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Tensor-boson condensation in superconductivity of heavy-fermion systems
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A theory of heavy-fermion superconductivity is proposed based on a tensor-boson condensation
within an SU(N) Anderson-lattice model in which fo, f', and f~ states are allowed. The order
parameter is a multiplet for N & 2. In an s-wave model, a Kondo-like expression for the gap is
obtained, and T, and H, are calculated. Estimates for CeCu2Si2 give T, of the correct order of
magnitude.

The superconductivity of heavy-fermion systems such
as CeCu2Si2 and UBe» is known to involve the heavy-
fermion bands' and is thought to be an intrinsic property
of the heavy-fermion fluid. It is widely believed that su-
perconductivity has the same origin in the strong, short-
range repulsion between f electrons as the heavy-fermion
behavior itself. But at this time we do not know
specifically the nature of the pairing mechanism.

Lavagna, Millis, and Lee consider an Anderson lattice
with an infinitely repulsive local interaction between f
electrons, constraining the f sites to f and f '

configurations. This constraint leads to a repulsion be-
tween quasiparticles in the l =0 channel, so pairing must
be in a higher-l channel. With the use of an s-wave
SU(N) model, a weak attractive interaction is found in
the l =2 channel, leading to l =2 pairing. However,
Zhang and Lee point out that outside the highly ideal-
ized SU(N) model, the 1=2 channel may no longer be at-
tractive.

Experimental evidence from tunneling is compatible
with higher-l pairing for UBe~3, and specific-heat data
suggest a vanishing gap at spots or lines on the Fermi sur-
face. This can arise in an 1&0 pairing theory, as it does in
He-A but not in He-B. Other characteristic features of

heavy-fermion superconductivity, e.g. , high critical field,
arise essentially from the high fermion mass and are not
diagnostic of the pairing mechanism.

In this paper I show, and justify quantitatively, for the
first time that when we introduce an additional f occupa-
tion into the f f' model, an a-ttractive interaction is gen-
erated leading to superconductivity, which formally ap-
pears as a kind of superfluidity. A conceptual argument is
to imagine f as the lowest state (i.e. , an attractive
electron-electron interaction U) and choose the chemical
potential so as to keep the f concentration low. Then the
f sites form a dilute Bose gas which is superfluid at low
temperatures. In this paper, I first consider an s-wave
SU(N) model and, assuming that f is the highest state,
show that condensation to a superconducting state, which
maps onto the U-negative superfluid state, occurs. Pairing
is a 1=0 multiplet and the gap is isotropic. But in a realis-
tic model, pairing is l & 0 and the gap vanishes at points
on the Fermi surface, as indicated by the data. '

For specificity, consider a Ce-type system close to the
4f ' state, when the system is a "Kondo lattice" with very
large fermion mass. " Fluctuations to the 4f states are

H =Hd+Hf+Hfd+XQ

where

and

Hd g ekckmckm
k, m

Hf =EP+bkbk+Ei g fkmfkm
k k, m

+E2 g a „(k)a „(k),
k, rn, n
(m) n)

(2a)

(2b)

Hfd g Uk [b (k —q)f~mckm +H.c.]
k,q, m

+ g Vk[am„(k+q)f~mck„+H. c.l .
k, q, m, n

(2c)

In (I) and (2), Hd is the Hamiltonian of the conduction
electrons of wave vector k and z component of angular
momentum m, =m, and energy eigenvalue sk. Suffix m
runs over N values. Hf is the Hamiltonian of the 4f elec-
trons, with E„ the energy of the configuration f".
Configuration f, with odd spin, is described by fermion
operators fk which are Bloch sums over lattice site states
f; on site i Configurat. ions f and f, with even spin, are
described, respectively, by scalar bosons b and tensor bo-

usually considered dominant, ' but when the system is
close to f ' it is essential to allow for fiuctuations to the f
state as well, since it is not so high up relative to the f
state, as discussed quantitatively below. Fluctuations to
f are treated here as relatively weak. The theoretical ap-
proach we use is a large-N one, where N is the f ' degen-
eracy. The large-N technique is one of the few ap-
proaches enabling reliable calculations to be performed in
these systems. ' ' This technique demands that some
oversimplification of the couplings in the lattice be made
by adopting a model with SU(N) symmetry, ' ' an ex-
tension of ordinary spin symmetry from twofold to N-fold
degeneracy. Thus some subtleties arising from coupling
of the gap vector to the lattice will be missed. Finally, I
adopt the slave-boson formulation of large-N
theory, ' "' ' which is well adapted to treating the lat-
tice' "' ' and works well below the lattice Kondo tem-
perature T~.

We introduce the Hamiltonian
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sons a~„; a „ is antisymmetric, and thus contains
N(N —1)/2 independent elements, the number of ways
two electrons can be put into f . Hfd describes fd mixing,
f -f ' with amplitude U, and f ' fw-ith amplitude V. The
presence of boson operators in Hfd ensures staying in thef, f', f subspace provided that a local constraint is
satisfied. 10, 11,l4-17

f

Qq =g gfkmfk+q m
k ' m

+ g a „(k)a „(k+q)+bkbk+q =1 . (3)
m, n

(m &n)

At low temperatures it is sufhcient to ensure that the
mean value of (3) is satisfied, ' "' ' whence a
Lagrange-multiplier term Xgn is added to (1). Equations
(1)-(3) constitute a generalization of the usual f f' bo--
son scheme. A superficially related but different scheme
has recently been used by Kotliar and Ruckenstein' for
the N=2 Hubbard model. The key element of the present
scheme is that it is defined for arbitrary N and is valid in
the large-N limit: specializing (1)-(3) to the single im-

purity case, I have verified' that the correct results in the
large-% limit for the model are retrieved. ' '

In the theory of the f -f ' model the leading-N behavior
is found by taking the expectation value (b(0)) =(bt(0))
of the k=0 b boson, and determining it variational-
ly. ' "' ' If this is done, and then the a-boson self-
energy is calculated to formal leading order ' in 1/N (see

(b)

(c)

FIG. 1. Diagrams for the a-boson self-energy. Wavy line is
an a boson, double broken line a complete b boson. (b) and (c)
are formally down by a factor 1/1V relative to (a).

Fig. 1), a Cooper-like divergence is found in the a propa-
gator at k =0. Following BCS it is natural to regulate this
by the introduction of anomalous expectation values

(at„(0)&=(a „(0))= —(a„(0)) .

We then have the mean-field Hamiltonian

H=g '2 (X+E2) g (a~„(0)& +(X+Ep)(b) ) '+ g &k&kmvkm+~f gfkmfkm
k m, n k, m k, m

+ g uk(fk ck~+Hc. )+ g Vk[(a, (0))f-km&k. +H c] . (4)
k, m k, m, n

Here gf E i +g defines a renormalized f level and uk = (b (0))Uk, sf is equal to Tx, the characteristic energy scale of the
Kondo lattice. ' "'

First diagonalizing Eq. (4) in all except the last term, (4) is expressed in terms of new fermion operators Ck
representing two hybrid heavy-fermion bands [they are heavy because of the smallness of (b(0)) = (I —(nf)) ' ', making
the f-k mixing matrix element uk small]. In this representation (4) may be written

'(E2+Z)d, . +g ( EkBk, Bk, +E kB—k,B. k;+Ek)+gvk( —iB k;dBk;+H. C. )
'

+COnSt .
I(&O) k k

(5)

Equation (5) is a simplified version appropriate for weak
mixing of f 2 ("weak coupling" ), which includes only the
lower heavy-fermion band

Ek 2 (Gf + Gk ) 2 [(sk ~y) '+ 4uk2]
'1'

Equation (5) is just a sum of N/2 BCS Hamiltonians.
Their now standard solution is exact in the limit of a large
number of particles. Minimizing the ground-state energy
with respect to d; gives the T=O gap equation (assuming
Tk &&E2 Ei)—

The Fermi level is assumed to lie in the Ek band. Uk is
defined as (E,—E, ) = —,

' gvk/(E'+~')'"
k

(6)

vk =2uk Vk/[(Ek Cf ) +4uk ] '

In (5) a rotation in SU(N) space has diagonalized
A =—(a „(0)), so that UtAU=D, D;~ =d;8;J. Also the ro-
tation brings in new fermion operators

In (6) the half-gap Ak =d;vk is the same for all i
In the usual s-wave SU(N) lattice model the uk and vk

matrix elements are isotropic, leading to an analytic solu-
tion to (6),

Bki g UmiCkm —~8k —i g UimCkm—

for the lower heavy-fermion band.

1/2 E1 —E2
&kF = 2(8fukF) exp

4Po&kF
(7)
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where pp is the density of states of d electrons at eF. We
thus get a Kondo-like expression for the gap h„which is
small if the f level lies far above f '. The gap is isotropic
in k space, AI,F =A. For the transition temperature T„
and critical field at T =0 H, (0), we find the BCS-like re-
sults T, =(1.14/2)A, H, (0) =(2rrNp) 'i 6, where p is the
heavy-fermion density of states at sy. This solution is
BCS-like except that, within a rotation in SU(N) space,
the order parameter contains N/2 independent phases and
one amplitude.

To estimate T„ it is convenient to rewrite (7) in the
form

T,/T~ =1.14(Tg/D) ' (8)
where a=N(E2 EI)—/(Ep EI), 2D is the bandwidth of
the k states, pp is assumed to be 1/2D, and
T~ =exp[(Ep EI )/NUp—,ppl. We assume that Vi, Ui,
Since T~/D is small, it is evident from Eq. (8) that T,/Tir
is itself small if N is large and/or if the f'-f excitation
energy is much larger than the f'-f excitation energy.
But in the heavy-fermion materials, N is essentially 2 and,
at least for CeCu2Si2, the two excitation energies are com-
parable, suggesting that superconductivity is possible by
this mechanism.

To see how this works out quantitatively, we shall make
estimates for CeCu2Si2 for which the relationship between
atomic spectroscopy and the heavy-fermion behavior is
much better understood than in the U materials. Directly
from spectroscopic data, we find ' Ep EI =4 eV,
E2 —EI =5.4 eV. We take' N=2. Tz may be defined as
in Ref. 15, when within mean-field theory we derive from
the observed y=1100 mJK, T& =25 K. Inserting into
(8) gives T, =2 K; the experimental value is approximate-
ly 0.6 K. Taking into account the simplest many-body
effect, the blocking of the charge-fluctuation channel, '

would give T, =0.8 K, in better agreement with experi-
ment. Note that we have neglected the eff'ect of f'-f
fluctuations on T, (Refs. 19 and 20) which for diff'erent
reasons is small both for N=2 and for N large. Hence,
within the uncertainties, we are for the first time able to
explain the order of magnitude of T, in heavy-fermion su-
perconductivity.

Pressure is expected to aff'ect Tz and T, primarily
through the pressure coefficients a and b of E~ Ep and
E2 —E). Assume for simplicity that a =b; both should
be positive. Then T~/Tx =exp(ap/Npp V ), T,/T,
=exp[a(3 —N)/4NppV ] (putting U= V). CeCu2Si2
presumably has at low p N =2 & 3, giving a positive pres-
sure coefficient of T, . However, as p increases so does Tir,
until T~ becomes comparable with crystal-field splitting.
The eff'ective N thus increases until N exceeds 3, changing
the T, coefficient to negative as observed. UBelq has a
pressure coefficient of T~ opposite to T„suggesting
N & 3.

In an attempt to formulate a more realistic model in
which the crucial f and k degeneracies have physical ori-
gin, I considered a rocksalt structure with dzy dy and
d,„orbitals on each Na site and f„(y2 2) fy( 2 2) and

f, („2 2) orbitals on each Cl site. Nearest-neighbor dd's
and f's are linked by tight-binding matrix elements.
The model is constrained to f,f ', and f . A simple case
is where f is the singlet state having both electrons in the
same orbital, when the order parameter is a singlet and
for some parameters the gap vanishes when k =ky 0,
k~ =k, =0, k, =k„=0. Consideration of f states with
electrons in different f orbitals leads to nonuniversal re-
sults apparently including the possibility of lines of van-
ishing gap on the Fermi surface.

The effect of the local gauge symmetry (3) is to make
only

~
&a&

~
and

~
&b)

~
nonzero —they cannot' "indepen-

dently have a phase; only their phase diff erence is
nonzero. The combination gi, &a (k)bg) is gauge invari-
ant and may be identified with the true order parameter.
In the future we shall include the eff'ects of the formally
nonleading diagrams in Fig. 1.

Finally, I mention that my theory seems to have much
in common (though an Anderson lattice is treated) with
Anderson's mechanism for superconductivity in the Hub-
bard model applied to oxide superconductors.

I am grateful to D. H. Lee, M. Rasolt, N. Read, and
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