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Comparison of the pressure dependencies of T, in the 90-K superconductors
RBa2Cu30 (R =Gd, Er, and Yb) and YBa2Cu30

H. A. Borges, R. Kwok, J. D. Thompson, G. L. Wells, J. L. Smith,
Z. Fisk, and D. E. Peterson

Los Alarnos National Laboratory, Los Alamos, New Mexico 87545
(Received 19 May 1987)

We have determined the eAect of pressure P on the resistance and superconducting transition
temperature T, of RBa2Cu30 (R =Gd, Er, and Yb) and compare our results to those obtained
on high-quality YBa2Cu30 . The transition temperature, which is 90 K or greater at ambient
pressure for all four compounds, is enhanced by pressure in each at rates between 0.09 and 0.19
K/kbar. Interestingly, the presence of a localized moment in the rare-earth compounds appears to
have no influence on the pressure response. From the positive dT, /dP we infer a positive change
in the thermal expansion upon entering the superconducting state.

The discovery of superconductivity above 90 K in an
Y-Ba-Cu-0 compound' has stimulated the search for
even more materials in this generic class, having compara-
ble or higher transition temperatures. Subsequently,
high-temperature superconductivity was reported by us '

in rare-earth (RE) compounds and more recently by oth-
ers. These findings were particularly interesting be-
cause local magnetic moments are well known to have a
detrimental eAect on superconductivity. The most notable
previous exceptions to this "rule" have been certain
RMo6Ss (Ref. 7) and RRh4B4 (Ref. 8) compounds
(where R is a rare earth) in which antiferromagnetism
and superconductivity coexist at low temperatures.
Specific-heat measurements, in conjunction with electrical
resistance and magnetic susceptibility experiments, on

RBa2Cu30, (R =Gd, Er, Ho, and Dy) suggest that su-
perconductivity and magnetism coexist in these com-
pounds as well. Interestingly, to date there are no re-
ports of superconductivity in the light rare-earth (Ce and
Pr) analogues of these high-T, compounds. Such an ob-
servation may suggest that the volume of the RE ion plays
an important role in determining whether or not supercon-
ductivity appears.

To our knowledge, only two studies have been made on
the volume (pressure) dependence of T, in materials with
T, ) 90 K. The first, reported by Hor et al. ,

' was per-
formed on a sample of nominal composition
(Yl Ba„)2Cu03$having a resistive onset temperature
greater than 91 K. In that study to —19 kbar, the super-
conducting onset temperature increased weakly with pres-
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FIG. 1. Resistance of YBa2Cu30„atvarious applied pressures as a function of temperature. Note in the inset the additional struc-

ture developing near the completion of the transition at higher pressures.
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FIG. 2. Resistance vs temperature for GdBaqCu30„at various selected pressures. The inset provides an expanded view of the tran-
sition region.

sure and appeared to saturate (dTJdP=O) for P) 12
kbar, while the temperature at which superconductivity
was complete decreased weakly for P ) 4 kbar. We now
know " that this composition was not optimal and that
the intrinsic pressure dependence of the proper
YBapCu30„phase was undoubtedly masked in part by the
presence of additional phases. A second study by Murata

equal.

' on nominal Y~ Ba CuOq4 showed the resistive
midpoint transition temperature decreasing by —2.5 K
with the application of 8 kbar and considerable broaden-

ing of the transition width, as also found by Hor et al. '

Because it is important to know the pressure depen-
dence of T, in these materials, we have measured the
eA'ects of pressure to —18 kbar on YBaqCu30„and
RBaqCu30„, where R=Gd, Er, and Yb. The samples
were prepared by conventional ceramic powder techniques
starting from oxides of Y, R, and Cu and BaCO3. The
samples were fired in oxygen at 900-950'C to form the
superconducting phase, then sintered into the shape of
pills for measurement, and slowly cooled in oxygen after
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FIG. 3. Resistance of YbBaqCu30„at selected pressures vs temperature. The inset shows a sharpening of the resistive transition
width with applied pressure.
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positive, there should be a positive change in the thermal
expansion a in going from the normal to superconducting
states (ha =a, —a„)0). For a crude estimate of Aa, we
assume that the specific-heat change in going through the
superconducting transition is given by AC= T, ) /2, where

y is the electronic specific-heat coe%cient. Taking y=9
mJ/mole Cu K, which is consistent with magnetic sus-
ceptibility, upper critical field near T„and resistivity
measurements on our YBa2Cu30 sample ' as well as
with literature values for these quantities, " we estimate
Atr=6X10 /K. Such an estimate is accurate to within
factors of order unity. Presumably comparable values for
Aa would be inferred for the RBa2Cu30„materials. The
positive change in h, a further implies' an increase in the
thermodynamic critical field near T, with pressure.

In summary, we have determined the eff'ect of pressure

on the electrical resistance and superconducting transition
temperature of four high-T, samples (Y, Gd, Er, Yb)
Ba2Cu30„. Qualitatively similar behavior is found in all
four compounds, indicating that neither the local moment
associated with the rare-earth atom nor the size of the
substituted ion, which varies by as much as 7%-8%, has a
profound eff'ect on the pressure response. The positive
change in T, with pressure, which increases with the
atomic weight of the substituted atom, implies that the
thermal expansion change in going from the normal to su-
perconducting state is positive and that the thermodynam-
ic critical field increases with pressure.

Work at Los Alamos was performed under the auspices
of the United States Department of Energy, 0%ce of
Basic Energy Sciences, Division of Materials Sciences.
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