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We have studied quantum-mechanical transport equations for nondegenerate electrons in semicon-
ductors in high electric fields. Our calculations use Kadanoff and Baym's formalism based on Green
functions, treat only fields that are constant in space and time, and are restricted to weak scattering.
First, we derive an approximate solution to the equation of motion of the retarded Green function in
an electric field, with a careful check of its validity. This is used in deducing the conditions under
which the quantum-mechanical transport equation reduces to the Boltzmann equation. We find, in
agreement with some previous studies, that the electric field causes a "broadening" of the 6 function
in semiclassical transition rates, a result of the "intracollisional field effect. " The Boltzmann equa-
tion fails when this broadening exceeds some characteristic energy scale (usually kz T), which occurs
at fields of a few MVm ' in conventional semiconductors. These results are strongly dependent on
the ansatz used to reduce the Green function to a distribution function. The scattering-out term is
usually much less sensitive to the electric field than the scattering-in term. We exploit this to con-
struct an integral transport equation, valid in high electric fields, which differs from the Boltzmann
equation only in having a broadened function replacing the 6 function in the scattering-in rates. It
should be possible to solve this equation using standard numerical techniques and gain quantitative
information on the intracollisional field effect.

I. INTRODUCTION

The theory of transport in semiconductors has tradi-
tionally been based on the semiclassical Boltzmann equa-
tion, ' but the modeling of devices currently under de-
velopment is pushing this equation to its limits. The size
of modern devices is shrinking continually while applied
voltages remain about the same, which means that the
typical electric fields are becoming very large and rapidly
varying in space. Does the Boltzmann equation remain
valid under such extreme conditions?

For example, recent experiments ' have demonstrated
directly the existence of ballistic carriers in semiconduct-
ing devices, signifying a distribution function nowhere
near its thermal form. Important features of these experi-
ments are the following: high electric fields (exceeding
10 Vm '), which accelerate the ballistic electrons and
drive the distribution far from equilibrium; contact eA'ects,
which are used to inject the electrons over a barrier or
through a tunnel junction, and which rely on rapid spa-
tial variation of the electric field to launch the ballistic
carriers; and very high scattering rates, which necessitate
an extremely narrow active region (30—60 nm) to preserve
the ballistic features.

Solutions of the Boltzmann equation in submicrometer
devices " have already revealed striking ballistic struc-
ture in the distribution function. However, these experi-
ments emphasize important basic questions concerning
the validity of the Boltzmann equation.

(i) Can transition rates calculated using the golden rule

be used even in the presence of a high (uniform) electric
field as, for example, in Refs. 5 and 11?

(ii) At what strengths of electric field does the structure
of the Boltzmann transport equation itself fail?

(iii) Do the electric field and density of electrons vary
too rapidly in space for the semiclassical description to be
applicable' ?

Our aim in this paper is to address the first two questions
for the simplest situation, electrons in a parabolic band
accelerated by a uniform electric field and scattered weak-
ly by phonons. This paves the way for an approach to the
more complicated problem of inhomogeneous systems,
strong scattering, and the modeling of real semiconductor
devices.

The Boltzmann equation for a nondegenerate system in
a uniform electric field F(t) can be written

—+eF(t) V& f,i(k, t)= g [W(k, k —q)f, l(k —q, t)
q

—W(k+q, k)f,~(k, t)], (1.1)

where f,i is the semiclassical distribution function. The
second term on the right-hand side (RHS) can also be
written as —I (k)f,i(k, t) where

r(k)= y W(k+q, k)
q

is the total scattering-out rate. An assumption in conven-
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HU(r, t)=c( i V, ——e A(r, t))+eP(r, t) (1.3)

in units where 6=1; e is the charge on the carriers.
Many important features of real devices and materials are
absent from our model: more realistic band-structure per-
mitting interband transitions, spatially varying electric
fields, and polaronic effects for example. We feel that it is
better first to understand a simple model properly, to pro-
vide a firm foundation for exploring more complicated
systems and processes. Even this simple model has led to
much controversy, with widely differing estimates for the
maximum field in which the Boltzmann equation is val-
id. 13—16

Our calculations use the nonequilibrium Green func-
tions introduced independently by Kadanoff and Baym'
and by Keldysh. ' We provide a brief review of these
techniques in Sec. II. Two vital features of the calculation

I

tional derivations of the Boltzrnann equation is that col-
lisions are instantaneous in time. ' This has two impor-
tant consequences for the collision term on the RHS of
(1.1): it depends on f,i only at time t, and not at times in
the past; and the driving field F(t) does not appear. Nei-
ther of these simplifying features is true of the more
rigorous quantum-mechanical transport equation, and
essentially our task is to determine under what conditions
the local collision term in (1.1) is accurate. We find a
differential transport equation that agrees with Barker and
Ferry, ' and confirm their result that the Boltzmann
equation fails in electric fields exceeding about 10 —10
V m '. We have also derived a new integral equation for
describing transport in high electric fields. It differs from
the Boltzmann equation only in having a "broadened"
function replacing the 5 function of the semiclassical
scattering-in rates. It should be possible to solve this in-
tegral equation by the standard numerical techniques, be-
cause it has the simple scattering-out term of the
Boltzmann equation with no extra integrations.

We treat electrons in a single band with dispersion rela-
tion e(k), which we shall ultimately take to be parabolic
[c(k)=k /2m, with m the eff'ective mass]. The Hamil-
tonian including an applied field, which may enter
through scalar and vector potentials, but excluding
scattering, is

are a redefinition of the variables to ensure gauge invari-
ance, and the use of "reduced functions;" these have the
spectral function in the presence of the field (but without
scattering) factored out, removing much of the field
dependence from their equations of motion. In Sec. III
we derive an approximate solution for the retarded Green
function, with a careful check of its accuracy. The kinetic
equation is treated in Sec. IV. An ansatz is needed to
reduce the equation involving Green functions to one for
the distribution function. Our results, in particular the
conditions under which the transport equation reduces to
the Boltzmann equation, are very sensitive to the choice
of this. An improved ansatz, recently introduced by
Lipavsky et al. ,

' is vital to avoid losing the intracollision-
al field effect and to maintain symmetry between the
scattering rates appearing in the different Green functions.

Appendix A contains a description of the numerical
calculations used to verify the accuracy of the retarded
Green function. Our conditions for the Boltzmann equa-
tion to be valid involve defining a "collision duration
time;" in Appendix B we compare this with the "delay
time" defined in scattering theory. We found it con-
venient to work with an integral transport equation rather
than the more usual differential one, but we show in Ap-
pendix C that the latter leads to the same conclusions.
Finally, in Appendix D, we consider a simple picture of
the intracollisional field effect, and discuss how one might
attempt to calculate transition rates from the golden rule,
even in high electric fields.

II. QUANTUM TRANSPORT FORMALISM

In this section we shall briefly review and set up the
equations for the nonequilibrium Green functions on
which our calculations are based.

A. Introduction

The semiclassical theory of transport in semiconductors
rests on the Boltzmann equation, whose differential form
was given above [Eq. (1.1)]. W(k+q, k) is the transition
rate from k to k+q given by the golden rule. For scatter-
ing from phonons,

W(k+q, k)=2~
~
Mq

~
I(Xq+ l)5(e(k+q) —s(k)+Aq) +&q5(e(k+q) —E(k) —Qq)) (2.1)

[&q+ —,'( I + rI)]&(e(k+ q) —e(k)+gIIq), (2.2)

where Mq is the matrix element for scattering, Qq is the
frequency of the phonon, and Nq is the occupation num-
ber. The first term (iI=+1) is for the emission of a pho-
non and the second (il= —1) for absorption. Umklapp
processes do not appear because we are considering a sin-
gle unbounded parabolic band. The Boltzmann equation
(1.1) can also be written in an integral form. For a uni-
form, constant field this becomes

f,i(k)= f dt exp —f 'dt'I (k eFt')—
0 0

&& g W'(k —eFt, k —q —eFt)f, i(k —q —eFt),
q

(2.3)

where k —eFt gives the evolution of a k vector with time
according to k=eF. The two formulas (1.1) and (2.3)
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can readily be shown to be equivalent by operating on
(2.3) with eF.Vk (this is tnade easier if the variables of
integration t and t' are first replaced by the components
of k eF—t and k eF—t' parallel to F). A fuller proof is
given in (for example) Ref. 3. The integral equation has
the important feature that it can be solved numerically
using iterative or Monte-Carlo techniques.

The interpretation of Eqs. (1.1) and (2.3). is simple. In
the diff'erential form (1.1), the RHS has the form
"scattering-in" —"scattering-out. " In the integral form
(2.3), the sum involving f,~

gives the rate at which parti-
cles were scattered into k —eFt a time t ago, and the ex-
ponential term gives the probability that such particles
survive to the present with wave vector k. The simplicity
of these equations is due to the local nature of the col-
lision term. This is not true of the quantum transport
equations, as we shall see in the next sections.

The fully quantum-mechanical analog of the semiclassi-
cal distribution function f,~

is the Wigner function f, a
Fourier transform of the density matrix:

G (1,2)=G (r~, t~, rq, tq)= —i(%'H(1)VH(2)) . (2.5b)

Langreth explains the meaning of the nonequilibrium
expectation values. Now we introduce sum and difference
coordinates,

(2.6)

Using these coordinates, the density matrix and Wigner
function are given by

p(r, R, T) = iG—((r, t =0;R,T),
f(k, R, T)= J dre '"'p(r, R, T)

(2.7a)

(2.7b)

so quantities of physical interest can be derived from
G '(t =0).

Also important in the calculations are the retarded and
advanced Green functions, which are defined convention-
ally, for example,

f(k, R, T)= f dre '"'p(R+ ,'r, R——,'r,—T) . (2.4) G "(1,2) = i B(t)—t2)( [+tt(1—), VHt(2) j ) . (2.&)

It is important here that f be expressed in terms of
mechanical (or kinematical) momentum k, not canonical
momentum p, in the presence of an applied field. This
has been emphasized particularly by Levinson, and we
shall return to this point later.

We now need to set up a kinetic equation for f, valid in

high electric fields. One of our aims in this paper is to
determine the conditions under which this reduces to the
Boltzmann equation. In linear-response theory, the
fluctuation-dissipation theorem allows one to calculate
transport coefBcients from correlation functions of the
ground state, i.e., in the absence of the applied field; thus
conventional equilibrium perturbation theory can be used.
We are interested in high electric fields, in which case the
system may be driven far from equilibrium, well beyond
the region of linear response. We are therefore obliged to
use the more cumbersome apparatus of nonequilibrium
statistical mechanics, and must include the applied field in
that part of the Hamiltonian which is treated exactly.
Approximations should be made only in the treatment of
the scattering (phonons, impurities, etc.), and not in the
strength of the applied field.

One route to a kinetic equation is to use the Liouville
equation for p directly; this has been taken by Levinson,
Barker ' and others. A second approach, which we fol-
low here, is based on Green functions and was introduced
by Kadanoff and Baym' and by Keldysk. ' An elegant
fusion of these two slightly different formalisms has been
given by Langreth. We give a summary of his results in
the next section, following the notation of Jauho and Wil-
kjns.

B. Nonequilibrium Green functions

Rather than dealing with the density matrix directly,
this formalism is based on double-time correlation func-
tions:

G "(t, , t&) = i B(t, ——t&) A(t„t, ), (2.10)

but knowing 3 alone is not enough to determine G ( or
G» except in thermal equilibrium. Define the Fourier
transform by

G (pERT)= j dr J dte '&' "G (r (t RT) .

(2. 1 1)

In equilibrium there can be no dependence on T, and G
and G» obey

G ((p, E; R)=i A( ,pE; R)fp D(E),

G (p, E;R)= —i A(p, E;R)[1—fpD(E)],

(2.12a)

(2.12b)

where fpD(E) is the Fermi-Dirac distribution function. '

No such relation holds away from equilibrium, and
separate equations are then needed to find G"' and G
In Langreth's lucid paper these are derived from a Green
function ordered on a generalized contour in complex
time, rather than from —ao to oo or from 0 to —iP as in
the usual formalism restricted to systems at zero tempera-
ture or in thermal equilibrium. The retarded and ad-
vanced Green functions satisfy the familiar Dyson equa-
tions, written symbolically as

It is important to note that the distribution function can-
not be obtained from G"'; essentially they describe the
propagation of an extra particle added to the system. The
Green functions are interconnected by the spectral func-
tion A:

A =i[G"—G'] =i[G ) —6 (]= ( j +H(1), %'H(2) j ),
(2.9)

3 obeys a sum rule at t] ——tq which follows from the an-
ticommutation relation of the operators in (2.9). It is im-
portant to note that O', G', and 2 contain the same in-
formation, for example,

G ((1,2) =G (r~, t(~, r2, t2) =i (+H(2)VH(1) ), (2.5a) G"=Go + GDX"G"=Go +G X"Go (2. 1 3)
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The self-energy X" is in general a functional of G (') as
well as G"'. We aim to make no approximation in the
strength of the applied field, as emphasized in Sec. II A.
To achieve this, we take Go to be the Green function for
an electron in the presence of the applied field but without
scattering, corresponding to the Hamiltonian Hp [Eq.
(1.3)], and denote it by Gp as a reminder of this.

Because G ( contains the distribution function as a lim-
iting case, its equation of motion is analogous to the clas-
sical kinetic equation. Like the Boltzmann equation, this
can be written in "differential" (strictly, integro-
dilferential) and "integral" forms.

The di(ferential equation of motion for G (r i, t ~, rz, t2 )

with t~ ——t2 ——T can be written symbolically as

—[Gp ', 6 ]= f dr' f dr'[[X', 6 I
—[X',6 )],

(2.14)

where the operator Gp ' is defined (as usual) as

(2.15)

and X ') are self-energies or scattering rates which will
be considered in more detail in Sec. IID. As usual, the
self-energies are themselves functionals of the Green
functions. Equation (2.14) can be directly compared
with the Boltzmann equation, which is an attractive
feature of the formalism. The left-hand side (lhs)
reduces to exactly the same form in a uniform applied
field. G ( is a "density of particles" and X) can be in-
terpreted as.a scattering-out rate, so that the anticom-
mutator [ X ),6 ) corresponds precisely to the
scattering-out term of the Boltzmann equation; likewise
the other term represents scattering in.

An important difference from Boltzmann theory is the
presence of the integrals in the collision term: it is explic-
itly retarded in time and nonlocal in space. This means
that the driving forces appear within the collision term, as
well as on the left-hand side, giving rise to "intracollision-
al field effects. " Also apparent is a serious difficulty in-
herent in this method: we want G ((r, t;R, T) only for
t =0 to derive physical quantities, but need it for all I; to
perform the integral over time in the collision term. The
usual way around this problem is to make an ansatz for
the dependence of G ( on t; we shall return to this impor-
tant point in Sec. II E.

The integral equation can be written as

which depends on to, the time at which the interaction
with phonons was turned on. We assume that this hap-
pened in the distant past so that any influence of this term
has decayed owing to the damping in G ' and G'.

Note that the scattering-in and scattering-out terms
enter the integral equation in a very asymmetric way, as
they do in the integral form of the Boltzmann equation.
This means that it is vital to follow the rules laid down by
Kadanoff and Baym' for conserving approximations to
ensure that the correct symmetry between the scattering
rates is preserved. By contrast, the more symmetric basic
structure of the differential equation allows greater liber-
ties to be taken with approximations.

An attractive feature of Langreth's formalism is that
the equations of motion for the single-particle properties6"' [Eq. (2.13)] and those for the distribution propertiesG(') [Eq. (2.14)] appear to be independent. This is not
quite true, because the equation for G" depends implicit-
ly on G (') through the self-energy X", but for a nonde-
generate system this dependence is negligible (Sec. II D)
and the two sets of equations are decoupled. This permits
a two-step procedure for solving the problem. First, one
solves the Dyson equation (2.13), which gives the retarded
Green function (and spectral function). This provides in-
formation about the scattering of an extra particle added
to the system. The spectral function is then used to con-
struct an ansatz for G (') (Sec. II E), which is in turn
used to reduce the equation of motion for 6 (, (2.14) or
(2.16), to a transport equation for the distribution func-
tion.

In the main body of this paper we shall concentrate on
the solution of the integral transport equation, because we
have found that it is more straightforward to draw physi-
cal conclusions from this formalism. However, we show
in Appendix C that the differential equation leads to iden-
tical results, although its interpretation is more tricky.

C. Field-dependent Green functions
and reduced functions

It is most convenient to introduce a uniform electric
field by a vector potential because canonical momentum
p is a conserved quantity in this gauge. Then GU, the re-
tarded Green function in the presence of the field, obeys
the pair of equations

Gp'Gp=— i —E(p —e A(t))) Gp(p;t), t2)

6 (1,2)= f d 1' f d2'6 "(1,1')2 (1',2')G'(2', 2) .

(2.16a) =5(ri t2), — (2.17a)

g((1',2') gives the rate at which particles are scattered
6"(1,1') gives the probability amplitude that they

survive from 1' to 1 without being scattered "out," and
6'(2', 2) "completes the square" to give a probability den-
sity. We have dropped from this equation a boundary
term,

f dri f drzG"(I;ri, rp)G (rI, ro, rz, rp)G (r2, rp, 2),

(2.16b)

GpGp —= —i —E(p —e A(r2)) Gp(p;t), tz)
at2 I

=5(r& r, ), — (2.17b)

with the boundary condition that Gp(p;ti, t2)=0 for
t] (t2. The solution of these equations is trivial as they
are first-order in time:
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GU(p;ti, t2) = —ie(ti t—2)
r,

Xexp i— dr E(p —e A(r))
E2

momentum p, with adjacent pairs of exponential factors
cancelling. To exploit this, we define reduced func-
tions ' by

(2.18) G(p;ti, t2) = Air(p;ti, t2)g(p;ti, t2), (2.21)

A U(p; t i, t2 ) =exp[ i a( p,—t i ) ]exp[ia(p, t2 ) ] . (2.20)

This formula shows that AU can be factored out of all the
Green functions and self-energies in the equations of
motion while they are written in terms of canonical

I

from which the spectral function is

Eg

AU(p;ti, t2)=exp i f— dr E(p e—A(r)) . (2.19)
'2

An important feature of AU is that it can be factored
into the form gu(p;ti, tz)= —iB(ti —tq), aU(p;t&, tz)=1 . (2.22)

The self-energies o are also brought closer to their equilib-
rium forms by this transformation, as we shall see in Sec.
II D. The Dyson equation (2.13) for G", written in terms
of canonical momentum and converted to reduced func-
tions, becomes

where 6 can be any Green function or self-energy, and a
lower-case letter denotes the corresponding reduced func-
tion. The advantage of these functions is that much of the
field dependence has been removed; for example,

g "(p;ti, tq)=gU(p;ti, t2)+ f dt'i f dt2gU(p;ti, ti )cr"(p;t'i, tq)g "(p;tq, t2), (2.23)

and the integral transport equation (2.16a) likewise be-
comes

g (p;ti, tp)= f dt i f dt2g (p;ti, ti )

gauge invariant in time-varying fields, but that is unim-
portant here. We carry this out by redefining all func-
tions as follows:

X~r '(p;t'i, tz)g'(p;t2 t2) .

(2.24)

g(p, t; T) =g[k+e A(T), t; T]=g(k, t; T),
where

k=p —e A(T),

(2.25)

(2.26)
Note that when ti =t2, AU(p;ti, t2) =1 (by the usual sum
rule), so G ~ =g ~.

The above equations cannot usually be solved exactly,
and it is vital to bring them to a less gauge-dependent
form before approximations are made. In the case of a
uniform field this means that all functions should be ex-
pressed in terms of mechanical momentum k rather than
canonical momentum p. It can be shown' ' ' that this
is sufficient to ensure that the Green functions and distri-
bution function become gauge invariant and spatially in-

variant in uniform fields. The Green functions will not be

and sum and difference coordinates are used for the times.
Only differences of vector potentials will appear in the
equations after this transformation.

We shall now specialize to the case of a constant elec-
tric field, with A(T)= —FT, and assume that a steady
state has been reached. In this case all "T"variables drop
out as one would expect physically; this also relies on p
having been replaced by k. Using Eqs. (2.4), (2.7), (2.21),
and (2.26), the kinetic equation (2.24) for g ~(k, t =0) be-
comes

if(k) =g~ (k, t—=0)

dti f dtqg "(k—,'eFti, ti )cr ~—(k——,'eF(ti+t2), t2 ti)g '(k——,'eFt2, —t2—) . (2.27)

In the future we shall drop the tildes and all functions of sum and difference times should be assumed to be the "tilde '

functions. It turns out to be more convenient to use the differential equation of motion for g" than the integral Dyson
equation (2.23). Applying the operator GU to both forms in (2.13) and adding them, we obtain symbolically

—,
' [GU ', G "]=1+—,'[X",G "I

Going to reduced functions, and replacing p with k, this becomes

(2.28)

i g "(k, t) =6(t)+ —,
' —f dr [g "(k+ ,' eF&, t r)tr "(k —,'—eF—(t r), r—)+ cr "g"]— (2.29)

Only the range 0&r &t contributes to the integral, be-
cause of the 6 functions in g "(k, t) and cr "(k,t)

The spectral function (2.19), expressed in these new
variables, becomes

AU(k, t)=exp i f dr—e(k+eFr)—E/2

which takes the explicit form for a parabolic band

(2.30)



QUANTUM TRANSPORT EQUATIONS FOR HIGH ELECTRIC FIELDS 2583

AU(k, t)=exp i— [k t+ —,', (eF) t ] (2.31)

with Fourier transform

AU(k, E)=2m —Ai — [E——E(k)]
1 . 1

w w
(2.32)

where the "width" w =[(eF) /8m]', and Ai(z) is the
Airy integral function of the first kind (Ref. 29, p. 446).
It is interesting that AU(k, E) depends only on

~

k
~

even
though F has broken the spherical symmetry of the sys-
tem. Note that AU(k, E)~2tr5(E —e(k)) as F~O (in the
absence of scattering). In a translationally invariant sys-
tem with no applied field the spectral function is non-
negative (even with scattering included), but the field F
breaks the symmetry and A may change sign, as it does
here. The presence of the F t term in AU(k, t) gives rise
to the broadening in AU(k, E), but, as we shall see in the
next section, many physical quantities involve products
like AU(ki, t) AU(kq, t) and —this term cancels. This
means that using the spectral function for electrons in the
absence of a field would have given the same result. It
does not imply that the electric field leaves the transition
rates, etc. , unchanged, however, but means that the
modifications occur through time dependence of momenta
rather than through broadening of the spectral function
per se.

D. Self-energies and scattering rates

We next need an expression for the self-energies. The
scattering from phonons will be treated to lowest order
(Born approximation) which means that only the diagram

FIG. 1. Born approximation to the self-energy from electron-
phonon scattering.

X (1,2)=iG ' (1,2)D ' (1,2),
2"'( l, 2)=i[G"'(1,2)D ) (1,2)

+G (1,2)D"'(1,2)] .

(2.33a)

(2.33b)

In a nondegenerate system, the low density of occupied
states means that G ~ is small compared with G"' and we
therefore neglect the second term in (2.33b). This decou-
ples G from the equation of motion from G", an impor-
tant simplification mentioned earlier. The expressions for
the reduced functions (defined by X= AUo), assuming
that the phonons always remain in equilibrium, are

in Fig. 1 is included; D is the Green function for phonons
including the matrix elements at the vertices. Note that
we are dealing with a nondegenerate system, and cannot
appeal to Migdal's theorem as justification for omitting
higher-order diagrams.

This diagram is in the contour-ordered Green function.
Langreth has given rules for deriving the contribution to
the functions X (') '"':

o. '(k, t)= g ~
Mq

~
[Nq+ —,'(I+ri)]e " ' AU '(k, t)AU(k —q, t)g '(k —q, t), (2.34a)

y(k, t)= g ~ Mq
~

[Nq+ —,'(I+i))]e " q AU '(k, t)AU(k+q, t)a(k+q, t),
q

(2.34b)

where we have introduced the reduced scattering rate
y = i (cr"—o') =i (o ) —o ), which is the spectral function
for the reduced self-energy. In this equation, A ' is just
the reciprocal of the spectral function, not an operator.

To maintain a conserving approximation, '
g and a in

the above expressions (2.34) should be derived from the
self-consistent solution of (2.27), (2.29), and (2.34). In
other words, scattering should be included within the
Green function G used to calculate the self-energy in Fig.
1. In practice this is almost never done for y when the

scattering is weak, with the assumption that the scattering
rates are not affected significantly by the small "blurring"
of energy conservation introduced by the broadening in G.
We shall follow the usual practice, and assume that the
scattering is weak enough that we may set the reduced
spectral function a =1 (i.e., replace A by AU) to calculate
y. The validity of this will be considered in more detail
in Sec. III B. The Fourier transform of (2.34b) is then
given by

y(k, co) =2ir g ~
Mq

~
[Nq+ —,'( I+i))]

1 t/2dr exp cot gQqt+ f d—7[a(k+eFr) s(k+q+eFr)]-
277 oo —t/2

(2.35)
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A remarkable simplification, to which we alluded in the
preceding section, now occurs for parabolic bands: all the
terms in F drop out after the integration over w, leaving

y(k cu):2wg
~
Mq

~
[Nq+ —,'(1+g)]

X 6(E(k+ q) —s(k)+ gIIq —co) . (2.36)

For co=0 this becomes the total semiclassical scattering-
out rate I (k) =g W(k+ q, k), a sum over scattering rates
exactly as given by the golden rule in equilibrium [Eqs.
(1.2) and (2.1)], but no approximation has been made in
the strength of the electric field. Unfortunately, this re-
sult is amusing rather than useful, because the equation of
motion (2.29) for g" still contains the electric field in the
time evolution of momenta; there is no simple factoriza-
tion as in equilibrium. The analysis of this equation in
Sec. III shows that y(k, co) is not an appropriate scattering
rate to use, and new functions y+(k, co) are introduced
there which do not reduce to the simple form of Eq. (2.36)

E. Der Ansatz

A severe difficulty with this formalism, mentioned in
Sec. II B, is that we only want to calculate
p(T)=G ~(t =0;T) to derive physical quantities, but need
G ~ for all values of t to solve the kinetic equation. The
conventional way to circumvent this problem is to make
an ansatz that expresses G ~(t; T) in terms of G ~(t =0; T)
which we "know" because it is just the distribution func-
tion.

The usual argument starts from the exact result for uni-
form systems in thermal equilibrium [Eq. (2.12a)],

G ~(1,2) = J d3[F(1,3)G'(3, 2) —G'(1, 3)F(3,2)], (2.41)

where

F(1,2)—:F(r&, t&, r&, t2)

= p(r~, r 2't~)5(t~ —tz) . (2.42)

For a uniform, constant field and using the transforma-
tion [(2.25) and (2.26)] to gauge-invariant functions, this
ansatz reduces to

G (k, t)=i A(k, t)f(k —
—,'eF

~

t
~

) . (2.43)

This can also be written in terms of reduced functions by
factoring AU(k, t) from both sides:

transport equations, rather than one involving energies as
in (2.37). This illustrates the two-step procedure for
deriving transport equations mentioned earlier. Solving
for G" gives the spectral function 3, which is then used
with an ansatz to reduce the equation of motion for G-
to a transport equation in terms of f(k, R, T) Equ. ation
(2.40) clearly satisfies the exact result G (t =0)=if by
virtue of the sum rule A (k, t =0;T)=1. Also, if there
were no scattering so that A—:AU, (2.40) would automati-
cally satisfy the kinetic equation (2.14), whose right-hand
side would vanish.

Unfortunately, it is not clear that this is a correct pro-
cedure, because a system in a nonzero electric field will be
in a very different state depending on whether there is
scattering or not, unlike a system in equilibrium. Lipav-
sky, Spivack, and Velicky' have recently introduced a
more systematic way to construct an ansatz. This can be
written symbolically as

G ~(k, E)=i A(k, E)fp (DE), (2.37)
g (k, t)=ia(k, t)f(k —

—,'eF
~

t
~

) . (2.44)

G ~(k, E)=iA(k, E)f(k) (2.38)

which is a well-controlled approximation if

&sc
—1 (2.39)

This has been generalized in a straightforward way to
nonequilibrium systems:

G (k, E;T) =i A (k, E;T)f(k, T)

or, making a Fourier transform,

G~(k, t;T)=iA(k, t;T)f(k, T) .

(2.40a)

(2.40b)

The two vital simplifications accomplished by this ansatz
are the following: (a) the dependence of G ~ on t (or E) is
now given entirely by the spectral function; (b) the distri-
bution function appearing in the ansatz is now the Wigner
function (or density matrix), which is conventional for

there is no dependence on T in equilibrium. If the system
can be described well in terms of quasiparticles, A (k, E) is

strongly peaked near E =c(k). The width of the peak is

r,, ', the inverse of the mean free time (scattering time). If
this width is much less than k~T, the energy scale on
which AD(E) varies, the argument of AD may be re-
placed by E(k). This allows us to write'

For vanishingly small electric fields this reduces to the re-
sult of Kadanoff and Baym. ' The limits of validity of
this new ansatz are not obvious, but its use clears up one
outstanding puzzle. This puzzle was that the kinetic
equation derived from the Liouville equation for the den-
sity matrix differed slightly from that derived from the
Kadanoff-Baym equations with the ansatz (2.40). The
two methods agree if the ansatz (2.41) is used instead, '

and we shall therefore follow this course. Ideally, one
ought to verify the accuracy of an ansatz by applying it to
all the G ~'~ functions in the kinetic equation, not just for
t =0, and checking that 2 cancels from both sides. To
the best of our knowledge this has never been done for a
high-field problem. The properties of the final transport
equation are very sensitive to the choice of ansatz, so this
is an important point.

Note that this approximation is never needed in linear-
response theory. This is clear because the fluctuation-
dissipation theorem permits response functions to be cal-
culated from properties of the ground state, where (2.12)
is exact. It has also been shown to be unnecessary in the
Kadanoff-Baym formalism, again to linear response only
and for slowly varying applied fields.

We have now introduced all the preliminary results
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needed to solve the equation of motion for g' (2.29),
which we shall describe in the next section. After that,
we go on to derive a kinetic equation valid in high electric
fields, and deduce conditions under which it reduces to
the Boltzmann equation.

III. RETARDED GREEN FUNCTION

In this section we shall derive a solution to Eq. (2.29),
the equation of motion for g"(k, t). In the course of this
we shall also introduce and define some important time
scales in the problem, namely the collision duration time
t, and the scattering time (mean free time) r„.

We first go through the derivation of the "co=0" ap-
proximate solution. This solution involves modified
scattering rates, which we analyze next; unlike the func-
tion y discussed in Sec. II D, these rates are not indepen-

dent of the electric field. Finally, we check the limits of
validity of the approximate solution.

A. Equation of motion

If there were no electric field, the right-hand side of Eq.
(2.29) would be a convolution, and an exact solution
could readily by found by making a Fourier transform to
co space. For nonvanishing fields F the right-hand side
does not take the form of a convolution, and an exact
solution is no longer possible. We shall derive here an ap-
proximate solution to the equation of motion, valid when
the scattering is weak and for all but very small times.

It is convenient to use the spectral function a (k, t) rath-
er than the retarded function g "(k, t), because the spectral
function possesses a simpler fourer transform. The rela-
tion g'(k, t)= —iB(t) a(k, t) can be used to recover the re-
tarded Green function. Equation (2.29) for t &0 becomes

—a(k, t) = —,'i j—dr[a(k+,'eFr, t ——r)cr"(k——,'eF(t —r), r)+a(k —,'eF~, t —~)c—r"(k+ —,'eF(t —r), r)] . (3.1)

The lower limit t is arbitrary, except that it must be
negative, because a" provides a lower cutoff on ~. We
now introduce additional functions

a+(k, t) =a(k+ ,~eFt, t), —

cr+(k, t) =o."(k+ ,'eFt, t) . —

(3.2a)

(3.2b)

I+(k, t) = dr a+ (k+ ,'eFt, t —r)—

&& cr+(k+ ,'eFt, r), — (3.3)

note the placement of (+) and (+). This resembles a con-
volution over ~, so we insert the fourier transforms of a+
and o.+ and carry out the integration over ~, which yields

I (CO1 —CO&)t i (Cgi —Cu2)tdt's]dc()p
j

(2' ) l (co
~
—co2)

xa+ (k+ ,'eFt, co))cr+(k+- —,'eFt, co2) . —(3.4)

This can be simplified by replacing co2 by co=co2 —co&. We
now need a value for t . It can be shown that t may be
an arbitrary negative quantity by using the property that
cr+(k, co) is analytic in co in the upper half-plane because it
is a retarded function. A particularly convenient choice is
to set t = —t, which reduces the exponential factor in ~
to 2 sin(cot)/co:

d~ 1 —ill t
e ' a+ (k+—'eFt, co))

2

The right-hand side of (3.1) can be written in terms of
these new functions as —,'i [I+ (k—,t)+I (k, t)], where

varying as a function of co over this interval, it can be tak-
en out of the integral with ~ set to zero. We shall assume
for now that this can be done, and return to check the va-
lidity in the next section. The remaining integral over co

yields unity, so (3.5) becomes approximately

e ' a+ (k+ ,'eFt, co))cry(—k+ ,'eFt, co)) . (3—.6)2'
Again we shall assume, and justify later, that 0.+ is a
much less rapidly varying function of co than a+, so that
it may be taken out of the integral and evaluated at
co=co+(k+ —,'eFt), the frequency at which a+ (k+ —,'eFt, co)

is peaked. We shall also assume, and show later, that
co+(k) may be set to zero. The remaining integral simply
inverts the fourier transform of a+, so

I+(k, t) =cr+(k+ ,
' e Ft, co =0)a + (k+eF—t,t)

=cr+(k+ ,'eFt, co=0—)a(k,t) . (3.7)

+o." (k+ —,
' eFr, co =0)], (3.8)

which obeys the boundary condition a (k, t =0)= 1.
A problem now arises in defining scattering rates

y+(k, co). There are two possible ways in which this
might be done

y+ (k, co) = —2 Imcr+(k, co) (3.9a)

With this form for I+, the integration of (3.1) is trivial.
The result is

a(k, t) =exp —,'i J 'dr[cr"+(k——,'eFr, co=—O)

dco sin(cot)
X 2 cr+(k-+ —,'eFt, co(+co) .

2& co
(3.5) or

Consider the integral over co. The sin(x)/x function tends
to cut off the integral for

~
co

~
& m/t If cr+(k, co). is slowly

cr+(k, t) = —ie(t)y+(k, t) . (3.9b)

Usually these two are equivalent but this is not true for
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the "+" functions, because o'+(k, —t)=[cr' (k, t)]', not
[cr+(k, t)]*. This means that y+(k, cu) will not be purely
real if (3.9b) is used to define y+(k, t). As yy(k, co) plays
the more important part in our analysis, we shall adopt
the definition (3.9a). The real part of cr+.(k, co), giving the
renormalization of the single-particle energies, is not ex-
pected to have any significant effects in the systems under
consideration. We shall therefore drop it, and replace o.+
by ——,

'I', y+ everywhere. Most of the phase variation of 3
is in AU, it is only the small correction to this caused by
the electron-phonon scattering that we are neglecting.
The approximate solution (3.8) for a becomes

a(k, t) =exp ——,
' f dr[y+(k —,'eFt, co=—O)

We shall now investigate how the modified scattering
rates y+ differ from y, and go back to check the condi-
tions under which this approximate solution is valid.

B. Scattering rates with broadening

It was shown in Sec. IID that the reduced scattering
rate y(k, co) is independent of the electric field in the spe-
cial case of parabolic bands and a constant field. Unfor-
tunately the solution to the equation of motion for g" de-
rived above involves modified self-energies o +(k, co ).
These, as we shall see, are not independent of the electric
field, although it is interesting to note that the broadening
of the spectral function is not responsible for this.

The modified self-energies were defined by

+y (k+ ,'eFt, c—u=O)] (3.10) cr+-(k, co)= f dt e' 'o+(k, t).
for t ~0. This can be continued to negative times using
a (k, —t) =a *(k,t), which means that this approximation
to a (k, t) is real and symmetric in time.

dt e' 'o." k+ —,'eFt, t

and the equivalent of Eq. (2.35) is

(3.1 1)

cr+(k, co)=+g
l Mq

l [Nq+ —,'(1+ )i)] f dt exp i cot —i10qt+ f dr[ad(k+eFr) —E(k+q+eFr)]
7T 0 0q 'tl

(3.12)

The main change from (2.35) is in the limits on the integral over r in the exponent: this apparently trivial difference has
a profound effect, because F no longer drops out after integration. For parabolic bands the result is

—ig +sgn(a), +sgn(a)f +sgn(a) (3.13)

where

a=M —eF q
2 1

m

gives the "broadening" due to the electric field, and

b, =s(k+q) —E(k)+rIQq —co .

(3.14)

(3.15)

field effect.
To assess the importance of this broadening, we ignore

the fact that a depends on q, and rewrite (3.16) to express
y+ in terms of y [Eq. (2.36)] as

y+(k, co)= f den'y(k, ~+co')

The functions f (z) and g(z) are associated with Fresnel
integrals (Ref. 29, p. 300).

It was pointed out in Sec. III A that the definition of a
scattering rate is slightly ambiguous when the (+) func-
tions are used, and we chose to define
y+(k, co)= —2Imcr+(k, co). The scattering rates are there-
fore

X, g +sgn(a), . (3.17)
1

This form shows that the broadening causes y(k, co) to be
averaged over a range

l

a
l

' of energies to give the
modified rates y+(k, co). We now define the important
time scale E„ the collision duration time, through the en-
ergy scale on which y(k, co) varies near co=0:

y+(k, co) =2' g l Mq l
'(Nq+ —,'[1+ii])

t, ' y(k, co) =y(k, co=0) (3.18)

or

(3.16) (3.19)

These scattering rates differ from y(k, ~) in having the
broadened g function replacing the 5 function for energy
conservation. The width of this function can be taken as

l
a

l

'~, proportional to F'r . Thus the electric field is
modifying the scattering rates through the intracollisional

This collision-duration time is loosely related to that
defined in scattering theory, as we show in Appendix B.
The name is perhaps somewhat misleading: One should
be careful about interpreting t, as the time during which
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a(k, t)=exp —
—,
' f dr I (k+eFr)—It I/'2

(3.20)

the electron and phonon interact.
The convolution of y with g in Eq. (3.17) will have a

negligible effect provided that
~

a
~

' &&t, '. It is found
in Appendix A that a typical value of t, is 10 ' s, so
t, '=1 eV. The broadening induced by the electric field
does not approach this until I' = 1 GV m '. The
broadening is therefore almost always unimportant in
conventional semiconductors, which means that the
simpler function y may be used instead of y+.

A similar argument can be made for the accuracy of
calculating the self-energies with an expression that is not
self-consistent, as discussed before Eq. (2.35). In a self-
consistent evaluation, the full Green function, rather than
one that does not include scattering, would be used within
the self-energy. The integrand in Eq. (3.12) would then
contain an additional decay term, roughly of the form

t /TSCe ". This would tend to broaden the function for en-
ergy conservation, in the same way as the electric field,
giving it a width of ~,, Provided that ~„~&t„ this
broadening can be neglected, and it is accurate to calcu-
late the self-energies using Green functions that do not
themselves contain scattering.

The above arguments show that y+ may be replaced by
y with negligible loss of accuracy in a material with para-
bolic bands. As a final simplification [see Eq. (2.36)],
y(k, co=0) is identical to I"(k), the total semiclassical
scattering-out rate for an electron with wave vector k [Eq.
(1.2)]. With this substitution, we obtain the final form of
the "co=0" solution for g'(k, t):

g "(k, t) = i B(t)a(k, t—),

dt e™ak+ —,'eFt, t (3.22)

Expand the k argument of a (k+ ~ eFt, t) to get

a+(k, co)= f dre' '[a(k, t)+ ,'eF Vk—a(k,t)t+ ] (3.23)

=a(k, (o) + ieF —Vk . a(k, a~)+1
a

2 Bco
(3.24)

The frequency co+(k) at which a+(k, co) is peaked will be
shifted away from zero by the corrections to a (k, co) in
(3.24). The energy scale with which co+(k) should be
compared is t, , the scale on which y(k, co) is sensitive to
changes in co, since this argument is where co+(k) appears.
Equation (3.24) involves the electric field directly, and set-
ting co~(k) to zero can therefore be valid in "low" fields
only. To estimate the maximum field in which this is val-
id, we take the very rough approximation

characteristic energy scale ~.. . and it follows that it will
be valid to treat y as slowly varying provided that
~„' ~&t, ', or t, ~&~„. The numerical calculations in
Appendix A show that this inequality is well fulfilled (by
some 3 orders of magnitude) in typical semiconductors
over a wide range of fields.

Finally, we must justify setting co+(k), the frequency at
which a+(k, co) is peaked, to zero. It was pointed out
above that the approximate solution for a (k, t) is sym-
metric in time, which implies that a (k, co) is also real and
symmetric in co. Provided that a (k, co) has only a single
peak [like a Lorentzian shape in the simplest case, where
I (k) is constant], this peak must be at co=0. Now,

a+(k, co) = f dt e'"' a~(k, t)

We shall now go back to check the validity of the approx-
imations used in deriving this solution.

a(k, co) = I (k)
co + —,'I (k)

(3.25)

C. Validity of the approximate solution

~

a(k, r„)
~

=1/e . (3.21)

The Fourier transforms a~(k, co) will therefore have a

At two points in the above derivation it was necessary
to assume that c7+(k, co) was a "slowly varying" function
of cu. This will now be made more quantitative. The
analysis relies heavily on the collision-duration time
defined above [Eqs. (3.18) and (3.19)] in such a way that
t, ' is the scale on which y(k, co) varies as a function of co.

First, following the results of Sec. III B, we replace o.+
by —~iy everywhere. In Eq. (3.5), y was required (hav-

ing replaced cr'+) over a range of energy of order rr/t. It
will be valid to treat y as constant, and take it out of the
integral, provided that this range of energy is Inuch small-
er than that on which y(k, co) varies, t, ', i.e., provided
that t ~& t, . The approximate solution is therefore invalid
for very small times (insignificantly small, in practice).

In simplifying Eq. (3.6), it was assumed that a+ is a
more rapidly varying function of cu than y. The scatter-
ing time, or mean free time, ~„ is defined as the time scale
on which

~

a (k, t)
~

decays to 1/e of its value at zero
time:

Solving Eq. (3.24) for the peak in a+(k, co) and using the
scattering rates from Appendix A, we find

co+(k)/t, '=3 Fkt, . —e

m
(3.26)

Setting k =0. lao, this ratio is negligible for fields of less
than about 1 GVm ', so it is accurate to set co+(k) to
zero over a wide range of electric fields.

In summary, the "co=0" solution for g "(k, t) [Eq.
(3.20)] is valid for times much greater than the collision-
duration time t, . It is limited to weak scattering, in the
sense that the collision-duration time must be much
smaller than the mean time between collisions r(this is
analogous to the assumption in Boltzmann theory that
collisions should be instantaneous). It is interesting to
note that the latter condition is the same as that claimed
by Lipavsky et al. ' for the validity of the ansatz (2.41).

Substituting the "co=0" solution, the definition of ~„
[Eq. (3.21)] becomes

+sc/'2

2d~ I k+eF~ =1 . (3.27)
SC

This equation is solved numerically for ~„ in Appendix
A. Significant values of ~ are around —,'~„, so t, in Ap-
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pendix A is defined in terms of y(k+ —,'eFr„, co).

Our definition of t, is in terms of the scattering rate
y(k, co). This contains contributions from the density of
states as well as from matrix elements, and is therefore
more general than the definition often used. '

The simplification that y+ may be replaced by the semi-
classical rates, which are independent of the electric field,
relies on E(k) being parabolic. If a tight-binding (bound-
ed) band is considered instead, y+(k, cu) shows structure
reflecting transitions between levels of a Stark ladder, and
may be very different from I (k).

Having obtained a solution of the "single-particIe" part
of the problem, we now study the equation for G ~ which

contains information on the "distribution" properties of
the system.

IV. INTEGRAL TRANSPORT EQUATION

In this section we shall derive the Anal transport equa-
tion in integral form. Only electric fields that are con-
stant in space and time will be considered. The last sec-
tion dealt with finding a solution to the equation of
motion for g "(k,t). We shall now use this solution to
reduce the equation of motion for g (k, t) to a transport
equation for f (k), and go on to determine the conditions
under which this reduces to the Boltzmann equation.

The kinetic equation (2.27) for g «(k, t =0) becomes

f(k)= g ) Mq )
(Xq+ —,'[1+rI])f"dt~ f"dtqf[k —q ——,'eF(tt+tq) ——,'eF

)
t& —t2

) ]

X a(k —,'eFt~, t~ )a(—k—,'eFt2, ——t2)

Xa[k—q ——,'eF(t~+t2), t2 t~]—
Xe ' AU [k—,eF(t, +—t,), tz t,]-igAq(t2 —t I )

X AU[k —q ——,'eF(t~+t2), t2 —t~], (4.1)

where we have used (2.34a) for the self-energy cr «(k, t) and have made the ansatz (2.44) to replace g «(k, t) within the
self-energy. Substituting the solution (3.20) obtained in the preceding section for the spectral function gives

f(k)= g )Mq )
[Xq+ —,'(1+r))]

X f"dt, f"dt, f(k q eFt,„)——
0 0

Xexp ——,
' f ' dr I (k —eFr)+ f 'dr I (k —eFr)

0 0

+ d~ I k —q —eF&
min

tl
X exp i dr[E—(k —e Fr) —e(k —q —eFr)+ rIQ ]q (4.2)

where t,„and t;„are the larger and smaller of t] and t2,. interchanging t] and t2 turns the integrand into its complex
conjugate. Define t =t,„and r=t —t;„,after which f (k) becomes

2m+
)
Mq

) [Nq+ 2(1+r))] f dt f(k —q —eFt)exp —f dr'I (k —eFr') S(&), (4.3)

S(6)=—f dr cos f dr'[E(K+eFr') —e(K q+eFr'—)+qflq]
0 0

and

X exp ——,
' d~' I K—q+eF~' —I K+eF7'

b = e(K)—e(K —q)+ rlAq

(4.4)

(4.5)

with K=k —eFt. The significance of S(b, ) is that it replaces the 5 function 5(b, ) of the golden rule; we have suppressed
the dependence of S and b, on other parameters to maintain clarity. For parabolic bands, S(h) becomes

1 dr cos hr+ ar ~ exp ——,
' dr'[I (K—q+eFr') —I (K+eFr')]

77 0 27T '

) 0
(4.6)
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where o: is the broadening induced by the electric field in-
troduced previously [Eq. (3.14)]:

+=md —F.q
e
m

(4.7)

We shall now examine the behavior of S(b, ) in more de-
tail.

Equation (4.6) contains a decaying term, exponential
with argument in large parentheses, within the integral
over ~. The detailed form of this decay is not correct,
because the equation of motion for g" was not solved
self-consistently; one might have expected to see the
sum, rather than the difference, of the two I"s. Al-
though we do not expect this decay to be important, as
we showed for g" in Sec. III B, we shall estimate its effect
by replacing equation (4.6) by a "worst-case" approxima-
tion:

S(b, ) =—f dr e
' "cos br+ ar . (4.8)

77 0 277

—1

S(h)=
+2+ —2

(4.9)

a Lorentzian of width r,, ' (we have set the upper limit t
of the integral to infinity). In the opposite limit of large
electric fields we can drop the decay in (4.8) and get

1S(b, )=, g sgn(a) (4.10)

where g (x) is an auxilliary function associated with
Fresnel integrals (Ref. 29, p. 300). The approximation of
replacing the upper limit by infinity is good in this limit
because the significant contributions to the integral over z
come from times less than

~

a
~

'~, which is less than
~„, the most significant time in the integral over t. The

The important values of the time t are set by the exponen-
tial decay in (4.3), and are of order r„. S(b, ) behaves
qualitatively differently depending on the relative magni-
tudes of r,, ' and

~

a
~

' . If
~

a
~

' &&r,, ', the limit of
small electric fields, we can drop a from the integral to
obtain

width of (4.10) can be taken as
~

a
~

' . To get an esti-
mate of when the two limits (4.9) and (4.10) cross, we use
a typical value r„=10 ' s (see Appendix A) and set q
within a to be a thermal wave vector. The crossover is
found to be at F=30 kV m ' for a conventional semicon-
ductor at room temperature, so the electric field provides
the dominant broadening in S even for modest strengths.

Now, S(b, ) replaces the semiclassical 5 function for en-
ergy conservation in the sum over scattering rates and
f (k). The scattering rates are sensitive to blurring of the
energy-conserving 5 function only on an energy scale of
t, ' which is very large (=1 eV), as we saw in Sec. III B.
The distribution function f (k), on the other hand, varies
on an energy scale kii T (this should contain some
"effective temperature" of the electrons rather than that of
the lattice). This means that S(b, ) can be replaced by
6(b, ), to regain the Boltzmann equation, only if the width
of S(b, ) is much less than ktiT. These inequalities are
considered in more detail in Appendix C. Thus we have
the following condition for the validity of the Boltzmann
equation:

(4. 1 1)

In summary, the condition for the validity of the
Boltzmann equation in small electric fields is
1/~„&&k~T. Taking a typical value of ~„ to be 10 ' s,
this condition is easily satisfied at room temperature.
When the electric field is large, so that

~

a
~

' ' ~ r,, ', the
condition for the validity of the Boltzmann equation,

~

a
~

'
&&kti T, is more restrictive. This condition can be

violated at moderate electric fields of around 3 MVm
at room temperature, taking the effective mass to be 0.2.
Note that the effective temperature of the electrons will
rise in a strong electric field, so this estimate of when the
Boltzmann equation fails is likely to give too small an
electric field. These results agree with those of Barker
and Ferry. '

For higher electric fields, one must use the broadening
scattering-in rates, and the transport equation becomes

f(k)=2ir+
~
Mq

~ [Nq+ —,'(I+rl)] J"dt exp —j dr'I (k —eFr') f(k —q —eFt)
0 0

1 E(k —e Ft) —e(k —q —e Ft) + rIIIqX, g sgn(a) (4.12)

an integral equation with the same form of exponential
scattering-out term as in the Boltzmann equation. This
means that it should be possible to solve it using similar
numerical techniques.

A final comment concerns the ansatz. Our results are
very sensitive to the choice made for this. If the more
straightforward ansatz, Eq. (2.40), were used instead of
(2.43), no intracollisional effect would be found, and the
scattering rates appearing in the kinetic equation would

not be broadened by the electric field. We have more to
say about this in Appendix C; it explains why our con-
clusions differ so strongly from those of Khan and Wil-
kins, ' who also used the integral transport equations.

V. CONCLUSIONS

We have studied quantum-mechanical transport equa-
tions for high electric fields, derived a new integral trans-
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port equation, and determined under what conditions this
reduces to the semiclassical Boltzmann equation. Two
important time scales arose in this problem: the mean
free time ~„and the collision duration time t„and two
energy scales: one associated with the electric field,

~

a
~

', and one characterizing the width of the distribu-
tion function, k~T. All our results require that t, be the
smallest time scale in the problem: t, « z„,

~

a
~

', (kiiT) '. Both the approximate solution of the
equation of motion for the retarded Green function and
the anscttz for G ~(k, t) fail if this inequality is violated,
but it is usually satisfied very easily in conventional semi-
conductors. The Boltzmann equation is valid provided
that k~T is the largest of the remaining energy scales:
ktiT »r, , ',

~

a
~

' . The condition for low electric fields,
k&T&&~„', is also required for the quasiparticle ansatz
(Sec. II E) to hold. The Boltzmann equation fails in high
electric fields when the condition ks T »

~

a
~

' is violat-
ed, the critical field being a few MVm ' in a typical
semiconductor. In higher fields, the Boltzmann equation
can be replaced by a transport equation where the
scattering-in term contains a broadened function rather
than a 6 function for energy conservation. The integral
form of this equation differs little from the Boltzmann
equation and should be amenable to similar numerical
techniques to solve it. This would provide detailed infor-

mation on the influence of the intracollisional field effect
on the distribution function and transport properties.
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APPENDIX A:
NUMERICAL CHECK OF TIME SCALES

In this appendix we present the results of numerical
computations of the collision duration time t, [Eq. (3.19)]
and of the scattering time r„[Eq. (3.27)]. For these cal-
culations we shall use parabolic bands, E(k)=k /2m. A
value 0.22 is taken for the effective mass, corresponding to
the L, valley in germanium, but the qualitative results are
not sensitive to this choice. We have considered nonpolar
optic-phonon scattering, with a dispersionless phonon fre-
quency A,p=37 meV, appropriate for germanium. The
equilibrium scattering rate is given by

(D Q)2m 3~2

—21m'"(k, co)=, 2 g [N(A, p)+ 2(1+ii)]V'co —ilA, pe(co —i)A,p) .
2 7Tpop q =+ ]

(A 1)

See Ref. 3, Eq. (3.72), for a description of this equation
and the meaning of the symbols. Values of the parame-
ters were also taken from this reference (Table VI of Ref.
3). The reduced scattering rate y in equilibrium is related
to this self-energy by

field up to F=10 Vm '. In this range ~„ is of order
10 ' s while t, is of order 10 ' s. The condition
t, «~„ is well satisfied even for high electric fields.

Figure 3 shows ~„and t, as a function of the wave vec-
tor k. Again we see that the condition t, «~„ is easily

y(k, co) = —2 ImX "(k,E(k)+ ar ),
whence

(A2)
—IO

y(k, co) =A g [N(Q, p) + —,
' (1+il )]V'co+ E(k) —ilQ, p

Tsc

x e(co+ e(k) —i)Q,p), (A3)

where A=1.8)& 10' eV ' s ' with our parameters.
In this appendix we show the results of calculations of

t, (k+ —,'eFr„), defined by

—)3—
—)4—

O

o —)5—

lny(k+ —,
' eFr„,co) (A4) —)6—

and of the scattering time r„(k,F) which is obtained from
Eq. (3.27):

T /2
dr y(k+eFr, co=0)= 1 . (A5)

SC

Figure 2 shows ~„and t, defined in this way plotted
against the strength of the electric field, F. We observe
that both t, and ~„vary little with the strength of the

—)7—
I

4
—I8

5 6 8
(og(o{F/V m )

FICx. 2. Mean free time ~„and collision-duration time t, as a
function of the strength of the electric field F. The temperature
is 273 K and the wave vector k =0. lao '.
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—IO

—12— +sc
y(k, co) = —21mX'(k, e(k)+co) .

Our definition of t, therefore becomes

(82)

venient to use the full self-energy X" in this appendix. In
equilibrium the spectral function A U(k, t) is
exp[ —ie(k)t], from which it is straightforward to show
that

O

O

14—

15

16

C ln[ —21m'"(k, E)]
BE

For this model, ImX"(k, E) is well known

—21m'"(k, E)=2m.N; „~ V0
~

2N(E),

(83)

(84)
17—

18
0.0 0. 1 0.2

k/0, '

0.3 0 4 0.5
1

N(E) dE
N(E) (85)

where N(E) is the density of electronic states (see, for ex-
ample, Ref. 33, pp. 100—108). Thus

FIG. 3. Mean free time ~„and col1ision-duration time t, as a
function of the wave vector k, measured in inverse Bohr radii
a o '. The temperature is 273 K, I' = 1 MV m ', and F and k
are parallel.

satisfied. The electric field F and the wave vector k were
taken to be parallel.

Although these calculations are very simplified and use
parabolic bands, the results are not expected to change
qualitatively in more complicated situations or in other
materials.

VpG'(r, r') =GD(r, r') + GD(r, r0)
1 —V0 G 0(r0, r0)

X GD(ra, r') (86)

(see, for example, Ref. 34, pp. 131—134), and GD(r0 IQ)

may be written

To calculate the T matrix, we place an impurity with
potential V05(r —r0) at r0 and calculate the Green func-
tion G "(r,r'). This is easily found to be

APPENDIX 8:
COLLISION-DURATION TIME

GD(ra, r0)= dE', =I(E) inN(E)—N(E')
E —E'+&g (87)

In the main body of the paper we defined an impor-
tant time scale t, which we associated with "collision
duration" [Eq. (3.19)]. In this appendix we try to inter-
pret t, by comparing it with the "collision delay time"
used in the theory of elastic scattering.

The collision delay time t,' can be obtained from the T
matrix,

arg(k
~

Z
~
k),BE (81)

where E is the energy E(k), and
~

k) and
~

k') are plane
waves [see, for example, Ref. 32, Eq. (7.5.28)].
mula holds for elastic scattering from a central potential.
Physically, t, is a measure of the "extra time" that a wave
packet spends around the scattering center as compared
with a free wave packet. This definition of t,' should be
taken as a qualitative definition only, since its derivation
requires certain approximations about the structure of the
T matrix that may not be realistic.

To make the calculation as simple as possible, we shall
assume that the scattering is elastic, and calculate t„ for
a number density N; „of impurities distributed at ran-
dom. The potential of each impurity is short ranged,
V05(r r;) We s—hall .also assume that there is no elec-
tric field. Our definition of t„Eq. (3.19), is in terms of
the reduced function y= —2Imcr", but it is more con-

where I(E) is the principal part of the integral. The T
matrix is defined in terms of G by G =Gp+GpTGp, so we
see that

T"(r,r';E) =5(r—r0)5(r' —r0)

Vp
X

1 —VDI (E)+ i mVoN (E). (88)

Now we use scattering theory [Eq. (Bl)] to define the col-
lision delay time t, and assume that the potential Vp is
weak so that we need keep only terms to the lowest order
in Vp. The result is

t,'=mVD N(E).d

E =E[k)
(89)

Comparing t, and t,', we see that they are related but are
far from identical. Both contain the derivative of the den-
sity of states, which is the only function that depends on
energy when short-ranged impurities are used. However,
t,' contains Vp whereas t, has no dependence at all on the
strength of the potential. This means that t,' goes to zero
as the scattering potential is made vanishingly small, as
seems physically reasonable, but t, is unaffected.

At present, we are unable to place a more physical in-
terpretation on t, than that provided by its original
definition.
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APPENDIX C:
DIFFERENTIAL TRANSPORT EQUATION

more integrals than the Boltzmann equation, and which
could be solved numerically.

All our conclusions until now have been based on the
integral form of the quantum transport equations (2.16).
Earlier work that predicted an important intracollisional
field effect' ' ' ' used differential transport equations.
We show in this appendix how our conclusions follow
also from the differential form (2. 14), again considering
only a uniform, constant electric field F and parabolic
bands. These results are then used to repeat our deriva-
tion of an integral transport equation which contains no

1. Validity of the Boltzmann equation

In this section, we repeat our derivation of a transport
equation and a set of conditions under which the
Boltzmann equation is accurate, but this time we use the
differential formulation of the quantum transport theory.

Written in the terms of mechanical momentum k, the
kinetic equation is

eF Vl, f(k)= —ieF Vk6. ~(k, t =0)

dr[2 (k ——,'eFr, r)6 ~(k —,'eF&, ——r)+6~(k—,'eFr, r)—X~(k ——,'eFr, —r) —X~6 ~ —6 ~X ] .
0

(C1)

We shall again use the Born approximation (2.33) for the
self-energies, and make the ansatz (2.43) derived from
Lipavsky et al. ' to remove the unknown t dependence of
6~'~ from the RHS:

6 '(k, t) =i A (k, t)f(k ——,'eF
~

t
~
),

(C2)
6 (k, t)= —iA(k, t)[1 f(k ,'—eF

~

t—
~

—)]= iA(k, t) .—

The collision term becomes

f"dr[P(k eFr, k ——q —eFr;r)f(k —q eFr)—
0

—P(k+q —eFr, k —eFr;r)f(k eFr)], —
(C3)

where

P( k+q, k; )r=2v
~
Mq

~ $ [Sq+ —,'(I+ri)]Re —[A(k+q+ —,'eFr, r)A(k+ —,'eFr, —w)e
" q ] .

7l
7T

(C4)

If F=O and the free-particle spectral functions are used for A, the integral over r in (C3) collapses to a 5 function and
we recover the golden rule transition rates [Eq. (2.1)].

A severe problem with interpreting this equation is that w enters in two distinct ways. The first is through the time
evolution of the momenta and the second is in the spectral functions, where it represents the fact that the collisions are
not considered to occur instantaneously in the quantum transport theory. To separate the two ways in which ~ appears,
we integrate both sides of the transport equation (C3) to get

f(k) = $ f dt f"dr[P(k eF(t+r), k ——q —eF(t +r);r)f(k —q —eF(t +r)) Pf]— (C5)
0 0

(k is replaced by k+q in the second Pf term). This can be verified by operating on both sides with eF.Vk. After some
manipulation of t and r, (C5) takes on the attractive form

f(k) = g f dt[W(k —eFt, k q eF—t;t)f—(k —q —eFt) —Wf] . (C6)
0

For comparison, the Boltzmann equation gives

f(k) = g f dt[W(k —eFt, k —q —eFt)f (k —q eFt) —Wf] .—
0

(C7)

These would be of identical form if the transition rates in (C6), given by

W( K+,q,Kt)= f drP(K+q, K, r)
0

$ [&q+ —,'(1+i))]f dr Re—[A (K+q+ ,'eF&, r)A(K+ —,'eFr—,—r)e " q ], (C8)

were to be independent of t and reduce to 6 functions; K =k —eFt. Note that we have now separated the time evolution
of the momenta in the distribution functions [argument t in (C6)] from the time evolution within collisions [argument r
in (C8)]. If the electric field is neglected, and one takes the limit of completed collisions (t~ ~), the transition rate
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reduces simply to a convolution of the two spectral functions. This has been used in investigations of collisional
broadening.

We introduce the reduced spectral function by writing A = AUa [see Eq. (2.21)], and use the approximate solution de-
rived in Sec. III for a (k, t). After these replacements, the integral in (C8) becomes

S(b, ) = —f dr cos f 'd r'[ e(K +q +eF r') —E(K+eFr')+rIIIq]
7T 0 0

X exp ——,
' f d r'[ I( K+q +eF r') +I (K+eFr')]

J

(C9)

where

b, = [E(K+q) —E(K) +gII q], (C10)

—1

S(b)— (C13b)

the semiclassical transition energy, and unnecessary pa-
rameters in S and 5 have been suppressed in the interests
of clarity. This expression replaces the 6 function in the
golden rule. The energies E(k) should really be renormal-
ized but this is unlikely to be important, as we argued in
Sec. IIIA. By using the "co=0" approximation for A,
rather than just AU, we are effectively calculated the self-
energies X '~ of Fig. 1 self-consistently. While we expect
this to be numerically insignificant (as we showed in Sec.
III 8), including the decay in the Green functions is vital
for setting limits on the validity of the Boltzmann equa-
tion when the electric field is weak.

Comparing Eqs. (4.4) and (C9), we see that they are
identical except that (C9) has the sum of the two I 's

whereas (4.4) has their difference. One would normally
expect to see the sum, and the error in (4.4) probably
arises because the "co=0" approximation is not a self-
consistent solution to the equation of motion for g'. The
differential transport equation is less sensitive to such de-
tails.

As the detailed form of the decay is not important, we
replace I (k) by an average value I/r„For para. bolic
bands, (C9) becomes

in which case w = 1/~„. Finally, if t~ oo and ~„~oo,

S(b,)- 1

, zg sgn(a)
/a

(C13c)

where g (x) is an auxilliary function associated with
Fresnel integrals (Ref. 29, p. 300), and w =

~

a
~

' can be
taken as the width of S(h). For general values of t, r„,
and cx, w is given by the largest of these three limiting
forms. We shall now examine the scattering-out and
scattering-in terms in turn, to see the effect of the
broadening of S(b, ).

a. Scattering-out term

To examine the effect of S(h) having a nonzero width,
we look first at the scattering out term in the kinetic equa-
tion (C6),

f"dt f(k —eFt) g W'(k+q —eFt, k —eFt;t) .
0

q

(C14)

Note that this term does not include the distribution func-
tion f within the summation over q. If W'contained exact
5 functions,

S(b, ) =— dr e "cos b,r+ at1 1

7T 0 2&
(C 1 1)

g W(K+q, K;t)~ g W(K+q, K)=l (K)=y(K, co=0),

(C15)
the same as (4.8), and

e=vrR —F q
e
Pl

(C12)

gives the broadening due to the electric field introduced in
Sec. III 8, Eq. (3.14). The semiclassical limit involves
neglecting the electric field (a~O) and decay (r„~oo)
within the scattering rate, and assuming that collisions are
completed (t~ oo). In this case, S(b, )~5(b, ). Dropping
these conditions allows S to gain a "width" w in
Equation (Cl 1) can be evaluated in terms of complex er-
ror functions but this is not very illuminating, and instead
we examine its behavior in three limits to get a feel for w.
When t is small,

w y(k, co)
a « y(k, co =0) (C16)

or

W (( ln y(k, co)
a —1

tc (C17)

where W(K+q, K) is given by (2.1), I (K) by (1.2), and
y(K, co) by (2.36); co sets the amount by which the semi-
classical 5 function for energy conservation is violated.
The nonzero width w of the energy-conservation function
within 8' effectively causes y to be averaged over a range
of co (the argument is the same as that in Sec. III 8) The.
averaging is unimportant, and this procedure reduces to
the use of an exact 6 function, if

1 si btn

so w = 1/t. For t~ oo and F =0,

(C13a) co =0

where t, is the collision-duration time defined in Sec.
III 8 [Eq. (3.19)]. The use of I (k), which contains
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scattering-out rates involving 6 functions, will therefore be
accurate provided that w «1/t, . This confirms the con-
clusions reached in Sec. III.

Next, we need to consider which of the three limiting
forms for w from equations (C13a)—(C13c) is important.
For small times, w=t ', while for large times w ap-
proaches the greater of r,, ' and

I
a

I

' . The limiting
form at small times, t ', is never important. This is be-
cause it provides the greatest width only for very small
times, t &r„,

I

a
I

', which make only a small contri-
bution to the integral over t in (C14). The important
range of this integral is from zero to several times ~„.
This is because ~„ is a mean lifetime between scatterings,
during which time the electron travels ep~„ in k space.
It is clear that the width of the distribution function in k
space must be several times this value, otherwise a typical
electron would travel further between collisions than the
width of the distribution, which is absurd. Thus the
significant range of t in (C14) must extend to several times

and the part where t & ~„ is not important. In
stronger electric fields, where

I
a

I

' &r„, w is set by
t ' only for t &

I

a
I

'~ which is an even smaller frac-
tion of the integral. Thus the limit w = t ' can be
neglected, and the strength of the electric field determines
which of r ' and

I
a

I

' is the important width.
When the electric field is weak, so

I
a

I

' &r,„. ', the
Boltzmann equation will hold provided that ~,, ' &&t, ',
or t, «~„. This inequality also means that it is unneces-
sary to use a Green function that itself includes scattering
when calculating the scattering rate, i.e., collisional
broadening is insignificant. This is a well-known condi-
tion for the Boltzmann equation to be valid in weakly-
perturbed systems, and means that the time spent within
collisions is much less than the time spent between col-
lisions.

As the electric field becomes stronger,
I

a
I

' will

exceed ~,, '. A rough value of ~,, ' is 5 meV. Putting a
thermal wave vector V'mk~ T as a typical value of q in a,
the electric field becomes more important for F ~ 30
kV m ' at room temperature, taking the effective mass to
be 0.2. Thus the electric field provides the critical scale
even for relatively modest field strengths. A typical
collision-duration time t, is 10 ' s, giving a width of
about 1 eV (it is possible for t, to become much larger in
some situations, near the threshold for scattering by optic
phonons for example). The width induced by the electric
field approaches this only for strengths of 1 GVm
This means that w «1/t„and 6 functions may be used
in the scattering-out rate, over a wide range of conditions.

must satisfy

'
I
a

I

' «ka T (C18)

if transition rates involving 6 functions are to be accurate,
and the Boltzmann equation is to be applicable. The in-
equality involving ~„ is also required for the ansatz to be
valid (Sec. II E). For large electric fields, the inequality
involving o. is the important one. Using the same esti-
mate for a as before, (C18) becomes

eF « —[m (ks T) ]' (C19)

2. Constructing an integral transport equation

We shall now derive an integral transport equation
based on the results of the preceding section. Provided
that t, «r„,

I
a '~, which is true over a wide range of

conditions, the semiclassical form of the scattering-out
term is adequate.

In this case, (C3) becomes

and for T =300 K the critical field is about 3 MVm
At this point the Boltzrnann equation fails. '

It is worth pausing briefly to ask how strongly these
conclusions depend on the specific ansatz (2.43) used for
G ~. If we were instead to use the straightforward gen-
eralization of Kadanoff and Baym's ansatz, Eq. (2.40),
the final results would be drastically different. The term
with a in (Cl 1) would not appear, and we would arrive at
the result that the electric field has no direct effect on the
validity of the Boltzmann equation. This is why our cri-
teria for the validity of the Boltzmann equation differ so
markedly from those of Khan and Wilkins. ' lf the an-
satz (2.43) is used, the scattering rates in G" (calculated in
Sec. III) are identical to those in G ~ (calculated in Sec.
IV), but this symmetry is broken if (2.40) is adopted in-
stead. This provides further support for the ansatz of
Lipavsky et al. '

It is interesting that the semiclassical form of the
scattering-out term remains valid for a wide range of elec-
tric fields after the complete Boltzmann equation has bro-
ken down. We can capitalize on this observation to build
an integral equation for f(k) that is not too much more
complicated than the Boltzmann equation.

b. Scattering-in term
eF Vi f(k)= g j drP(k —eFr, k —q —eFr;r)

0

We now turn to the scattering-in term. This includes
the distribution function f within the summation over q,
which changes markedly the above conclusions. This is
because w must now be compared with the energy scale
on which f varies, namely k~T, as well as t, ', note that
T should be some "effective temperature" in the case of
hot electrons, and may be much higher than the tempera-
ture of the lattice. Since k~ T &&t, ', the widths in energy

)&f(k —q —e Fr) —I (k)f(k),

(C20)

where I (k) is the total semiclassical scattering-out rate
[Eq. (1.2)). This can be cast as an integral equation for
f (k) in exactly the same way as the Boltzmann equation
(2.3). The result is
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f (k) = g f"dt exp —f 'dt'I (k —eFt'}
0 0

X f"dr P(k eF—(t+r), k —q —eF(t+r);r)f(k —q eF—(t+&)) .
0

(C21)

Reordering the integrations and manipulating the time variables in the right-hand side gives

y f "
dt f(k —q eF—t) f dr exp —f 'dt'I (k —eFt') P(k —eFt, k q ——eFt;r) .

0 0 0
(C22)

The distribution function f has been removed from the in-
tegration over ~, a vital simplification. The semiclassical
result could be regained if the v. integral involved P only,
and ranged from 0 to ao. If this is to be a good approxi-
mation to (C22), P(K, K—q;r) needs to be short-ranged
in r. Now, P(KK —q;r) is the derivative of
W(K, K —q;r) with respect to r [see (CS)], so P will be
significant only for times until 8 has reached its asymp-
totic value for large times. The analysis of W [Eq. (C13)]
shows that this occurs when ~ reaches the smaller of ~„
and

~

a
~

' . The most significant values of t in (C22)
are of order ~„, as argued above, so P(K, K —q;~) can
indeed be taken as short-ranged in ~. Note that this ap-
proximation gets better as the electric field gets larger and

~

a
~

' gets smaller. Therefore we can set ~=0 in the
upper limit of the integral over t in the scattering-out
term. The integral over ~ then involves just P, turning it
into 8'.

f(k)= g f dt f(k q e—Ft)—
0

&(exp — dt'X k —eFt'

X W(k —eFt, k —q —eFt;t) . (C23)

This equation includes both the effect of the electric field
acting during collisions, and of collisions having a
nonzero duration in time. The latter effect has been
shown above to be negligible, because W(K, K —q, t) as-
sumes its asymptotic form for the most significant parts of
the integral over t. In this case it is permissible to replace
8'by its limits as t~ oo. The result is an approximate in-
tegral equation that differs from the Boltzmann equation
only in having W(K, K—q; t~ oo ) rather than
W(K, K—q). When the electric field is large, and for
parabolic bands, this can be written

f (k) = g f dt f (k —q —eFt)exp —f dt'I (k —eFt')
0 0

&&27r
~
M~ g [N~+ —,'(1+q)], g sgn(a)2 1

(C24)

with the broadened g function replacing the 6 function of
semiclassical theory [b, is given by Eq. (C10)]. This equa-
tion is identical to (4.12), and contains no more integrals
than the Boltzmann equation. It should therefore be pos-
sible to implement numerical methods to solve it, and
thereby gain a quantitative understanding of the intracol-
lisional field effect.

The symmetry between the scattering-in and
scattering-out rates can be made more explicit by using
the somewhat more accurate expression

eF Vkf(k)= g. W'(k, k —q;taboo)f(k —q)
q

—1 (k)f(k) . (C26)

oscillations in g (x) make it an unpleasant function to han-
dle numerically and the inclusion of a damping term may
be necessary to control this.

Finally, we can differentiate (C24) again to obtain

1 (k}=g W(k+q, k;tab oo)
q

(C25)

for I instead of that in terms of W(k+q, k) [Eq. (1.2)].
The two definitions should give the same result provided
that 7, «

~

a
~

', but the new one may be more con-
venient because the rates 8' are needed in the scattering-
in term. As an aside, it is perhaps misleading to describe
8 as a "rate" because it is not positive definite. Also, the

This differs from the Boltzmann equation (1.1), with
which we started, only in having broadened g functions
instead of 6 functions from the golden rule. A much
shorter route to this result would have been to pull f out
of the integrals over r in Eq. (C3); this means that
P(K, K—q;t) is assumed to be a very short-ranged func-
tion of t. It is far from obvious a priori that P has this
property, and essentially all of the above analysis is re-
quired to show that this simple approximation is the one
to make.
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APPENDIX D: PHYSICAL PICTURE
OF THE INTRACOLLISIONAL

FIELD EFFECT

f(r, t;p) =exp i p r — dr E(p —e A(r))
0

(Dl)

The transition rates in the Boltzmann equation are ca1-
culated in the absence of an electric field, i.e., between
pairs of eigenstates like exp[i(k r —E(k)t]. These have
both a well-defined energy and momentum, leading to 6
functions to conserve these quantities. If the electric field
is taken into account when calculating the transition rates,
the electronic states are no longer so simple. Consider
two states which at t =0 have wave vectors ki and k2,
and energies E(k~ ) and E(kz). Absorption of a phonon
with wave vector q=k~ —kz and energy Qq ——E(k~) —E(kz)
could cause a transition from state 2 to state 1 in the ab-
sence of an applied electric field. When F is turned on,
the states evolve in k space so that k(t)=k+eFt. Their
difference in momentum remains q at all times, but their
difference in energy, E(k~+eFt) —E(kz+eFt), does not in

general remain constant. For parabolic bands, this
difference is E(k&) —E(kz)+eF qt/m, which remains con-
stant only for those phonons with q perpendicular to F.
The lack of a well-defined energy different destroys the 6
function for energy conservation in the semiclassical rates:
this is the intracollisional field effect.

This picture suggests that a modification of the golden
rule might be used to calculate modified transition rates. '

It is necessary to choose a basis for the wave functions,
which in turn requires a choice of gauge. We shall use a
vector potential A(t) = —Ft, as was implicitly used above.
Canonical momentum p is conserved, and the basis func-
tions are

We now follow the usual argument for deriving the gold-
en rule. At t =0, only the state p is occupied. The prob-
ability

~

a (p+q, t)
~

that the state p+q is occupied after
a perturbation Mqexp[i (q r —Qqt)] has been applied for
time t is found to be

Mq f 'dt'exp i f—'
dr[E(p+ q —e A(r ) )

0 0

—E(p —e A(r)) —Aq]
2

2~
~
Mq

~

—f 'dt'cos f dr[ad(p+q eA—(r))
7T 0

—e(p —e A(r)) —Qq]

(D3)

This closely resembles 8'(p&, pz, t) [Eqs. (C8) and (C9)];
the two would become identical if p were replaced by
k=p —e A(t), and the occupation numbers for the pho-
nons were included. For parabolic bands, (D3) can be
evaluated in terms of Fresnel integrals:

(D2)

Concern has been raised' about whether a transition rate
should be derived from

~
a(p+q, t)

~
by differentiating

with respect to t or by dividing by t. It seems to us that
the two definitions must agree in the limit of large times if
the concept of a transition rate is to be meaningful. Using
the former definition, the transition rate derived from (D2)
is

2'
~
Mq ~, sgn(a)sin At — t f sgn(a)

I

2~

CX—cos At — t g sgn(a), zz +g sgn(a)2' (D4)

where

6 =E(p+ q) —E(p) —&q (D5)

Airy functions:

P(x, t;E)= 2m
]. /4

1
Ai (eFx E) e— —

C

and a was defined previously [Eq. (3.14)]. This has the
now-familiar f and g functions of b, /

~

a
~

' . Unfor-
tunately, it has no well-defined limit as t~ cc, showing
that a transition rate cannot be defined this way. The
source of the error lies in using canonical momentum p
rather than mechanical momentum k. A great advantage
of using Green functions is that they can be made gauge
invariant, unlike wave functions.

One could instead use a scalar-potential gauge with
P(x) = eFx, a method that has be—en extensively pursued
by Herbert and Till' and Ziep and Keiper. Eigenfunc-
tions with we11-defined energies exist in this gauge, the

' 1/3
(eE)'
2m

We are considering a one-dimensional model for simplici-
ty, and have chosen the normalization such that

f dx P*(x,t; Ei )P(x, t;Ez ) =5(Ei Ez ) . —(D7)

These states have the minor disadvantage that they do not
carry current individually, although current-carrying
wave functions can be made from superpositions of Airy
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m
277 5(Ez E—

i +Qq),
2m.eFq

(D8)

using the usual golden rule. Note that the matrix element
is independent of Ei and E2, because the Fourier trans-
form of Ai(z) has contributions of equal magnitude from

functions. In this case, the transition rate between two
states with energies E& and E2 due to a perturbation
Mqexp[i(qx —flqt}] is given by

all of k space. While there is now always a 6 function for
the conservation of energy, there is not one for momen-
tum. It seems more difficult to relate this formulation to
the Boltzmann equation, although the two methods must
agree when the electric field is weak.

%'hile the intracollisional field eFect has a simple physi-
cal interpretation, it seems to be difficult to do calcula-
tions in an elementary way based on this, mainly because
of the problems of maintaining gauge invariance.
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