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We report on the first computer simulation of the effects of weak localization in the back-

scattering of light from a medium containing randomly distributed Rayleigh scatterers. In agree-
ment with our earlier experimental results, the cone of enhanced backscattering in the polarized

light component is found to be spatially anisotropic, and this is a consequence of the transverse

character of electromagnetic waves.

Recently weak localization of light was detected, '
manifesting itself in the form of a cone of enhanced inten-
sity around the direction of pure backscattering in the
light scattered from a random medium. From a more de-
tailed study of the backscatter cone, two very striking
eA'ects were observed: (i) The enhancement is much more
pronounced in the polarized than in the depolarized light
component, ' s and (ii) if very small particles are used as
scatterers, the "cone" of enhanced intensity shows spatial
anisotropy, its width being larger in the direction of the
polarization vector of the incident beam than in the per-
pendicular direction. Both these eA'ects are clearly related
to the vector character of light and a complete description
of the weak localization of light shou1d therefore take into
account this vector character. A lot of theoretical work
has already been done to explain the shape and the width
of the backscatter cone, and most of this work concerns
the isotropic scattering of scalar waves: An exact
theory and diffusion approximations ' have been
developed. The shape and width of the backscatter cone
predicted by these scalar theories agree quite accurately
with those found experimentally in the polarized light
component, but scalar theory cannot be used to describe
the depolarized component. In other work, the vector
character is considered: Akkermans ' calculated the
enhancement factor for the depolarized light component
per order of scattering for a medium containing Rayleigh
scatterers and found a total enhancement factor by sum-
ming the weighted contributions of the orders. [In the
weight factors, the (partial) retention of polarization at
low orders of scattering was not taken into account and
the resulting value of = l.5 is therefore too high. ]
Stephen and Cwillich" developed a diff'usion theory that
takes polarization into account and this theory predicts an
enhancement factor of =1.12 for the depolarized light
component in Rayleigh scattering. By an extension of this
theory, Cwillich and Stephen' predict spatial anisotropy
in the backscatter cone as a result of oblique incidence.
We believe that the anisotropy eA'ect that we observed is
too large to be explained by oblique incidence only.
Furthermore, we demonstrated experimentally that the
anisotropy results from lower-order scattering contribu-
tions. Therefore a diffusion theory (which is inherently

valid for high-order processes) cannot be expected to pre-
dict the eAect. We think that the qualitative explanation
that we gave in Ref. 6 which is based upon the symmetry
of the Rayleigh phase function and independent of the an-
gle of incidence, is correct. In this paper, we will show
that Akkermans' method to calculate the enhancement
factor in the depolarized light component leads to a
correct result if the partial survival of polarization at low
scattering orders is taken into account. Furthermore, we
will present results of the first computer simulation of
weak localization in multiple Rayleigh scattering, which
demonstrate that the spatial anisotropy in the backscatter-
ing cone of the polarized component is a consequence of
the vector character of light in combination with the sym-
metry of the Rayleigh phase function.

Let light with polarization vector P; be incident on a
random medium in the z direction, and let si, s2, . . . ,

s„&,s„be a "light path" formed by n scattering centers,
along which a wave travels. A scattering event will nor-
mally change the polarization vector of the traveling
wave. We observe the wave that is scattered from s„, us-

ing a detector that is located in the —z direction and
denote the polarization vector of this wave by Pf+. Since
P; and Pf+ are both parallel to the z =0 plane, they are re-
lated by Pf+ =M+P;, M+ being a 2x2 matrix. For the
wave that travels along the same path but in the opposite
direction (the time-reversed path) Pf =M P;, and M
and M are related by M = (M+) . For directions
slightly diA'erent from —z, the relationship M =(M+)
will still hold approximately. The phases of a time-
reversed pair of waves are correlated and the waves will
interfere: For the polarized component the interference
will be constructive in the —z direction, and in directions
different from —z the phase shift between the waves trav-
eling in opposite directions along an individual path will
depend on the angle 0 between —z and the direction of
observation and on the relative coordinates of s i and s„: if
s

&
is situated in the origin and x„and y„are the x and y

coordinates of s„, then the phase shifts that result from a
displacement of the detector over an angle 0 in the x-z
plane (parallel to P;) and in the y-z plane (perpendicular
to P;) will be =x„sin8/X and =y„sin8/k, respectively. If
0 is sufficiently large, the phase shift for individual light
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paths will be random and the detected polarized and depo-
larized intensities will be 2(M11) and (M)2) + (M21)
=2(M)2), respectively. (The triangular brackets
represent summing over all light paths. ) The intensities
observed in the —z direction will be ((2M(1) ) and
((M12+M21) ). For the enhancement factors in the po-
larized and depolarized components EII and E~ and for
the polarized and depolarized fractions of the total back-
scattering F]~ and F& it follows that

order of scattering. Consider the equations:

M'"' =(1 —k' )M'"

knx kny ~21 knx knz ~31(n —1) (n —1)

M" =(1 —k )M"

knx kny M 22 knx knz ~32(n —1) (n —1)

((2Mii)') (Mi2M2i)
Ei =2, E~ =1+

2(M' )
' (M' )

+ (1 —k )M21 ' —k„k„,M31

(M 1 1 ) (M i22)

(Mi', )+(M,'2)
'

(M,', )+(M,', )

It is easily seen that for second-order backscattering
M12 =M 21, and this already su%ces to explain that
E& & 1. Likewise, if in second-order backscattering the
angle between the incident polarization vector and the
normal to the scattering plane is (1), the backscattered po-
larized amplitude will have maxima for (1) =0, 7r, and mini-
ma for (1) =7r/2, 37r/2, so that for the transport of the polar-
ized component it will hold that the average lightpath has
y„& xn. Consequently, a displacement of the detector
over an angle 0 in the y-z plane will afIect the average
phase shift to a larger extent than would an equal dis-
placement in the x-z plane or, the second-order contribu-
tion to the polarized cone is broader in the x than in the y
direction.

Having shown that the second-order contribution to the
backscattering has the properties of making the depolar-
ized enhancement factor E& larger than 1 and making the
polarized cone spatially anisotropic, we will evaluate the
sum of the contributions of all orders: If C„ is the fraction
of the total backscattered intensity that is due to nth order
scattering processes, the total depolarized enhancement
factor will be

+(1 —k )M " ' —k k M,',"

Multiplying the second equation by the third and averag-
ing over all angles of scattering (the odd terms vanish) we
get

(M(n)M(n)) g(n) ((1 k2 )(1 k2 ))g(n —1)

+(k„',k„', )~("-",
where 71(" ')—= (Mi(1 ' M2(2 ')) and triangular brackets
represent the averaging. Likewise, we get from the first
and last one,

(M(n)M (n)) (n) ((1 k2 ) (1 k 2 )) (n —1)

+(k' k')g("-" .

From k„, =sinOcos(t, k„~ =sin8sin(i), and k„, =cosO, we
have ((1 —k„„)(1—k„~) = —,', and (k„k„~)= —,', . Solving
the set

g
(n) —6 n (n —1)+ 1 (n —1)

15 15

(n) 1 g (n —1) + 6 (n —1)
15 15 1

we get

(n 1) [( 7 ) (n ]) ( 5 ) (n 1)]/2

E«1 = g C„F(n)E(n)/g g„F(n)
n 1 n 1

(2)

We will follow Akkermans'' method to find E~" (since
intermediate scattering directions will enter into the con-
siderations, vectors and matrices will be in three dimen-
sions from now on): After the first scattering event the
polarization vector of the traveling wave is P1=m1P1,
where

Now, since we observe from the —z direction, it holds

100
mn= 010

000
so that for nth order backscattering

(M (n)M (n) ) g
(n —1)

Similarly, we can find

((M(n) ) 2) [( 10 ) (n —1) ( 7 ) (n —1)]/3

k lx k1xk ly k lxk1z
m 1

= k1xk1y 1 k1y k1yk]z
k1xk1z k1yk1z 1 k1z

and

((M'"')') =[(—")'" ' +2( —')'" "]/3

After the nth scattering event the polarization vector of
the wave traveling along a light path in one direction
is PI+=M "P;, where m ")=r[ „m. Now M"
=m M " ' and the nine linear equations contained in
the latter matrix equation may be used to And the
enhancement factor and the amount of depolarization per

3 0 7(n —1) 0 5(n —1)
E (n) 1+ ~

1 —07" (6)

The perpendicularly polarized fraction of the nth order

For the perpendicular enhancement factor in the nth or-
der contribution (1+(Mi(2 M21 )/((M12 ) )) we thus ob-
tain
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contribution to the backscattering is

((M (n) ) 2)
F (n)

((M,'", ') ')+ ((M,',"') ')
1 —07"
2+0 7"

A computer simulation (see below) showed that the ex-
pression 2[(n+3) '/ —(n+4) '/ ] is a good appoxima-
tion for the fraction C„of the total backscattered intensity
that is due to nth order scattering. From C„, F&"~ and
E ~" we find E & to be = 1.11, in agreement with the value
of =1.12 found by Stephen and Cwillich. Among the
particles that we used in our experiments the 0.214-pm
polystyrene spheres have a phase function that comes
closest to the Rayleigh phase function (the difference is
still substantial). Samples containing these particles as
scatterers show a perpendicular enhancement factor of
1.12 ~ 0.02.

In order to verify our explanation for the spatial anisot-
ropy found in the polarized cone, we performed the fol-
lowing computer simulation: As a sample a finite slab was
taken, of which the thickness (in units of the mean free
path X r) could be varied. The vacuum-sample interface
was chosen in the z =0 plane, incidence took place in the
origin, and the direction of incidence was z. For nth order
scattering, random sequences of n —

1 scattering direc-
tions were generated (the nth direction being —z). The
distance of free travel of a photon before each scattering
event was taken —1n(r), r being a random value between
0 and 1, corresponding to Beer's-law behavior. Record
was kept of the coordinates of the photon, and those se-
quences in which the photon left the slab on either side be-
fore the nth scattering event were discarded. From the
angles of scattering and from the Rayleigh phase function,
2x 2 matrices relating Pf to P; were calculated, and values
for M ~ ~, M ~2M2i, and M ~~, attenuated by a factor
exp( —zf) (zf being the z coordinate of the last scattering
center) were accumulated in two two-dimensional arrays
of "channels" according to their xf- and zf-, respectively,
their yf- and zf-coordinates. Thus, each channel comes to
hold a contribution to the backscattered intensity for
which the angle dependence of the phase shift between the
waves traveling in opposite directions is known. The cor-
responding interference patterns were then calculated and
added, yielding two distinct intensity patterns (one for x
and one for y polarization) for both scanning directions
(the x scan parallel to P;, and the y scan perpendicular)
making a total of four patterns. We note that, by count-
ing the interference between time-reversed pairs of paths
but not the interference between diff'erent paths, we obtain
a result that is equivalent to an ensemble average over
diAerent realizations of the random medium, i.e., the type
of cone that is found from a liquid medium in which the
scatterers are subject to thermal motion or from a solid
medium that is spun. The strong intensity fluctuations
that may be observed from stationary solid samples ' are
a result of interference between diff'erent light paths.

The simulation was tested in the following ways.
(i) Using an isotropic phase function, the simulation

was found to reproduce the transmission and reflection
characteristics calculated for diferent slabs from exact
Milne theory. '

(ii) Still using an isotropic phase function, the simula-

0

1.0
c5 0

0.1.
1

I

10
(n —1)

tion reproduced the dependence of full width at half max-
imum (FWHM) on k/X r, the order of scattering, and the
slab thickness as calculated from exact isotropic theory.

(iii) Using the Rayleigh phase function in combination
with a constant step length, omitting the exp( —z) at-
tenuation, and permitting z to become negative (i.e. ,

evaluating exclusively the influence of the angles of
scattering) the simulation reproduced the order depen-
dence of the perpendicular enhancement factor as found
from (6).

Simulated values of the full width at half maximum I
(FWHM) for x and y scans of the nth order parallel cone
for a slab of thickness 20K f are given in Fig. 1. For low
orders of scattering, the values are larger for the (parallel)
x scan than for the (perpendicular) y scan. For increasing
order the value l, /1 ~ converges towards unity, so the
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FIG. 2. Anisotropy in the enhanced backscattering of light
from a random medium containing Rayleigh scatterers: total
cones as found by summing the orders 1-1000 (corespondrng to
94% of the total backscattering). The curves are normalized
with respect to 100% of the total ( II + J ) background intensity.
Upper curve: scan IIP;, Pf IIP;; middle curve: scan ~P;, Pf IIP;;
lower curve: Pf J P; (curves for scans IIP; and J P; coincide).

FIG. 1. (X f/X) r of the simulated contribution to the back-
scatter cone as a function of scattering order. Upper curve,
scan IIP;; lower curve, scan i P;. Continuous line, (X f/X)

I =0.5(n 1)—
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high-order asymptotic behavior is expected to be the same
for both scanning directions. An estimate of this behavior
obtained by extrapolation of the FWHM values found in y
scans is given in Fig. 1 as a continuous line. The implied
empirical relationship between I and the order of scatter-
ing is I =0.5(k/Xmt)(n —1)

The fraction that each separate order contributes to the
total backscattering was simulated in the following way:
Photons were allowed to random walk in a slab. For every
collision, the scattering angles 8 and p were chosen ran-
domly, the former from a probability distribution imaging
the Rayleigh phase function @(8)= —,

' [1+cos (8)], the
latter from an interval 0-2z. The step length was
—ln(r), r being (as before) a random number between 0
and 1. Record was kept of the number of collisions n, the
z coordinate, and the last direction of scattering. Back-
scattered photons were accumulated in channels, accord-
ing to their n value. Tested with an isotropic phase func-
tion, the simulation reproduced the results of Milne
theory. Using the Rayleigh phase function, we found very
nearly the same results as in the isotropic case. The simu-
lation showed that to an approximation sufficient for our
purposes, the nth-order fraction of the total backscatter-
ing (for thick slabs) may be given by C„=2 [(n
+3) 'tz —(n+4) 't ] in both isotropic scattering and
Rayleigh scattering.

Using the latter result, intensity profiles for the x- and

y-polarized components in both x and y scans were calcu-
lated in the following way: For the orders 2-12, simulat-
ed rofiles, weighted by a factor of C„F(" (F " being
F~~~" or F~" ) were added. The x-polarized profiles were
increased by Ct (=0.106) to account for the first-order
contribution. The x- and y-polarized contributions of or-
der & 12 were assumed to be Lorentzian shaped with a
FWHM of 0.5(k/X t)(n —1) 't and flat, respectively,
both with F " =

& . The total intensity profiles for the or-
ders 1-1000 (corresponding to 94% of the total back-
scattering from a semi-infinite slab) are given in Fig. 2. It
is seen that for the x-polarized component (parallel to the
incident polarization) the x scan yields a wider profile
than the y scan and this is a result of the anisotropic char-
acter of the Rayleigh phase function. For the y-polarized
component the x- and y-scan curves coincide. This also
follows from the symmetry of the Rayleigh phase func-
tion: The perpendicular component of the polarization
vector varies with sinpcosp, making the x and y directions
equivalent.
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