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Vortices with half magnetic Aux quanta in "heavy-fermion" superconductors
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It is shown that in "heavy-fermion" superconductors a new vortex state can occur characterized by
the existence of half magnetic Aux quanta. Vortices in polycrystals should exist even in the absence
of an externally applied magnetic field. The internal structure of the vortices is also investigated.

INTRODUCTION

The so-called "heavy-fermion" behavior observed in
various substances is one of the most stimulating topics of
condensed matter physics which have attracted the atten-
tion of both theoretical and experimental investigators
during the last years. Experimental data on supercon-
ducting cerium- and uranium-based intermetallic com-
pounds such as CeCuzSi2, UBe», and UPt3 (Ref. 1) sug-
gest that an "unusual" pairing of electrons can take place.

In this context tunneling between spin "singlet" and
hypothetical "triplet" superconductors has been investi-
gated for many years together with proximity effect be-
tween such systems. More recently, the limits of using
pair tunneling as a probe to differentiate between even-
and odd-parity states (e.g. , Ref. 4) and results of rather
sophisticated experiments have been discussed by several
authors.

In the case of unusual pairing, the order parameter
should belong to the nontrivial representation of the crys-
tal symmetry group. This circumstance leads to quite
interesting consequences. In this article we show that in
these superconductors there exist vortices with a half
magnetic Aux quantum. We shall demonstrate that in a
single crystal these vortices may exist only on the domain
walls between different degenerate superconducting states
whereas in a polycrystalline sample, vortices can occur at
the intersection of the three boundaries between three
crystal grains (the line L at which three crystalline grains
are in contact). In this case these vortices are energetical-
ly favored and they exist even in the absence of an exter-
nally applied magnetic field. We shall refer only to non-
magnetic superconducting phases.

Let us show first that a system of an S P Ssandwich (S--
and P stand for usual and unusual superconductor, re-
spectively) closed by a superconducting loop (Fig. 1) will
contain half magnetic fiux quanta, namely (n + —,

' )@0.
As is known, the order parameter of a superconductor

can be expressed as

b, p(k, X)= g g'f' t3(k),

where g' is an order parameter which can be in general

function of temperature T and coordinate X;, and f'tt(k)
is the basis function of the representation which contains
the angular dependence of the momentum. The usual
normalization condition for 1ij(k) is f ~

tt(k)
~

d&=1.
in the superconductive phase there exists only one func-
tion g'(i =1), then ri belongs to the one-dimensional rep-
resentation. Let us consider a system of two supercon-
ductors, one usual (S) and one unusual (P), coupled by
tunneling. The free energy of such a system of two
weakly-coupled superconductors is given by

F=Re A~Aq GlG~ T GqG2 dkl dk2 ——3 Reg~gq,

where 5& and 62 are the order parameters in the S- and
P-type superconductors, respectively. The coefficient A is
a function of the orientation of the barrier with respect to
the crystal axes (it is also temperature dependent). A is

an odd function of n (unit vector normal to the surface of
contact) since b, ~ and b, q are even and odd functions of k~

and k2, respectively. Here our reference system is provid-
ed by the crystal axes. For example if we assume the or-
der parameter b, 2 to be a pseudoscalar [b,q-(k, cr)] we
can write for the case of a crystal of cubic symmetry

A(n ) = Af (n),

P

FIG. 1. Sketch of a sandwhich structure S-P-S (see text)
closed by a superconducting loop.
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where

f =n n~n, (n —n~ )(n~ —n,2)(n,2 —n„2)

with the resulting angle dependence of the Josephson
current, I~(P) = Af sin()(, P being the relative phase across
the boundary.

Let us observe that a minimum of the free energy does
not occur necessarily for /=0. Indeed, if we consider a
structure such as that sketched in Fig. 1, the minima of
the free energy at the S-P and P-S boundaries will corre-
spond to the values /=0 and P=n, respectively. Thus
the minima of the free energy in our system occur at
values of magnetic (lux equal to (n+ —,()@0, where 4o is

the Aux quantum.
It is worth observing that the expression of the free en-

ergy we used is written under the assumption of equal
critical temperatures for the two superconductors. Such
an assumption allows a more clear discussion of the topic.
It is worth noting that this is a limit which, however, does
not affect what follows since everything else is essentially
symmetric in character and valid for arbitrary T,&T,'.

POLYCR YSTALLINE STRUCTURES

Let us discuss the case when the nontrivial order pa-
rameter g belongs to the one-dimensional representation
of the crystal symmetry group. ' In this case in a single
crystal the Ginzburg-Landau equation has the same form
as in conventional superconductors, and vortices, as usu-
al, carry one magnetic flux quantum. Let us consider the
boundary between two crystal grains. Near T, the contri-
bution to the free energy of this boundary, which depends
on the phase difference P of the order parameter is, as we
have seen, equal to F(2 ——A Re2)12)2 where 2)( (2)2) is the
order parameter in the crystal grain 1 (2). Here both 211

and g2 refer to unusual superconductors. For nontrivial
representations, transformations of the symmetry group of
the crystal 1 exist under which the order parameter q
changes sign. The free energy is invariant, so the
coefficient A has to change sign under such a transforma-
tion; consequently its sign depends upon the choice of the
coordinate axes in the first and second crystal grains. For
two crystal grains we can always choose these axes so that
the coefficient A is negative and the minimum of F corre-
sponds to the phase difference P equals to zero.

If we consider three border planes of three crystal
grains the situation can be different. The energy associat-
ed with the boundaries between the three grains is

F=Fi2+F23+F3

on the reciprocal orientation of the crystal grains. We
show below that this sign may be positive or negative with
probability of the order of one half. If it is negative, the
minimum of the free energy corresponds to a state with
equal and constant (spatially independent) phases of the
order parameter. If the sign of the product A &2 A&3 A» is
positive, the zero-current-carrying state corresponds to a
maximum of the energy at one boundary. For not very
small grains a current-carrying state is more favored. In
such a state the phase of the order parameter changes in
each grain. Indeed in formula (3) the parameter 2) in each
term indicates the order parameter close to the boundary.
More explicitly we indicate (see Fig. 2) with 2) ((21 and 2)((3)
the values of q& at the border with grains 2 and 3, respec-
tively (analogously for 2)2 and 2)&); sufficiently far from the
borderline of the three crystal grains, the phases of the or-
der parameters at the different boundaries are independent
(i.e., 2)((21+7)1(3)). The minimum of the free energy is
achieved if at one boundary (1-2, for example) the phase
difference is ~ and at the others (2-3 and 3-1) such a
phase difference is zero. This phase difference (~) results
from the phase change in the whole volume of the grains.
Let us denote by b,P; the phase change of the order pa-
rameter inside the ith crystal grain. Thus, by following a
path around the border L and far enough from it, the
phase difference will be

~4=~41+~02+A=~ .

In the volume of the grains we have

2

j=, fivQ A-
8m.e A.L c

where A,L indicates the London penetration depth.
Attention should be directed also to the limits of ex-

pression (5) which is actually valid only for one-
dimensional representations of the cubic symmetry group.
In the other cases the superconducting current density is a

Re( ~ 12 /1 72 + ~23 92 13 + ~ 31 9361 ) (3)

For a fixed choice of the axes in grain 1, by choosing the
coordinate axes in grains 2 and 3 we can assume the
coefficients A ~2 and A» to be negative. In this case the
sign of the coefficient A23 will be fixed. By changing the
coordinate axes in one grain, we change simultaneously
the sign of two coefficients A, so the sign of the product
A

& z A z3 A» is not arbitrary. This sign does not depend
upon the choice of the coordinate axes; rather, it depends

FIG. 2. Values of the order parameters at the grain boun-
daries.



36 VORTICES WITH HALF MAGNETIC FLUX QUANTA IN. . . 237

Thus when the product A~qAQ3A» is positive the free-
energy minimum corresponds to the state with a vortex
on the border line L of the three crystal grains. This vor-
tex carries a half magnetic flux quantum.

Let us show that this product may have different signs
depending on the mutual orientation of the three grains.
Let us rotate the crystal lattice of grain 3 only, keeping
the orientation of grains 1 and 2. Let us first study the
case when g changes sign under some rotations. In this
case A changes sign as well. The product AjzAQ3A3]
changes sign when one of the coefficients A/3 OI A3]
changes sign. A simultaneous change of the sign of both
under rotation is unrealistic because A&3 and A» corre-
spond to different boundaries and depend upon the orien-
tation of these boundaries and crystal grains 2 and 1, ac-
cordingly.

For pseudoscalar representations, the order parameter
does not change under rotations, but changes sign under
reflection. In this case the statement of the existence of a
vortex is not general; rather it depends upon the boundary
conditions at the border between two grains. For the usu-
al diffusive case the coefficient A&3 does not depend upon
the reciprocal orientation of crystal axes 2 and 3; it de-
pends only on their orientation with respect to the bound-
ary between the grains (uncorrelation between ki and k2)
and is

3 23 —af 2(n )f3 ( —n )

where f;(n) is a function which depends on the projection
of the vector (normal to the boundary) onto the crystal
axes of the ith crystal grain. This function describes the
angle dependence of the Josephson current between this
and the usual superconductor, as discussed in the Intro-
duction. Depending on the orientation of the crystal axes
with respect to the boundary, this function may have
different signs, as will A&3. Thus vortices can exist also in
the pseudoscalar case.

The internal structure of the vortices depends upon the
value of the coefficient A. We found this value at temper-
atures near T, . The order parameter g decreases near the
boundary within a distance and may be found from the
integral equation

&(&,X)= J V(k, ki)GG(ki, k', X,X')

XA(k', X')dkdk'dX' . (8)

tensor and there should be more than one penetration
length.

This last circumstance should be taken into account
also in connection with the lower degree of symmetry at
the boundary. Moreover, let us observe that in the non-
magnetic case the components of the order parameter
have equal phases. Thus the expression given here for the
superconducting current density holds for a nonmagnetic
phases without domain walls.

By choosing the contour in a region where the current
is zero, we obtain that inside the contour there exists a
half magnetic flux quantum. Indeed we have

JH dS= (t) A.dl
c'o

2

The solution of this equation is a linear function. This
solution must turn into the exact solution of the
Ginzburg-Landau equation in the ith crystal (which is
rigorously valid for

~

x
~

&&gp)

X)0
2)(x)= .

X X&0

A linear solution on the different sides of the boundary
has the form

1 (niX+—niaiko+n2bko) x + ~
2)(x)= . )~

92x+ 92a2(o+ lib(o)

The coefficients a; and b depend upon the reciprocal loca-
tion of the crystal grains and are determined from (8).

Since the only length parameter in this integral equa-
tion go, the coefficients a; are of the order of unity, and b
is of the order of the boundary transparency which we
consider also to be of the order of unity. Let us write the
expression for the current flowing through the boundary

Cbgoj=C Im(g*Vg) =
~

21
~

sin(p, —$2), (10)

where P is the phase difference across the boundary C is a
constant. Hence, even if the transparency of the bound-
ary is of the order of unity, near T, the critical current
through the boundary is smaller than the despairing
current by a factor gp/g. On the other side the current is
related to the free energy of the contact by the formula

2e BF'=~ ay'
so the coefficient A in (2) is equal to

eC bgo

2e

For the determination of phase and current distribution
inside the vortex we must find the solution of the equation
V j(p)=0 (b,/=0) which is valid inside both volumes 1

and 2. The boundary condition is provided by Eq. (10)

bgp
V„pi ——V„$2—— sin(pi —p2) .

The solution of the equation depends on the distance of
the borderline of the three grains. As a result we get that
at distances less than g /go from the border L line of the
three grains the phase has little change in the volume of
the crystal grains and has "jumps" at the boundaries. At

The kernel of (8) decreases at distances of the order of go.
Thus at distance X »gp from the boundary the expres-
sion for b, (k,X) is given by (1). In the region gp «X «g,
g satisfies the equation

d 2)(X)
dX
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distances larger than g Ibgo the phase has a jump on the
boundary close to ~, and a continuous change in the
volume up to vr. For heavy-fermion superconductors the
Ginzburg-Landau parameter x = A,L /g = 50. So if the
boundary transparency is of the order of unit (b —1) then

g /bgo«A, L and the current distributions in the vortices
at distances larger than g /bgo is as in the usual vortices.
The energy of such vortex is four-times less than the ener-

gy of the usual vortices. If the transparency of the bound-
ary b is small or the temperature is close to T, then the
opposite condition, A,t «g Ibgo holds. The current dis-
tribution in this case is like that occurring in Josephson
junctions. ' Currents and fields penetrate across the
boundaries between the grains within a length (the
Josephson penetration depth)

So far we have considered the border lines of three
crystal grains. In polycrystals these lines may end only at
the surface of the sample. In the volume they can inter-
sect and form loops. In the absence of externally applied
magnetic field, the magnetic flux in the vortices may be
directed along two different directions with a probability

If the grain size and hence the distance between the
vortices becomes less than the vortex size A,L then it is
meaningless to refer to a magnetic flux of "one" vortex.
In the sample there must exist randomly distributed mag-
netic field with local amplitude of the order of 4o/4~EL .

Let us consider now the case when the nontrivial order
parameter belongs to multidimensional representations of
the crystal symmetry group. This topic is quite compli-
cated because domain walls may exist (even in a single
crystal) between the different degenerate superconducting
states. If there are no domain walls in the volume of the
crystal grains, then there are no changes in the previous
considerations except for the fact that the product of the
coefficients 3 depends not only upon the mutual orienta-
tion of the crystal grains but also on the state in the de-
generate representation. For different states belonging to
one degenerate representation the coefficient A has
different values; this result does not change our con-
clusions.

VORTICES AND DOMAIN WALLS

We can characterize the domain wall by some element

g of the crystal symmetry group which transforms the
order parameter from one side of the wall to the order pa-
rameter on the opposite side (for instance it may be a ro-
tation of ~/2 around the axis of the cube which rotates
one tetragonal axis into another).

For some superconducting states it is possible after a
number of rotations g to return to the original value of
the order parameter q but with opposite sign. In this case
a vortex with a half magnetic flux quantum does exist on
the common line of the n domain stalls. In this case
domain walls play somewhat the same role of grain boun-
daries in polycrystals. For n =2 a vortex line will exist
on the wall separating the two domains. The energy of
such a vortex is positive (i.e. , it requires applied field) but
it is 4 times smaller than the energy of a "usual" vortex.
Thus vortices with a half magnetic flux quantum can
occur also in a single crystal.

There are superconducting phases in which it is impos-
sible by whatever number of rotations to transform the or-
der parameter q into —g. In this case there are no such
vortices in single crystals; they can exist only in the poly-
crystals as previously discussed. Moreover, vortices can
occur also on a crossing line between a domain wall and a
grain boundary.

CONCLUDING REMARKS

In conclusion we expect that for "heavy-fermion" su™
perconductors a new vortex state can occur which is
characterized by the existence of half magnetic flux quan-
ta. Half-quantum vortices can occur in single crystals de-
pending on the symmetry properties of the order parame-
ter in the superconducting phases. In polycrystals such
vortices have negative energy and therefore should exist
even in the absence of externally applied magnetic field.
It would be of great interest to consider the possibility of
a direct experimental observation of such a vortex struc-
ture by using a suitable "microscopy" technique or any
other possible probe which could be envisaged.
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