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Calculation of the energy spectrum and eigenfunctions for a model system
of interacting XH3 groups in the low-temperature limit
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A model system of coupled XH3-type torsional oscillators embedded in a crystal field of a definite

symmetry, interacting with an externally applied dc magnetic field and among themselves, is con-
sidered. The interaction among the neighboring LH3 oscillators is approximated by the octupole-
octupole term in the general multipole expansion of the electrostatic energy of the two rigid charge
distributions. An approximate, reasonably accurate description of the lowest-energy eigenstates is ob-
tained as follows. All classical configurations of the XH3 groups corresponding to a minimum of the
potential energy of the system are found and Gaussian wave packets localized at each of these mini-
ma are constructed. The low-temperature limit of the energy spectrum is calculated employing linear
superpositions of wave packets as indicated by the symmetry of the problem. Finally, an approach
based on the general WKB expansion around classical trajectories corresponding to the real and
imaginary time is indicated.

I. INTRODUCTION

The rotational tunneling of atomic groups such as CH3,
NH4 or CH4 embedded in solid lattices has been studied
extensively by inelastic neutron scattering' and NMR.
Detailed experimental information and several theoretical
calculations have been published. It has been demonstrat-
ed that in most situations the ground state of the torsional
oscillator CH3 is split into a symmetric, 2, and doubly
degenerate antisymmetric state E. 3 and E denote the ir-
reducible representations of the point group C3. The en-

ergy difference Ez —Ez =—Acoz has been measured in lat-
tices in which the reorientation of the CH3 group is hin-
dered strongly so that cuT/2~ is of the order of 10 kHz
only. In other lattices with weaker hindering potential
cuT/2~ was found to be up to hundreds of GHz. Most
of these experimental studies were limited, in NMR mea-
surements by the rf frequency range which could be
covered or in the inelastic neutron scattering measure-
ments by the instrumental resolution. The characteristic
of the single-particlelike CH3 ground-state rotational tun-
neling spectrum as consisting of one frequency has been
established. In addition, the phonon-torsion interaction
has been examined and the origin of the temperature
dependence of coT studied. Since the CH3 ground-state
tunneling spectrum has been reported as consisting of a
single tunneling frequency, most experiments have been
set up to look for just that. However, recent experimental
study of the CH3 tunneling in Ge(CH3)4 and Si(CH&)~
(Ref. 6) demonstrated that at temperatures around 30 K

the CH3 tunneling spectrum is not as simple as predicted.
It was this experimental observation that stimulated the

present calculation of the tunneling spectrum of an en-
semble of interacting XH3 groups embedded in crystal lat-
tices. Because of the lack of proper crystallographic infor-
mation concerning the structure of Ge(CH3)4 or Si(CH3)4
and to simplify the calculations we considered a model
system where the LH3 groups form a rectangular lattice.
We treat the LH3 group as a solid body; i.e., with the
atoms "rigidly fixed. " This means that a single angular
variable is needed for the description of such a motion.
Likewise, the crystal-field potential at the site of each XH3
group is defined as a function of a single angle determin-
ing the orientation of the group with respect to the lattice
and having the usual threefold periodicity.

II. FORMULATION OF THE PROBLEM

The system under consideration is represented as a col-
lection of XH3 torsional oscillators embedded in a solid
matrix. Even as such, the system is far too complex to be
treated in all details, and consequently the following ap-
proximations are made.

(l) The XH3 groups are assumed to form a rectangular
lattice with the respective lattice constants denoted as l&,

lz and l3.
(2) Only the dynamics of the XH3 groups is being con-

sidered.
(3) The electronic and vibrational degrees of freedom of
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the XH3 groups are assumed to be frozen out.
(4) The effect of the rest of the lattice on the motion of

the XH3 groups is represented through the introduction of
a mean crystal field V(R„;a„,f3„,y„) defined at the site of
each group. Here R„ is the equilibrium position of the
n-th group. The Euler angles (a„,P„,y„) determine its
orientation with respect to the coordinate system fixed in
the lattice.

pi

p(C)
p(H1)
p(H2)
p(H3)

0
0

—d/2
d/2

0
d &3/3

—d &3/6
—d &3/6

dK
0
0
0

TABLE I. Parameters defining the CH3-group —fixed coordi-
nate system shown in Fig. 1.

(2.1)

The various terms appearing in the above equation are
defined as follows:

N

Az —— ficooL g—I,„,
n =1

(2.2)

where cooL is the Larmor frequency of the protons in the
external magnetic field and I,„ is the z component of the
total spin operator of the nth group XH3. In what fol-
lows, it will be assumed that the external dc magnetic
field Ho is parallel to the z axis of the lattice-fixed coordi-
nate system.

The torsional Hamiltonian is approximated by

In the spirit of the above approximations and in view of
the purpose of our calculation as outlined in the introduc-
tion, the relevant Hamiltonian of the system is q (C)= —3q,

q(H )=q (H )=q(H3)=q:0 20
l
eo

l

where eo is the elementary charge, and X„q(x)=0. The
CH3-group —fixed coordinate system shown in Fig. 1 is
defined with the parameters given in Table I. Here d is
the proton-proton distance (which is approximately 1.7 A)
and the carbon atom is situated in the center of a regular
tetrahedron. The value of ~ is thus equal to —,', . The
leading term in the above-mentioned multipole expansion
of the electrostatic interaction of two CH3 groups, which
depends on the relative orientation of the interacting
groups, is the octupole-octupole interaction, resulting in
the following expression for the torsion-torsion interac-
tion,

n=1

d + V, [1—cos[3(y„—5„)]]
d 3'n

(2.3)

J~jrT: —V3 g jg„+„(a„,P„;a„',P„')cos[3(y„+y'„')]

+g„' „'(cc„,P„;a„,f3„)cos[3(y„—y„)]] .

where J is the moment of inertia of the XH3 group around
its symmetry axis, and 6„ is a constant phase factor which
is left unspecified for the time being. The torsion-torsion
interaction is defined as a term in the multipole expansion
of the electrostatic interaction of two rigid charge distribu-
tions. For the purpose of this calculation it is assumed
that the XH3 groups are electrically neutral. In particu-
lar, for the CH3 groups we take the following point charge
distribution

The coupling constants g„'
—+„' are given as

e /R„„
V3

d

Rn„

X(A g+18A+B++ —"' A+B2++41B+ ),

(2.4)

(2.5)

A+ =—(1+cos/3„cos/3„)cos(a„—a„)
+ (1+cosP„cos/3„)sin(a„+a„),

B+ =+sinP„sinP„

(2.6a)

(2.6b)

and Rn n is the distance between the centers of the equila-
teral triangles formed by the protons belonging to nth and
the n'th CH3 group, respectively. The Euler angles /3„,
P„are measured with respect to the line joining the two
interacting groups and we will further illustrate the use of
expression (2.4) later on when we discuss specific exam-
ples.

H2 H3
III. MANY-PARTICLE SCHRODINGER

EQUATION

FIG. 1. XH3-group —fixed coordinate system for the calcula-
tion of the electrostatic interaction.

The Hamiltonian (2.1) can be written as

g2 V'+ V(y),2J (3.1)
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where y is the N-dimensional Euclidean vector
(Yl y2 ~ ~ ~, YN)

where y, —=dy, /dt. Applying the formalism presented in

Ref. 9. we write

a a a= ay1'ar2' 'arN

N

y=y, (t(q)}+ g n, g, . (3.5)

and the potential term V(y) is defined by

N

V(y ) = g V, j I —cos[3(y„—5„)] I +&TT(y ) .
n =1

(3.2)

The solutions of the Schrodinger equation corresponding
to the Hamiltonian (3.1), can be written as a product of
spin functions and functions depending only on the angu-
lar variables y. Correspondingly, the energy is written as
a sum of Zeeman energy and torsional energy ET. The
latter is determined by

We also note that in the quantum-mechanical context the
time t is introduced only as a geometrical parameter of
the corresponding wave function in configuration space.
Therefore, t (q) as introduced in (3.5) is simply a function
which determines the parametrization of the curve y„
and the parameter q is appropriately called the collective
variable. g, are the fluctuation variables which describe
the deviations from y, and are assumed to be small.
n, (t(q)) is a set of orthonormal unit vectors which are or-
thogonal to the classical path at q, i.e. ,

2J
V'+ V(y) &P(y) =ET+(y) . (3.3)

n, .j,=0,
n Ilb =5 b

(3.6)

In order to analyze the solutions of Eq. (3.3), let us recall
that quantum mechanics is essentially a theory of small
fluctuations around classical trajectories. Consequently,
we expand Eq. (3.3) in terms of small fluctuations
around a given periodic classical orbit y, (t) which is a
solution of the classical equations of motion,

(y, )„(y, )
+ g (n, )„(n, ) =5„

c Q =2
(3.7)

with a, b =2.3, . . . , N, and they satisfy the completeness
relation

Jy, = —VV(y, ), (3.4)
with n, m =1,2, . . . , N. Using the above definitions, a
computation shows that

gC gC

a ag I ahab ~t q, b

N

( i fi)n, —
Q =2 ga

(3.8)

N

where t':dt/dq, ri:—g—n, rI, , and
Q =2

A AI",b=&a-nb .

The torsional Hamiltonian

(3.9)

becomes

7'+ V(y),2J
(3.10)

r 1 a
2J (y' y .&)' t' Bq

a—QI'.
, b~~, + X, +V(y, +n) .

ab Qa a ala
(3.1 1)

and the potential term V(y, +g), when expanded in powers of ri, , reads

N N

V(y, +g)=V(y, )+ g
a =2n =1

N N N N a v
(n, )„g,+ —,

' g g g g (n, )„
a=2b=2 n =1m =1

(nl ) n. ni+

(3.12)

The most systematic approach toward solutions of the
Schrodinger equation corresponding to the Hamiltonian
defined by (3.11) and (3.12) lies within the framework of
WKB approximation as described in details in Ref. 9. It
turns out, that if one can find all the relevant classical
periodic orbits y, it is possible, by using the procedure
outlined above, to obtain the energy spectrum of the tor-

sional Hamiltonian (3.11). This is in general, for the case
of nonseparable systems, a dificult problem. For this
reason, we will employ, in what follows, a somewhat less
elegant approach, and study only the small fluctuations
around the time-independent classical solution y, . In this
case the Eq. (3.5) simplifies to,

y„=y,„+g„, n =1,2, . . . , N (3.13)
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where y, is a solution of

aV(r) =0, n=1, . . . , N .
~3'n

(3.14)

The solution y, will represent a stable local minimum, if
the real symmetric matrix

N

detM = II (Jco /fi), co &0 for all a .
a=1

a is the transpose of a and a Ma—= g, . M;Ja;a, .

IV. TUNNELING APPROXIMATION
FOR THE CASE OF MULTIPLE MINIMA

(3.24)

1 8 V
Un, m

~yn~ym y

(3.15)

is positive definite. This means that all the eigenvalues co

defined by
N

(a) 2 (a)
U~, m um crau„

n =1
(3.16)

are positive, i.e., ~ ~0. For the time being we shall as-
sume this to be the case, however, this is not true in gen-
eral. For example if the Hamiltonian &r possesses a con-
tinuous symmetry this symmetry is not necessarily shared
by the solutions y, As is well known, with this symme-
try breaking there is associated always a zero-frequency
mode which tends to restore the original symmetry. In
this case, the corresponding normal mode

N
(a)Va= g un 9n'

n=1
(3.17)

has to be separated out of the original Schrodinger equa-
tion in a manner discussed at the beginning of this sec-
tion, before the expansion in terms of small fluctuations is
performed. However, when we have a discrete lattice
such as ours, discreteness causes the pinning of these
zero-frequency modes thus making the corresponding co

nonvanishing. These pinning effects are associated with
the existence of the so-called Peierls-Nabarro barrier. '

Assuming all co &0, the analogs of the Eqs. (3.6), (3.7),
(3.11), and (3.12) are given respectively as,

d2 (E)
PcnJ

d~

a v(r,"I)
gy( )

(4.1)

where ~n =ant, e„=+1,and n =1,2, . . . , N. The choice
of the set (e'~, . . . , ez) is determined once the minimum

y, +(2m'/3)cr is selected, i.e., e„=(—1) ". It is also re-
quired that r ~ „'(t = —oo ) =y,„,and

Let us suppose that y, represents a classically stable
minimum of the potential V( y ). Due to the assumed
symmetry of the XEi3 groups, y, + (2ir/3)cr, where
cT =—(cr i, c7i, . . . , o &), o; =0, 1, also represents a
minimum of the potential because V(y, )

= V[y, +(2ir/3)o ]. Around each of these minima we
can construct a set of harmonic-oscillator states similar to
those defined by (3.22). Quantum mechanically, however,
the above minima are not absolutely stable, because the
system can tunnel from one potential well to another.
The ground-state wave function as given by the Eq. (3.22)
and which starts out peaked around the minimum y„
will spread into the other wells corresponding to
y, +( 2ri/3) rcand cause, in general, splitting of the energy
levels. To account for these tunneling effects one can use
again the WKB expansion outlined at the beginning of the
preceding section and described in detail in Ref. 9. It has
been shown " that the "classical path" relevant for the
description of tunnelling is given as the solution of the
Euclidean or imaginary-time version of the classical equa-
tion of motion (3.4), which in our case generalizes to

u" u't"=5. p, a, ) )=c1,2, . . . , X

N

P=1

(3.18)

(3.19)

y,„(t= + co ) =r,„+ cT„,
3

together with

where u' '—= (u'I ', uq ', . . . , u~ '), and

X g2 g2
+V r. +n

n =1 In

(3.20)

(E)
1 yen

2 d7n
+ V(y,")= V(y, ), (4.2)

N

M„ (a) (a)
&n &m (3.23)

with the determinant equal to

V(y, +il)= V(y, )+ —,'I g U„ il„il + . (3.21)
n, m

The corresponding ground-state wave function $0(r ) is,

(detM)'
Po(r ) = «exp[ —(1/2)(y —y, ) M(y —y, )] .

(3.22)

The matrix M introduced in (3.22) is defined as

where y, is the solution of (3.14) and the superscript E
above stands for "Euclidean. " Expanding the potential in
terms of small fluctuations, we can repeat the analysis
outlined earlier and thus obtain the WKB expression for
the wave function P(r) in the classically forbidden region
between the minima y, and y, +(2ir!3)cr, which must be
matched then with the harmonic-oscillator-type functions
(3.22) centered at y, and y, +(2'/3)cr, respectively. In
order to perform the above calculation explicitly, one
needs the solution of (4.1), which, in general, is difficult to
come by. In order to proceed we will assume that in the
low-temperature limit, (irido );„»k T, the harmonic-
oscillator wave functions (3.22) will yield a reasonable ap-
proximation also in the classically forbidden region.
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Then, if we denote the ground-state wave function cen-
tered around y, and y, +(2n/3)o by Pp and ()()p, respec-
tively, we can calculate the corresponding overlap integral
Sp(o), which is

(y
~ y ) e

—(0/9)cr Mcr (4.3)

where the matrix M is given by (3.23). Similarly, the ma-
trix element of &T defined by (3.10), is calculated to be

( (t)p
i
.&T ~ fp ) =Sp (o )H (o' )

1
2 —( 9/4)M=Sp(o) —TrM — o M cr + g V3I1 —( —1) "cos[3(y,„—5„)]e2J 2 9

n, m

(4.4)

and the inverse matrix where 6 I)
——+,5 p and

M„' = u' 'u' '
LCn Ll m (4.5)

1 0 —1

is well defined provided co ~ 0 for all u.
Considering the symmetry properties of &T, it seems

natural to attempt its diagonalization in the subspace
spanned by the functions (t)p, by forming the following
linear combinations

1 1 1 1

g( a, r()= a2 i 1 e*'
3 g* 1 e

In the same manner we obtain

'(t'p, p r (4.6)

N

(yp i
JVT imp p) =6 pysp((r)H(o') g g(a/, (r ) .

(4.9)
where a=(a(, a2, . . . , a)v), P—:(P),P2, . . . , P)v ), a;,P;
=1,2, 3, and there is a one-to-one correspondence be-
tween p and o. We introduced this labeling merely to
utilize matrix notation. The 3&3 matrix S & is given by

The corresponding eigenvalues ET(a) are

g S()(o )H((r) Q g(aj, o., )

ET(a) = (4.10)
1

S= — 1 e e*, a,P=1,2, 3, e=e' " . (4.7)

1 e* e

It will be noticed that the entries of the matrix V'3S
represent the characters of the irreducible representations
of the point group C3. Using (4.3), a straightforward
computation shows that ()T)p are mutually orthogonal,
that is

(4.8)

Q Sp(o ) Q g(a), oi)

and the ground-state energy corresponding to the sym-
metric combination (4.6) is

ET =ET(a, = 1, (' = 1, . . . , X)
= g Sp(o )H(o )/g Sp(cr) .

Before examining some particular solutions of the Eq.
(3.14), it is instructive to consider the limit g„' —)~0, of
noninteracting XH3 groups. Here we obtain

ET(a), . . . , a;=2, . . . , a)v) —Er(a), . . . , a;=1, . . . , az)

7T2

9
4 + 1 + 0 ~ ~

9
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where coo ——9V&/J. If we take J='4.7X10 kgm and

V3 /ki) ——400 K, then coo ——3.2 X 10 ' sec ' and the tun-

nelling frequency coT is estimated to be

coT ——5X10 sec '=50 MHz .

Here we give specific examples.
(i) As a first illustration of the above calculations, let us

consider a rectangular lattice of XH& groups with their
symmetry axes parallel with each other. We also assume
that the lattice constants perpendicular and parallel to the
symm«ry axes a«

~
I,

~

=
~
I, ~—:I, and

~
I, ~—:I~~, «spec-

tively. Then, taking into account only the nearest-
neighbor interaction and using the Eqs. (2.4) to (2.6), we

obtain nl +1

0
g(+)

24 Vg

d
' (4.12)

FIG. 2. Equilibrium orientation of the XH3 groups corre-

sponding to the minimum of the potential energy, as defined by

the Eq. (4.14). The groups represented by dashed lines lie in the

n3 plane and the groups represented by solid lines are in the

n3+1 plane.
which corresponds to the choice a„,a„and P„,/3„=0.
Similarly, taking a„,a„=O and P„=P„=sr/2, and con-
sidering the two orthogonal directions in the plane defined

by the lattice vectors I, and lz, the Eqs. (2.4) to (2.6)

yield,

( ) 1155 (e /Ii) dg(+) —
384 V,

(4.13)

and
~ gi '/gi+'

~

='2X 10 . Consequently, neglecting
in V(y) the terms containing gj' ', (3.14) has a solution
which represents an absolute minimum of the potential
energy and is given by

co (q) =cooI 1+2
~

gi+' [(1+cosq) )+(1+cosq3)]

+2g
I)

'(1 —cosq3 )I, (4.17)

M„
1

N)N2N3
J~(q) 'q ( ) (4. 18)

while the matrix M, and its inverse are given, respec-
tively, as

zen=&n (4.14)

(4.15a)

(4.15b)

(4.15c)

6„-, +6„=+m/3,
1 —iq-(n —m)e

N)N2N3 J~(q)
—1M„ (4.18a)5„,+6„=0,"+ 2

6„-,—6„=+sr/3, The ground-state wave function is given by (3.22) and the
matrix element ((t)o

~
&r

~ $0 ) can be obtained from the
Eq. (4.4). The solution y, given above corresponds to the
special choice of the phase factors 6„, which are required
to obey the Eqs. (4.15). Alternatively, we can choose
6„=0,and then (3.14) yields

4 ( I&i+ I+&»

where n:—(n), nz, n3), n;=1, . . . , N;, i=1,2, 3, and

e;=I;/~ I, ~. The position vector R„of a given XH3
group is R„=n

&
I

& +n &12+n & I&
and the arrangement of

the XH& groups in their respective equilibrium orienta-
tions is shown in Fig. 2. Imposing the periodic boundary
conditions and assuming without a loss of generality that
N&, N2, N& are even numbers the eigenfunctions u„' '

defined by (3.16) become
provided [1/(

~

gi+'
~ +gI~ ')] &4. Since the small-

oscillation spectrum resulting in this case is qualitatively
the same as the one discussed above, we will not repeat
the analysis.

(ii) The next example that we will analyze is an isolated
X(CH3)4 cluster, a situation which may occur in metal
tetramethyl compounds with the relative orientation of the
four CH& groups as shown in Fig. 3. The application of
the Eqs. (2.4) to (2.6) to this case yields

8935
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X ' (4.20)
Vg [ &0368

u'q):— 1 in-q

QN)N~N3
(4.16)

q=(q), qz, q3) and the values of q; are determined by

i =1,2, 3.
We use the complex notation in (4.16) for convenience.
The corresponding normal-mode frequencies co =m (q),
are

d
R

q;= m, , m; =0,+1,+2, . . . , +( —,'N; —1), ,'N;—2w

N;
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2~) =~Z=~3&~~

where

2 —,
COi =

if g ( + ) ( 1

6

2/6g(+) if g(+) ) 1
(4.22)

and

2
COg =

2 4 (+)
COp

1

18g'+'
if g(+) ) 1

6

2(1 4g(+)) if g(+)( )

6

(4.23)

Similarly, we can calculate also the eigenvectors u ' ' and
subsequently by using (3.23) we obtain,

FIG. 3. Schematic representation of the structure of X(CH3)4
molecule. Jco ) 1 J6„+——(co4 —co) )1„ (4.24)

0 ifg'+'&,
+—'cos '(1/6g'+ ) if g'+'~ —,

' (4.21)

V(y, ), where y, is subjected to constraint y, )
——y, 2

3 —p 4:y„and for several values of the coupling pa-
rameter g'+' is shown in Fig. 4.

Using (3.15) and (4.21) we have

12.00

10.00—

800

6.00

4.00

2.00

Since
~

g' '/g'+' =2.8X 10 we shall, in what follows,
retain only the g +' term in (3.2) corresponding to the
present example. To obtain an estimate of the order of
magnitude of g(+) let us take d =1.7 A, e2=0.04e02

R =3 A, and (V3/k~ ) =400 K. This yields g
+'

=0.16( —,'. However, if we choose 8 =2.5 A, we obtain
g'+'=0. 58) —,'. Looking for a symmetric solution, Eq.
(3.14) with 5„=0yields,

together with

+ —— — I„. (4.25)
1 A 1 1

J~, n™ 4 J
where 5„ is as the Kronecker 5 function and I„=—1 for
a11 values of the subscripts.

V. SYMMETRIZATION OF THE WAVE FUNCTIONS
ACCORDING TO THE PAULI

EXCLUSION PRINCIPLE

According to Pauli principle, the states of a system con-
taining X identical partic1es are necessarily all symmetri-
cal or all antisymmetrical with respect to the permuta-
tions of the particles, depending on whether the particles
have integer or half-integer spin, respectively. ' ' In
practical calculations, however, it is not always necessary
to symmetrize the wave function with respect to the full
permutation group. In the present case, it follows, that it
is sufficient for the purpose of our calculation, if the wave
function describing the dynamical state of the whole sys-
tem has the correct symmetry properties only with respect
to the subgroup of even permutations A3, for each group
of the three protons separately. Because A3 is isomorphic
with the point group C3 of real rotations of XH3 group
around its symmetry axis, we conclude that the Pauli ex-
clusion principle will be satisfied within the framework of
our approximations, if it is required that the wave func-
tion q)(y, [I,m [), describing the system of N interacting
LH3 groups is invariant with respect to the symmetry
transformations of the direct product group
C3 (C3)) 8(C3))v. Therefore we can write

OQO
-1.00 -080 -0.60 —0.40 - 0.20 0.00 0.20 0.40 0.60 0.80 1.00

y)!tt
%(y, [I m [)=(to X ([I,m I ), (5.1)

FIG. 4. Angular dependence of the potential V(y'), when all
four CH3 groups have identical orientation. The solid line corre-
sponds to g'+'=1/10, the dotted line to g +'=1/4 and the
dashed line to g'+'= 1/2.

where [I,m I =(Ii,ml, . . . ,'I~, m)v), and I„,m„are the to-
tal spin quantum number and its z component of the nth
group, respectively.

The spatial component Po is given by the Eq. (4.6)
and the spin component 7 is

C
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x ([I,m I )= l N
QS* X („,„,„),

P n=1

(5.2)

where S=g„,5 . The following notation has been
n' n

employed:

(5.3)

if cx„=1

if a„=2,3

together with —I & m &I
n

— ~n — ~n

where s„,s„' =+—,', and S'
p is the complex conjugate of

the matrix S &. The function FIJI(s„) represents the spin
function of the jth proton belonging to the nth XH3 group
with the z component of its spin equal to s„. It is also
easy to see that

VI. DISCUSSION AND CONCLUSIONS

Since the purpose of this calculation has been to investi-

gate the effect of coupling among XH3 groups on the tun-

neling spectrum, we will examine the content of Eq. (4.10)
in greater detail. To start with, let us define a, as a con-
jugate of a, by changing all the a„'s equal to 2 into 3 and
vice versa. Then using the properties So(o.)=So( —cr),
H(cT)=H( cr—) and g (cc~,o~)=g(ai„—cr~), it is easy to
see that Er(a)=ET(a, ), which implies that the degenera-
cy connected with the E-symmetry-type levels of the
noninteracting XH3 groups is not removed completely by
the introduction of the torsional-torsional interaction as
given by the Eq. (2.4). As already mentioned, the
ground-state energy corresponding to an absolute
minimum (y, )~M, of the potential V(y) is
ET=Er(a—:1). If y, represents only a local minimum

(y, )LM, then the physically meaningful quantity is

ET[(y, )LM] —ET[(y, )&M], which represents the energy
associated with the static excitation (y, )LM of the lattice.
To simplify the following discussion, let us assume that
y, represents either an absolute minimum of V(y ) or a
local minimum, which, however, is sufficiently stable
quantum mechanically, so that the result (4. 10) is applic-
able. In this case the first "excited state" is defined by,

ET(a; = l, i =1, . . . , N, ak ——2, 3,i&k)=ET(ak ——2, 3)=
g So(o )H(cr)g (ak, crk)

y So(~)g(~k, ~k)
k=1, . . . , N, (6.1)

and the energy difference between this level and the corresponding "ground state" is

ET(ak =2, 3) ET —— —

+ g So(cr)

g So(o )[g (ak, c7k ) —1]
1+ iso(~)

g So(o )H (o )[g (ak, crk ) —1]
EQ

0'

0 (6.2)

which is, to first order in the overlap integral, equal to,

0 (2/9)Mk k Q ~ 2 p 2
2 2 —(9/4)Mk k

—1

E7-(~k =2, 3)—E7- =3e (~ )k, k
—-,'~~o cos[3(y,k

—~k ) ]e

+2V3 g (gz+'cos[3(y, k+y, )]e

( —)
—(9/4)(Mtc k +M —2M' ~ )

+gk, cos[3(y k y, ]e I + (6.3)

This energy difference reduces to (4.11) in the zero coupling limit.
The result (6.3) shows that the set of the first excited states (corresponding to different values of k), in general forms a

band of N doubly degenerate levels. The width of this band is determined by the strength of the torsional-torsional in-

teraction and what is more interesting, also by the type of the classical minimum y, . For example, if the crystal field is

such that either (4. 14) and (4.15) or (4.19) is realized, then the Eq. (6.3) shows, that to first order in the exponential fac-
—(e /9)M~ ~tors e "', the first excited state as defined above is 2N-fold degenerate and thus corresponds to a single tunneling

splitting. We also note that those minima y, which more or less preserve the original translational symmetry of the lat-
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tice, such as (4.14) and (4.15) and (4.19), will support energy spectra with very narrow bands. On the other hand, if the
classical solution r, breaks the translational symmetry of the Hamiltonian, then the result (6.3) shows that we obtain a

—(~'/9)M«
nonvanishing bandwidth already in first order in the exponential e

Similarly, the second excited state is defined as,

ET.(a/„a/ =2, 3) ET—

o( ) (a) t [g «k ak) —]+[g (a/ a/) 1]I— gS (o )H (o )[g (ak, o q ) —1][g(a/, o /) —1]

+ QSp(o. )

g So(o )[g (a/ (Tk ) —1][g(a/, a/) —1]

+

g So(o )

+So (o. ) QSp(a)

y So(a) I [g (a/; ak ) —I ]+[g (a/, a/) 1]I—
1+

0

k, l =1,2, . . . , /V, k~l, (6.4)

where we notice again, by comparing (6.2) and (6.4), that a similar band structure appears at least to first order in the ex-
—( /9)Mponential factors e

Analogous situation occurs also in the case of isolated X(CHq)4 clusters if the coupling constant g'+' is less than —,'.
The tunneling spectrum is in this case single-particle-like and using Eqs. (6.3) and (4.21) to (4.25), we can calculate the
energy difference between the ground state defined by a=1, e„=1,n =1,2, 3,4, and the eightfold degenerate first excited
state defined by (6.1). The result is,

p Jap
ET(ak =2, 3) ET —— ~—o exp—

2 9
—+ —(1 —4g'+ )
3 1

4 4

Jcc)p ~ 4 JQ)p 9
(1 g(+/) exp ——

4 J~p
3 1 1—+—
4 4 (1 4 (+/)(/2

12 J~p (+) 9+
9 A 4 Jeep

g'+' exp —— 1+ 1

(1 4 (+/)1/2 + ~ ~ ~ ~ (6.5)

If we take (Jroolfi) =15, g +'=
—,', (6.5) yields p/r ='127 MHz which is equivalent to 38.6 MHz in the limit g(+'~0 (we

have assumed J=4.7&&10 kgm ).
In the above discussion it was assumed that r, represents a local minimum of the potential V(r), which is sufficiently

stable and consequently only tunneling between those minima which are related through a C~ symmetry transforma-
tions, namely r, ~r, +(2n/3)o, needs to be considered. It is evident, however, that Eq. (3.14) can have several distinct
solutions r, , r, ', etc. Now we distinguish among the following possibilities, V(r, ) & V(r,'). If V(r, )) V(r,'), then
the system initially belonging to a state constructed around the minima r, +(2'/3)o, can in principle decay to a lower
lying state representing a linear superposition of pocket states centered around the minima defined by r,'+(2~/3)a.
The rate of this process and the resulting life-time broadening of the corresponding levels depends, of course, on the
height and the width of the potential barrier separating the minima y, and y,'. Although we will not consider this possi-
bility at this time, the formalism discussed briefly at the beginning of Sec. IV, can be used to deal with this as well.
What we wish to examine instead, is the case V(r, ) = V(r, ) which occurred in the example (ii) of Sec. IV, as seen from
the result (4.21) with the value of the coupling constant g'+ larger than —,'. In this case we have to account also for tun-
neling r,~r, +(2m. /3)cr'. For this purpose, let us introduce

(+) + 277
Zen =—Xc+ ~n

3

where r, is given by (4.21). In analogy with (3.22) we then define,

(detM) 1/4
(()o p = exp[ (1/2)(r —r; ) ~—(r r; ]-(+) T (+)

(6.6)

(6.7)

and in accordance with (4.6) we also introduce the corresponding linear combinations (t p
+—'. Consequently, (Pp—'

~
(tp p')

and ((()o '
~
&T

~ Pp p) are given by (4.8) and (4.9), respectively, with the help of Eqs. (4.3), (4.4), and (4.21) to (4.25).
However, in addition to the above, we have to consider also the following matrix elements (Po—'

~

(()p //') and
((()o '

~
&T

~ Pp p'). A short calculation yields
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&]I)0]+]
~

])]]Op])=5 pg exp — y, +—o M y, +—o
4

II g*(a;,o;)
i =1

(6.8)

with y, 1
——y, 2

——y, 3 —j 4 —y, and
'T

4

&$0+'~&r
~

Pop') =5 pg II g*(a;,o;)exp — y, +—o M y, + —o

2
7T 7T cr —9/4M

&& [—'TrM —(y, +—o ) M'(y, + —o')]+ V, g [1—( —1) "e "'"]
2J 2 c 3 3

—9/4(M M 2M )

n&m

(6.9)

From the above results we can see, that within the subspace of functions ])]]o+—', the torsional Hamiltonian &r has a
block-diagonal from, where each block represents a 2/2 matrix. Consequently, the eigenvalues and the corresponding
eigenstates in the low-temperature limit can be calculated easily, and are

]+] [a b —Re(c d*)]+I
~

a d c—b
~

—[Im(c d*)] I'~
ET—'(a) =

b —d d* (6.10)

where

and

&o—,a =&a—
(0o+, a'+ Ca '4'o, a'»

where N' —' are suitable normalization factors, while the coefficients C' —' are given as

]+] ilm(c d*)+ I ~

a d cb
~

——[Im(c d*)] I'C(+)
a ada —ca&a

(6.11)

(6.12)

When a = 1, it follows from (6.12) that

Before continuing we should emphasize that two distinct pocket states $0&' as defined by (6.7), exist only for sufficiently
strong couplings g'+'. As a suitable criterion to determine whether (6.7) is justified, we choose

r

4

b = V(y=0) — V(y, )+—,
' g fico

a=1
(6.13)

which represents the difference between the value of the potential energy at @=0, and the zero-point energy of the nor-
mal modes localized in the minimum y, (see Fig. 4). Using the Eqs. (4.21) to (4.23), we can write 6 as a function of
g'+', namely

b,(g]+]) 1 Jcoo ]+] 1 3 2 ]+] 1 1

fico(& 9 A' 2 (6g'+])'~ 3 3 6g]+'

1/2
Jcop

+9 4 6g ( + )

6g(+)

(6.14)

tunneling spectrum should be somewhere in between the
energy level schemes as described by the Eqs. (6.5) and
(6.10), respectively.

To illustrate the tunneling spectrum as determined by
the Eq. (6.10), let us choose g '+ ' = —,', & —,', and

(Jcoolfi) =15. The resulting energy-level scheme is shown
in Fig. 6. In agreement with the statement made at the

and which is also shown in Fig. 5. For (6.7) to make
sense, we require that

~

ET+'(a= 1 ) Er '(a= 1 )
~

/—
5 «1. From Figs. 5 and 7, we can see that this condi-
tion is satisfied for all values of (Jcoo/fi) considered, pro-
vided g'+' is somewhat larger than —,'. For the range

6
&g'+' & —,

' the above approximation breaks down and a
numerical calculation is needed. However, the resulting
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3
1

I I I I I I I I I I I I I I I I I I I

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

6g
(+&

FIG. 5. Dift'erence between the zero-point energy of the nor-
mal modes localized at +y, and V(y=0) in units of ~0.
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8- fold
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6- fold

12- fold

2I - fold

beginning of this section, namely Er(a)=ET(a, ), this
holds true also in the present case. In order to make the
comparison with the single-particle spectrum easier, we
reinstated the labeling according to the irreducible repre-
sentations of the point group C3, i e.,
a; =(1,2, 3)~( A, E„Eb ), i = 1,2, 3,4. The corresponding
numerical values, which can be calculated from the ex-
pressions given in the appendix, are for this particular
choice of the parameters g'+' and (Jcoo jfi) as follows:

6& ——68.63 GHz, 5'& ' ——11.94 GHz, 6'&+'=10.66 GHz,
' ——18.77 GHz, Az+' ——16.18 GHz, A3

' ——25.43 GHz,
63+ '= 22. 84 GHz, A4

' ——16.62 GHz, 64+ ' = 12.72 GHz,
' ——29.71 GHz, 6&+'=25. 81 GHz, 66 ' ——8.81 GHz,

56+'=3.63 GHz, h7 ' ——19.64 6Hz, 57+'=14.46 Ghz,
' ——25. 29 GHz, Az+'=20. 11 GHz. The quantities 6&

and 6,' —', i =1, . . . , 8, are defined in Fig. 6 and in the
Appendix. To further illustrate the range spanned by
these splittings, we show in Fig. 7, Er+ '(a = 1)

Er —'(a= 1)=b, , in units of %coo as a function of
(Jcoo/R) for several values of the coupling constant g I+ '.

As a final illustration let us consider again the example
(i) discussed in Sec. IV and assume that the interaction of
the XH3 groups in the planes perpendicular to their sym-
metry axes is negligible. In this case we are dealing with
a linear chain of coupled XH3 groups having their sym-
metry axes parallel to the direction of the chain. The Eqs.
(3.14) and (4.12) then show that in addition to the solu-
tions of the type (4.15) and (4.19), there exist other kinds
of static excitations which are not accessible by perturbing
around the minima given by (4.14) or (4.19). For exam-
ple, if

gI~~
') 3.674, then Eqs. (3.14) admits also the kink-

like solutions y„similar to the kinks of the familiar Sine-
Gordon equation ~

'"
On the basis of the above results we conclude that

torsion-torsion interaction does have, in general, a
significant effect on the structure of the rotational tunnel-
ing spectrum. Unfortunately the introduction of this in-
teraction into the corresponding Hamiltonian generates an
N-dimensional problem, and as such it is dificult to solve
analytica11y. Consequently one has to adopt various ap-
proximation schemes in order to test different dynamical
models against the experimental data. In this paper we
described a simple calculational procedure which yields,
with reasonable accuracy, analytical results for the energy
levels and the corresponding eigenstates of the tunneling
system.

The theoretical results obtained above will be used to
analyze the large amount of experimental data concerning

10

(E» E»Eb A)'. '. . 24- fold 10

——--——6-fold-(E»Eb AA)'. .'

8- fold
(E E AA)' '- ——--»»
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II
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UJ
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(AAAA) I-. ). , 1- fold 10
14.00

I

16.75
I

22. 25

FIG. 6. Energy-level scheme as resulting from the Eq. (6.10)
for 6g'+)=2. 5, and (Jcoo/A}=15. Et has been assumed that all
four CH3 groups in the X(CH3}4 cluster are equivalent.

FIG. 7. ET+'(u=1) —ET. '(a=1) as a function of (Jco0/A),
for several values of the coupling constant g'+'.
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the tunneling spectra of metal tetramethyl Si(CH3)4 and
Ge(CH3)4 at various temperatures. This analysis, since it
requires the inclusion of the dipole-dipole interaction'
and the temperature variation of the tunnel splittings, will
be published in a separate paper. In particular, regarding
the temperature dependence, the influence of the phonon
bath on the methyl group tunneling has yet to be exam-
ined. It is known, ' that in the case of translational tun-
neling the interaction with phonons tends to suppress the
tunneling. This does not occur if we are dealing with ro-
tational tunneling of the type y, ~y, +(2~/3)a, as dis-

cussed earlier. However it is not obvious what would be
the effect of phonons on the tunneling between the states
$0

+—

& defined by the Eq. (6.7), and which according to our
analysis occurs in metal tetramethyl compounds.

APPENDIX

Using the Eqs. (4.3) to (4.9), (4.21) to (4.25), and the
Eq. (6.10), we can derive approximate expressions for the
calculation of the numerical values of the tunneling split-
tings corresponding to the energy level scheme shown in
Fig. 6. The results are:

ET (a= 1)—Er (a= 1)
=b,

&

—2F3
~

B+4E+6F+
0

(Al)

ET (a') ET (1)—
Scop

3F4 Q+ [F,[(B+ ', E+—3F—)~+ ,'(E+ 3F—)] —
p ~1] a'=(2111),(3111),. . .

IF3[(B+E—3F) + —,'(2E+3F) ] ——,'~i] a =(2211),(3311),. . .

4 —
(F3

~
B+E~ ——,'b,.&), a'=(2311),(3211),. . .

IF3[(B——,'E —3F)~+ —", E']'~' ——,'b, , I, a'=(2221), (3331),. . .

IF3[(B,'E)2+ —,
'E2]'~2 ——,

' b, , ), a'= (2231),(3321),. . .

[F3[(B 2E —3F)—2+ ,'(4E —6F)—] ——,'b r] a'=(2222) (3333)

12+F4+ ~ IF3[(B—2E+ F) + —,'(2E——3F) ]' —,'b, , ], a'=(22—23),(3332),

(F,
~

B 2E+3F
~

——,'b, , ), a'=(2233—),(3322), . . .

(A2)

where the quantities introduced above are defined as follows:

1 w 4 2 23 =—x] x2+ + —x2 F2 — F&
9 12 X2 X2 X2

(A3)

B=—x& 18y, —x2—1 2 2 1

9 ' 3 3x2

1 1+4 1 — F)+2 —x2 F2
X2 X2

(A4)

2

C= —x) 18~1 2 gc pc
6~

2 1X2—
3 3x2

772
+ X2+

12
2 2—x2 F2+2 1 — F] (A5)

2

D = —x) 18m
1 2 pc
9 772

pc
377

2 1X2—
3 3x2

~2 1+ x2+ 4 2 2F)+ ——x2 F2
X2 X2 3

E =C (F4Fg ), (A7)

2
F4FsF=D

F6
(A8)

and y, is given by the Eq. (4.21). Also,

F, = exp —— —(x~) +—9 1 3 ]/2 14X)44 1/2
2 1X2—
3 3x2

(A9)
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Fz ——exp —— (x2 )
9 1

4 x)

2 1
F3 ——exp —4y, x, —x2—

3 3x2

1/2
2 1X2—
3 3x2

1/2

(A 10)

(A 1 1)

3 1 1 2 1
F4 ——exp — x

&

— + ——x2—
9 4 (x )~rz 4 3 ' 3x

' 1/2
2~ 2 1F5= exp y x& x2-

3x2

1/2

(A12)

(A13)

~2
F6 ——exp x~

36
2 1X2—
3 3x2

' 1/2
1

( )1/2
(A14)

and x, = (Jcooifi), x~——=6g'+'.
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