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Electron-phonon interaction, ultrasonic attenuation,
and Eliashberg function a F(co) in impure metals
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A relation between the ultrasonic attenuation coefficient and the Eliashburg function a F is de-

rived, which holds up to leading order in the impurity density. This shows that all electron-phonon
interaction models which yield Pippard's result for the sound attenuation are equivalent with respect
to calculation of electronic properties as well. The low-frequency behavior of a'F(co) is calculated
for a jellium model, and several mutually contradicting results in the literature are discussed.

I. MOTIVATION

In recent years, interest has grown in a number of to-
pics, for which availability of a reliable electron-phonon
interaction model in the presence of disorder is of vital
importance. Among these are dirty superconductors
and sound attenuation and polaronic effects in impure
metals, to mention only a few. Unfortunately, the prob-
lem of electron-phonon interaction in impure systems is
not straightforward, mainly because uncritical applica-
tion of the standard clean-limit concepts yields incorrect
results. In the standard model, ' screening leads to a
short-ranged effective interaction between longitudinal
phonons and electron-density fluctuations. Since disor-
der leads to diffusive behavior of the electronic density,
one might naively expect an increase of the effective in-
teraction due to disorder. That this is actually not the
case follows from Pippard's famous result for the longi-
tudinal (L) ultrasonic attenuation coefficient aL(q): with
a decrease in the product of the phonon wave number q
and the electronic mean free path l, nL decreases mono-
tonically, and for ql «1 nL is smaller than the clean-
limit result by a factor of q/. For transverse (T) pho-
nons, the result is more complicated, and shows that dis-
order does increase nT in certain regimes. The physical
reason for the behavior of aL is the system's tendency to
maintain approximate local charge neutrality, as has
been discussed by Pippard and more thoroughly by Hol-
stein. A microscopic derivation of Pippard's result was
obtained by Tsuneto, who used a unitary transformation
to a frame of reference which moves with the ions. This
transformation takes care of the approximate charge
neutrality mentioned above. The unitary transformation
has been further exploited by Schmid, who derived a
model to replace the standard model in impure systems.
This Tsuneto-Schmid (TS) model essentially replaces the
standard model's coupling of the phonon to the electron-
ic density by a coupling of the phonon to the electronic
stress tensor, and it is very easy to use within the usual
many-body formalism. Despite this advantage, some au-
thors felt uneasy about the transformation to the moving
frame of reference. Hence Eisenriegler and Grunewald
and Schainberg, considered a model where the electrons
are viewed from the laboratory frame of reference, and

the long-range Coulomb interactions are considered ex-
plicitly (EGS model). This model requires explicit con-
sideration of collisions of electrons with moving impuri-
ties. From this there arises a host of new diagrams.
Taking these properly into account, the authors of Ref.
6 recovered Pippard's result. Finally, the same result
has been obtained within the short-range Frohlich mod-
el with additional consideration of the mentioned inelas-
tic processes. So for the sound attenuation, the standard
Pippard result has been corroborated by three different
microscopic calculations, of which the one using the TS
model is by far the simplest.

In contrast to that, the electronic self-energy, and the
related Eliashberg function, have been a source of con-
fusion for some time. Bergmann was the first to argue
that the frequency dependence of the Eliashberg func-
tion a F(co) would be changed at small co due to disor-
der. From phase-space arguments, he concluded
a F(to~0) ceto, where both longitudinal and transverse
phonons contribute to the increase over the usual quad-
ratic behavior. This contradicted earlier arguments by
Ginsberg, who argued that an overall increase of the
coupling parameter k= fdtoa F(to)/to was due to a
negative longitudinal contribution overcompensated by a
positive transverse one. More recently, Poon and
Geballe' obtained an expression for cz F which is identi-
cal with that of Bergmann. This result also got strong
empirical support, since most experiments find a linear
low-frequency behavior of a F."

On a microscopic level, Schmid' obtained
a F(to~0) ~co within the TS model. One the other
hand, calculations' within the EGS model found a linear
(and even a small constant) contribution from longitudinal
phonons alone. Later Keck and Schmid reexamined the
TS model. They confirmed Schmid's co result for fre-
quencies co«c/l, where c is the sound velocity. For
c/I «~ «~D, they found a linear contribution to a F
from the transverse phonons, the prefactor of which is
somewhat reduced by the longitudinal ones. (coD =cqD is
the Debye frequency. ) This was in accord with the argu-
ments of Ref. 9, and in contradiction to the results of
Refs. 8 and 12.

This contradiction has very recently been put to rest by
Reizer and Sergeyev. ' They show that careful calcula-
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tions within both the TS and the EBS model yield identi-
cal results, namely the m law of Keck and Schmid. They
also point out explicitly the errors of Ref. 12. However,
some problems still remain. In the first place, Ref. 13 is
very technical, and does not show what is physically
wrong with the semiphenomenological arguments of Refs.
8 and 10. In the second place, the ~ law is still not the
correct asymptotic low-frequency result, as we will see
below. Finally, one would like to understand why the
(wrong) result of Refs. 8 and 10 agrees with experiment,
while the one of Ref. 5, 7, and 13 does not. The latter
point is of particular importance, since the observed ab-
sence of the co law did much to discredit the TS model in
the experimental community.

In the present paper it is shown by a simple argument
that all models yielding the Pippard result for the sound
attenution also give the same answer for u F, namely that
of Keck and Schmid, if the latter is corrected for an effect
at very small frequencies. Our argument is closely related
to a less explicit one given before in Ref. 7. To this end,
we derive in Sec. II a relation between a F, and the
sound-attenuation coefficient. If damping of the phonon
propagator entering a F is neglected (as has been done in
all previous work), this turns out to be Allen's relation, '

which holds in disordered as well as in clean systems. In-
sertion of Pippard's formula yields the result of Keck and
Schmid for a F. All other conjectures for a F violate
Pippard's result (and all known experimental facts) for the
sound attenuation. However, if the correct phonon propa-
gator (with damping taken into account) is used to calcu-
late o. F, the result of Keck and Schmid is qualitatively
changed at small frequencies. This is important for com-
parison with experiments, and invalidates the experimen-
tal argument against the TS model mentioned before. In
Sec. III we discuss the result, and comment on the experi-
mental situation.

H, »= g gg&(k, k', q)ckekP~(q) .
k, k', q b

(2. l)

Here the c,c are electron creation and annihilation opera-
tors. The phonon-field operator is defined as

Pq(q) i[=cuq(q)/2]' (aq~+a q~) . (2.2)

Here coq (q) is the dispersion relation for polarization
branch b [b =I. (longitudinal), b = T (transverse)], and the
a, a are phonon creation and annihilation operators. We
choose units such that 6=1. g is the vertex for scattering
an electron from state k to state k' by means of a phonon
of wave vector q. We assume that the vertex has been
corrected for static screening, so we do not have to con-
sider the Coulomb interaction explicitly. ' We do not re-
quire, however, momentum to be conserved in the pro-
cess. If it is, as in the TS model, we have

(k, k', q) 5k kq. ~f it is not, as in the EGS mod~i, '
g

depends explicitly on the disorder which absorbs the
"missing" momentum. We will also need the real-space
representation of g, defined by

I

gq(x), x2, x3)= g e ' ' 'gg(k, k', q) .
k, k', q

(2.3)

B. The phonon self-energy

We now calculate the phonon self-energy H. Accord-
ing to the usual rules, we have

II. THEORY

A. A general model

We consider electrons of effective mass m in a disor-
dered medium, whose interaction with phonons is de-
scribed by the following Hamiltonian:

IIp(q, if')= f dx)dx2e ' ' Tg f dxIdx", dx~dxp'(G(xI, x2, iso i f1)G(x—p', x')', iso)gg(xp', x2, x2)gg(xI, x), xI')),„.
(2.4)

Here T denotes the temperature, iQ and ice are Matsu-
bara frequencies, and (. . . )„denotes the ensemble
average over the disorder. Notice that in general g may
not be taken out of the average. As in the clean case, we
can replace the self-consistent electron Green's functions
G by bare (with respect to the phonons) ones, GI I. ' We
now make use of the exact-eigenstates formalism. ' '

Thereby one assumes that the electronic part of the
&amiltonian has been diagonalized with eigenfunctions

P„(x), and eigenenergies E„. G' ' is diagonal in this rep-

&g(q, iQ) = dE dE' i0+E' —E

X jdx dye' '" "IR~(x y, E,E') . —(2.5)

Here f is the Fermi distribution function, and R is defined
as

I

resentation: G„'=5„G„'. Rewriting Eq. (2.4) in the
exact-eigenstate basis, we obtain

Rg(x, E,E')= g 5(E E„)5(E' E)fdx, d—x',gq(x—I,x, x, )q„*(x,)q (x', ) f dx~dx~q(x () x )q* (x )q (x )

n, m av
(2.6)

It is easy to show' that for small E—E', the function Rb
depends on E—E' only, and is the dissipative part of a
corresponding causal function +b, which allows for the
spectral representation

C&b(q, z) = f dc@ Rb(q, cu)l(co —z), (2.7)

for any complex frequency z. With the help of these rela-
tions, we obtain for the imaginary part of the retarded
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phonon self-energy at zero temperature

ImIIb(q, ifl~Q+iO) =QRb(q, Q) .

The sound-attenuation coeKcient is defined as

ab(q)=[cob(q)/cb]XImIIb(q, iA cub(q)+iO) .

(2.8)

and

2
1 x arctanx
3 x —arctanx

fT(x)= [2x +3x —3(x +1)arctanx],
2x

(2.10b)

(2.10c)

ab(q) = cob(q)Rb(q, o) .
1

Cb
(2.9)

Within the TS model, Rb is an electronic stress correla-
tion function. It can be evaluated either by solving a ki-
netic equation, or by standard diagrammatic techniques.
For jellium, the result in leading order in the disorder is
the Pippard formula, viz. ,

Rb(q, O)=db(3m /~ )(1/q l)fb(ql),

where

(2.10a)

For cob (q)r « 1, (i.e., ql « vF /cb with Fermi velocity
vF =kF/m), we can put the frequency argument of Rb
equal to zero, and obtain

dL,
——(cT /cL, )d T kF /——3m p,„'cL,

where p;,„denotes the ion mass density. Within the
EGS and Frohlich models, R b is considerably more
difficult to evaluate, since gb itself depends on the disor-
der. The equivalent of evaluating Rb for these models
has been carried out by Eisenriegler, and by Keck and
Schmid, respectively. The result was again the Pippard
formula.

C. The electron self-energy

Now we calculate the electron self-energy X by the
same method. Again we may neglect the self-energy of
the electron Green's function. ' In the exact-eigenstate
representation, we find

X„(ice)= —T g g f d ~xd xD2(b~x, xi2co iso')g G~ '(ice') f dx~dx~'dx2dxq'gb(x~', x~, x'~)g„*(x'~)fm(x't')
leo b

Xgb (x2ix2»2 )Qrn ( x2 )fn (x2) (2.1 1)

We now carry out the ensemble average according to Ref. 17. As in all previous work, ' we average separately over the
phonon propagator. This means that the result will be exact only to leading order in the impurity density. Within the
same accuracy, we can calculate the electronic inelastic lifetime from the ensemble-averaged self-energy rather than from
the Green's function. For the former we obtain

~E(i~)= —g f [f(y)Db(q i~ y»b(q, & y—)+n (y)Db'(—q y )@b(q & y —i~)l-
, b mNF

(2.12)

where D" is shorthand for the imaginary part of the re-
tarded phonon propagator, and n denotes the Bose distri-
bution function. The imaginary part of the retarded self-
energy X(E,co) =XE(ico~co+iO), is

III. DISCUSSION

ImX(E, cu) = f [f(y +co)+n(y)]Qg

XQDb'(q, y) Rb(q, E co y) . (2.13)——
b NF

From this we read off the Eliashberg function
A. Undamped phonons

Equation (2.15) is our central result. It expresses a F
in terms of the sound attenuation coefticient, and the pho-
non propagator. It is an exact identity for clean systems,
and for impure systems up to leading order in the impuri-
ty density. To leading order in the disorder, the sound at-
tenuation is known, and given by the Pippard formula,
Eqs. (2.9) and (2.10). This proves that the sound attenua-
tion determines the Eliashberg function. In the following,
we discuss this result.

a F(co)=g a Fb(cu)= QDb'(q, co)Rb(q, co) .
b 2m NP b

(2.14)

For cow && 1, we can again neglect the frequency argument
of Rb, and with Eq. (2.9) we have the following relation
between a F and the sound-attenuation coefficient:

The phonon propagator in Eq. (2.15) contains, of
course, the self-energy calculated in Sec. IIB. Neverthe-
less, we will consider undamped phonons for a while in
order to make contact with previous results. So we put

Db'(q, co) =cob (q) [5(co cob (q) ) 5(co+ ad—ob (q) )],— (3.1)

and obtain

1 Cba F(co)=, g ab(q), Db'(q, ~) .
2n NF q b cob(q)

(2.15) a F(co)= —g ab(q)cb5(co —cob(q)) .
1 1

2nNF co
q b

(3.2)
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This is the relation Allen' derived for clean systems, and
it is interesting to see that it holds in the presence of dis-
order as well. This relation has a number of immediate
consequences. If we use the Pippard formula, Eqs. (2.9)
and (2.10), in Eq. (3.2), we obtain for the low-frequency
Eliashberg function the result of Keck and Schmid,
namely a F(co~0) caco . From Eq. (2.15) it follows that
this is the result for every model which yields the Pippard
result for a(q) (if damping of the phonon propagator in
a F is neglected).

Pippard's work, as well as all three microscopic mod-
els mentioned in the Introduction, apply for a crystalline
system (or jellium) with impurities. On the other hand,
the authors of Refs. 8 and 10 considered amorphous
metals. Nevertheless, the general calculation of Sec. II
applies to this case equally well, and Eq. (2.15) holds.
Consequently, the result '' a F(co~0) cc co implies
a(q~0) =const, where the constant is proportional to
the resistivity p. That is, there is no propagating sound
mode at small frequencies. This has been realized in
Ref. 10, where Allen's relation has been tacitly assumed
to hold for amorphous materials as well. While the ex-
perimental situation is not entirely conclusive, there
seems to be little support for this conjecture. In the lo-
cal limit, ql && 1, very general arguments based on
screening show that the electronic damping mechanism
is viscous damping, which always goes like co . This is
certainly true in liquid metals. ' In metallic glasses, and
amorphous metallic NiP, experiments show a linear be-
havior, ' which is probably due to nonelectronic relaxa-
tion processes. Even in that case there is, to the author' s

knowledge, no evidence for overdamping at small fre-
quencies. It should also be mentioned that the result

a(q~0)=const~ p in Refs. 8 and 10 stems technically
from a coupling to the electronic density, which is in-
correct in the case of jellium with impurities.

B. Damped phonons

We now consider the correct phonon propagator in Eq.
(2.15). Accordingly, instead of the approximation (3.1),
we have

2cucob(q)2yb(q co)
Db'(q, co) =

[co —Ilb(q)] +4' yb(q, co)

Here Ab(q) is the dressed phonon frequency, and

yb (q, Q7) = —,'COb (q)Rb (q, Q7)

(3.3a)

(3.3b)

yb(q, co) =yb(q) —= (cb /2)ab(q) . (3.3c)

With this phonon spectrum, the discussion of the integral
in Eq. (2.15) proceeds analogously to the clean case. ' For
frequencies co »max[y(q) ]= rung, where rI =kP/9p;, „c,
Eq. (3.3a) reduce to the bare spectrum, Eq. (3.1), and we
find

a F(~)=
3 g db fb(col/cb ), (co &&conrI) . (3.4)

4w kFl b cb

Here we have neglected the renormalization of the pho-
non frequency, and assumed Debye dispersion. In typical
metals, g=0.01. We now have to distinguish between the
cases col/c &&1. From Eq. (2.10), we obtain

is the damping. For co~ ~&1, we again can neglect the co

dependence, and have

q~/F 8k
a F(cu) =hi. —(1+—', cL /cT )(~/~n ), (g «~/~D ((pkF /qD ),3

P
(3.5a)

kF/ ~a F(co)=hL (cu/con) + [12cl /cT —(8 —~ /2)]pc@/~z, (pkz/qn &&co/con &&p2eb-/con) . (3.5b)

Db (q, co) =co2yb(q, co)/cob (q) .

This leads to

(3.6)

Here we have introduced the dimensionless resistivity
p=1/kFl, hr ——dl NFqz/4kF, and both expressions are
valid to first order in the respective expansion parame-
ters. Equation (3.5) is the result obtained before by
Keck and Schmid, who assumed, however, that the co

law holds down to arbitrarily small frequencies. We see
that this is actually not the case. Rather there is a win-

dow of frequencies where a F ~co only if the resistivity
is large enough, viz. , p»g=0. 01. With typical num-
bers, that means p»10 pAcm. We will come back to
that.

The true asymptotic behavior, co &&cozy, is dominated
by the phonon damping, and we can replace the phonon
spectrum by

2 4kF 9 4kF
a F(co)=hi

3
(co/ep) 1 —p &

F+O(P )

where

(~/cog) «g), (3.7a)

F= f dx[H/36 fr. (x)/x —(c /cd-) fr—(x)/x ] .
0

(3.7b)

This result shows that the true asymptotic behavior of e F
at low frequencies is linear, and is qualitatively the same
for clean and disordered systems. The resulting inelastic
lifetime is of the same structure and order of magnitude
as the one arising from electron-electron interaction in the
clean limit. For the physical interpretation of this result,
we refer the reader to Refs. 1 and 20.



36 ELECTRON-PHONON INTERACTION, ULTRASONIC. . . 2517

Conclusion

We summarize the low-frequency behavior of the
Eliashberg function. For co/coD « rl =0.01, a F(co) is
linear with a very small slope, Eq. (3.7a). The slope is
disorder dependent, but the exponent is not. If the resis-
tivity is small, page 3~ /kF=10 pO cm, this crosses
over at co/coD =g to another linear law, Eq. (3.5b), the
slope of which depends linearly on the resistivity. In the
clean limit, it gives way to the co behavior of free elec-
trons. For larger resisitivities p &~ye 3~ /kF =10 pQ cm,
there is a window of frequencies rl «co/coD «pkF/
3+e qD, where a F(co) ~ co', Eq. (3.5a). For
co/coD »pkF /3m. e qD, we have again the linear behavior,
Eq. (3.5b). All these results follow from Pippard's law for
the sound attenuation, if one neglects nontrivial phonon
dispersion, and possible phonon softening in amorphous
materials. To obtain Pippard's formula, one has neglected
Brillouin-zone and band-structure effects. Though neither
of these approximations should be of qualitative irnpor-
tance at small frequencies, they clearly render impossible
quantitative comparison with experiments. We therefore
confine ourselves to a brief qualitative discussion of the
experimental situation.

Experiments on quench-condensed simple metals show
a linear behavior of ct F(co)." Unfortunately, for all ex-
periments quoted in Ref. 11, the resistivity of the samples
is not known. For the measurements on tin by Knorr
and Barth, ' however, we can estimate the resistivity by
comparison with the work of Bergmann, who prepared
tin samples in a very similar way, and obtained compara-
ble transition temperatures. In that case, the maximum
resistivity was 10 to 20 pQ cm. It is certainly realistic to
assume similar values for all other quench-condensed mi-
crocrystalline samples. For these values of p, the co

dependence of u F is absent. The true asymptotic behav-
ior, Eq. (3.7a), is too small to be seen in these experi-
ments. Therefore, a F at small cu is essentially linear, Eq.
(3.5b), shifted to high co by an amount b,co=0.01coD =0.1

meV, which is again smaller than present experimental ac-
curacy. We conclude that in this case, theory and experi-
ment agree qualitatively. The co law is no argument
against the theory, simply because it is absent up to much
larger resistivities. This brings us back to the behavior
proposed in Refs. 8 and 10. As we have argued above,
these results miss the correct low-frequency behavior, and
contain an unphysical contribution from longitudinal pho-
nons. For p 5 10 pQ cm, however, the former is too small
to be measured, and the latter changes only the prefactor
of the linear behavior. We conclude that in this regime,
the formulas given in Refs. 8 and 10 give a qualitatively
correct picture, even though their derivations give rise to
criticism.

For the amorphous transition metals Mo and Nb with
resistivities of 65 to 200 pO, cm, Kimhi and Geballe
measured a F(co~0) ~ co", where n is definitely larger
than one. Even though our jellium considerations are
clearly inadequate for transition metals, it is tempting to
interpret this effect as the co law, which should be well
pronounced at these resistivities. If this is actually the
case, the nonlinear behavior should disappear at smaller
resisitivities. It would be interesting to check this experi-
rnentally. On the other hand, in amorphous simple met-
als with comparable resistivities, a F is found to be
linear. " This difference between simple and transition
metals cannot be understood within existing theory (ironi-
cally, it is the simple metals which deviate qualitatively
from the jellium results). Clearly, more theoretical work
is needed to understand amorphous materials.
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