therefore, these would ap-
pear to remain magnetic within the Gutzwiller approxi-
mation.

APPENDIX A
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Let us introduce I =I
~ and G =G~A;, where 0; is A

without site i. Then the spin-up matrix element is zero
unless G i = G + [i } and G2 = G. The spin-down matrix
element is zero unless I q

——I . Denoting the complement
of G in 0; by G =0; /G it follows that
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where I Ai is the intersection of I and site i and the su-

perscript i on the summation over G reminds that G and
G both belong to 0;. States 5 and X in genera1 involve a
nonzero hybridization between a and b particles, therefore
Cronecker deltas appearing in a related Eq. (2.13) for the
Hubbard model are here absent. Using the projective
state

I A, ) defined in Eq. (3.1) we find
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I «rb r I
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Here we give the derivation of the hybridization matrix
element, (~p

I
a; b/ I

qr). Following the steps leading to
Eq. (2.12), we find
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matrix elements with their average values, with Eqs. (3.1),
(3.3), and (A3), we transform Eq. (A2) into
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We now give all needed matrix elements in the dominant term approximation:
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where C:=D or N, , for C =D or A, respectively.
When C=Nb, we use Ab ——N —N, where N is the
total number of spin-o. particles. We note that by using
the dominant-term conditions of Eq. (3.6), we verify
L(0'

~

a; a;
~

'P) =('P
~

X,
~

4). Also, the identity
( 4'

~
b, ,a;,

~

'P ) = ('p
~
a;,b/,

~

%') * is satisfied at this and
further stages of our calculation.

APPENDIX 8

p(A) =(2irb, )
' exp[ —(A —A ) /2b, ), (81)

where A = gk n, k =Ln and b, = gk n, k(1 —n, k)=Lcr .
Here n, is the a, -particle density in the parent state

~

4).
The other GA distributions have the same form as Eq.
(Bl) but with A and 6 replaced by

Ln, +1 n, k, Lo n—,k(1 n,—k) for p—k,
Ln, —n, k, Lo n, k(1 n, k—) for—pk and pk .

At large A,

f'(A)=p(A +1)—p(A)= —(n, —n, )Icr = —p, (82)

where n, = A/L.
The 3 averages follow immediately. Thus, for exam-

ple, (akak ) ~ =n, kpk( A)/p ( A) and we have

Here, we derive approximations for f'( A )

=ln(( A +1
~

A +1)/( A
i

A ) ) and A averages
(akaaka) A (bk bk~) A, and (ak bk ) & which are neces-
sary for (H ) as in Eq. (3.9). To simplify the notation, we
consider spin up only and drop the o. subscript.

From Eq. (3.2), it is evident that p (A) = ( A
i

A ) is a
distribution in the number A which is normalized to un-
ity. The same is true of pk

——( A
~
akak

~

A ) Ink,
pk ——( A

~
akak i

A ) I(1 nk), a—nd pk ——( A +1
i akbk

A ) Ipk. Here n, k ——(S
i akak

~

S ), pk ——(S
~

akbk
~

S ).
We shall approximate these distributions by Gaussians
with the correct first two moments. Thus, the Gaussian
approximation (GA) for p(A) is

(akbk ) & =pk/zak

(bkbk ) A =nbke /z&k

(84)

where z,k =n, ke" +(1—n, k )e " and zbk =nbke
+(1 nbk )c"—

our final approximation, the modified Gaussian ap-
proximation (MGA), comes from the observation that

gk (akak ) ~ evaluated in the NGA is a function of n, k

and p which depends on A. With the NGA value of
p =(n, —n, )!o,this quantity does not reduce identically
to A =n, l.. The constraint

A = g (akak)„
k

(85)

is satisfied only for a particular value of 3 which does not
depend on U. Therefore we drop the relation
p=(n, —no)/oo and use instead Eq. (85) as a new (impli-
cit) definition of p, , hence the MGA.

The MGA reduces to the GA for small p. Within the
MGA, the normalization of the matrix elements of a-
particle and b-particle number operators is insured.
When V=O and/or U=O, the MGA reproduces known
results.

(akak ) ~ ——n,kexp[+p(1 n—,k) p—n k(1 —n, k )/2],
(akak ) ~ =(1—n, k )exp[ p—n, q p—n, k(1 —n, k )/2],

83
( ak bk ) ~ =pq exp [p( 1 —2n, k ) /2 p—n, k ( 1 —n, k ) /2],
( bkbk ) ~ ——nbk exp[ —p(1 nP—q ) p'—nl k (1 n—i k )/2],
where in the last line nbk = (S

~
bkbk

~

S) is the b,
particle k-state occupation in

~

N).
It is evident from Eqs. (83) that (akak+akak) „=1

only when n, k ——0 or 1. For intermediate values of n, k,
this normalization fails at O(p ). To insure proper nor-
malization, we divide all GA 3 averages by the GA ex-
pression for (a„ak+akak ) ~. This defines the normal-
ized Gaussian approximation NGA:

(akak ) A =nake /zak
0 p/2
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