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Effects of temperature on domain-growth kinetics of fourfold-degenerate
(2X I ) ordering in Ising models
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Computer-simulation techniques are used to study the domain-growth kinetics of (2X 1) order-
ing in a two-dimensional Ising model with nonconserved order parameter and with variable ratio a
of next-nearest- and nearest-neighbor interactions. At zero temperature, persistent growth
characterized by the classical growth exponent n= —,

' is found for a~ 1, whereas the domain
boundaries become pinned and the growth stops for a (1. For finite temperatures and a~ 1, the
growth exponent is found to be temperature independent in a wide regime, and for a ~ 1 the
domain walls unpin and growth resumes.

Two-dimensional Ising models have served as the prin-
cipal class of microscopic interaction models in the study
of domain-growth kinetics and the dynamics of random in-
terfaces. ' ' They have had seminal importance in estab-
lishing the validity of dynamical scaling and in clarifying
aspects of a universal classification of growth processes.
The main reasons for the usefulness of the Ising models
are their relative simplicity and their capacity of possess-
ing a rich phase structure including commensurate and in-
commensurate modulated phases with a variety of sym-
metries. Furthermore, the isomorphic relationship of Is-
ing models to lattice-gas models has made ther@ applic-
able to various surface-adsorption problems. '

In this Brief Report we report on new computer-
simulation results for the domain-growth kinetics of a
two-dimensional Ising model with (2X I)-ordered phases
on a square lattice. The kinetics is studied for a noncon-
served order parameter as a function of temperature and
ratio a of next-nearest-neighbor (NNN) and nearest-
neighbor (NN) coupling constants. The ground-state
symmetry of the model is the same as that of atomic oxy-
gen chemisorbed on (110) surfaces of tungsten. ' Our
results supplement the recent and very extensive study by
Sadiq and Binder of dynamical scaling and growth in the
same model for conserved as well as nonconserved magne-
tization.

The model Hamiltonian, on which we have based our
calculations,

NN NNN

H — JNN g 0'ter& JNNN g 0't 0'&, 0't ~ 1

(i,j ) &ij )

allows for a variable ratio, a= JNNN/JNN, of strengths of
the isotropic next-nearest- and nearest-neighbor interac-
tions. For JNN &0, the ground state is simple (1 x 1) an-
tiferromagnetic for a & —,

' and (2&&1) superantiferromag-
netic for a & 2 . At a = 2, the two types of ordering are
degenerate. ' The order-parameter degeneracy in the
three regimes is described by n = 1 (a & —,

' ), n = 3
(a= —,

' ), and n =2 (a & —,
' ). The corresponding number

of thermodynamically degenerate ordered domains at low
temperature is then p =2n. Sadiq and Binder's study in

the case of nonconserved magnetization was carried out at
a=1 for a few selected temperatures below the critical
point T, . In this paper, we report results for a series of ra-
tios on both sides of a=1. For a few values of a, a sys-
tematic study as a function of temperature is undertaken.
It turns out that the low-temperature kinetics is very sen-
sitive to the value of a. The kinetics of the model is, in our
study, governed by a single-site spin-Aip mechanism sub-
ject to the Metropolis criterion, combined with a ran-
dom visitation of lattice sites. Thus the order parameter is
a nonconserved quantity.

The kinetics of the spin ordering following global
thermal quenches of the model from T; —~ to
Tf & T, (a) is studied by Monte Carlo simulation of the
spin dynamics, using finite lattices subject to periodic
boundary conditions. ' Different lattice sizes have been
used in order to assess finite-size eA'ects. The bulk of the
results reported below refers to lattices with N =100 and
200 spins. The time evolution has been followed up to
t =500, where the time is measured in units of Monte
Carlo steps per site (MCS/S). Ensemble averages are ob-
tained by averaging over a large number of independent
quenches. A number of quantities can be used to monitor
the growth of the ordered domains as a function of time.
We shall here use (a) the length scale

L(t) =JN ttlt~'(t)+ y'(t)] '"
derived from the two components of the time-dependent
order parameter, (b) the excess internal energy
AE(t) =E(t) E(Tf) measuring t—he nonequilibrium en-
ergy stored in the entire domain-boundary network, where
E(TI) is the equilibrium energy at Tf, and (c) the aver-
age linear domain size R(t) derived from the complete
domain distribution function. This distribution function is
determined for individual spin configurations by taking
full account of the four diff'erent types of domains and the
six different domain walls which may arise. We have
chosen to ascribe a given spin to a specific domain type if
this spin, and at least three of its nearest neighbors, pro-
duces a spin pattern compatible with the ordering of that
domain type.
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In Fig. 1 are shown the results for the various measures
of the zero-temperature growth as a function of time in
the case a =1. It is found that the data for t ~ 10 are ac-
curately represented by the growth laws

with a common exponent value of n =0.50. For t ~ 500 in
the 100X100 lattice and for t ~900 in the 200X200 lat-
tice, finite-size eA'ects due to "slab formation" of a per-
colating cluster are found to set in. Sadiq and Binder
found the same growth laws, Eq. (3), to hold for
T=0.36T, and 0.63T„but did not notice that the power
laws hold even at T=O. Thus the growth is described by
the classical Lifshitz-Allen-Cahn growth law. The
finding of a common growth exponent for length scales
and inverse excess energy supports the concept of dynami-
cal scaling. That the model indeed grows at zero temper-
ature is a highly nontrivial finding. Other models with
discrete single-site variables on square lattices are found
to freeze into metastable glassy structures at low tempera-
tures. ' ' !n fact, the same model as studied here but
with conserved magnetization also freezes into a glasslike
domain structure at T =0.

Figure 2, using data for d,E(r), shows that the growth
behavior at T =0 is strongly dependent on the energetics
of the model, that is the value of a. The data for R(t) and
L(t) show the same behavior. The results indicate that,
as far as the zero-temperature kinetics is concerned, the
point a=1 is a very special one. For a~ 1, the domains

grow persistently and the kinetics is independent of the
value of a and universally described by the classical
Lifshitz-Allen-Cahn exponent n = —,

' . In contrast, for
a & I the domain growth ceases after some time to, the
value of to being smaller the smaller the value of a. It
should be noted that the point of degeneracy, a= 2, is
somewhat pathological since T, (a = —,

' ) =0. '9

As Fig. 2 indicates, the ceasing of growth and the un-
derlying domain-wall pinning become eA'ective in a very
abrupt manner as a is lowered below a=1. This conspi-
cuous efIect may be understood by considering the excess
domain-wall energies, BE, per wall spin at T=O for the
six diA'erent types of domain walls. (See inset in Fig. 4.)
At late times, those walls with the lowest BE will control
the growth. The superheavy (SH) and the superlight
(SL) walls have SEsH =SEsL = (I + 2a) JNN, the heavy
(H), the light (L), and the 45' walls have
SEH =BEL=6E4s =aJNN, and the antiphase (A) walls
have 8Ep, =(—I +2a) JNN. The SH and SL walls are al-
ways very unfavorable independent of a. For a) 1, the
H, L, and 45 walls are dominant, and for a & 1 the A
walls dominate. At a =1, the H, L, 45, and A walls are
degenerate. The point is now, that whenever the 45' walls
are mixed with horizontal and vertical walls (Fig. 4),
growth will proceed via kink formation and propagation of
these kinks through vertices. In the absence of 45 walls,
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FIG. 1. Log-log plot vs time of length scales 1(t) and R(t)

and excess energy BE(r) for a quench to Ty=0 in the case
a =1. The results are obtained from Monte Carlo calculations
on a system with 2002 spins. The time t is in units of MCS/S.
The thin solid lines denote the asymptotic power laws. Eq. (3),
with the exponent value n = —,

' .

FIG. 2. Log-log plot of the excess energy ~(t) (in arbitrary
units) vs time for quenches to Ty =0 in the case of varying a.
The results are derived from Monte Carlo calculations on lat-
tices with 1002 spins. The time r is in units of MCS/S. The
curves are labeled by the value of a.
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the kinks will be absorbed at the square vertices and the
walls will be pinned. A similar behavior has been ob-
served in Potts models on square lattices.

The texture of the domain pattern very strongly reflects
the growth characteristics given by the time evolution of
the macroscopic properties, such as R(t). For a~ 1, the
domains of the four types of ordering grow in a regular
and compact fashion (see, e.g. , the microconfigurations in
Ref. 8) until they have reached sizes comparable to the
size of the entire system. Conversely, for a & 1 the
domain growth stops and a pinned polycrystalline struc-
ture is formed before interference with the finite size of
the lattice is observed. As a is lowered toward a = 2, the
average domain size in the pinned state decreases and the
texture of the domain pattern appears more and more
glassy. At a = —,', a glassy frozen-in configuration of the
six degenerate domains is obtained. The average domain
size is very small. For a & 2, a stationary glassy poly-
crystalline domain structure of (1 x 1) antiferromagnetic
domains is formed at early times.

The temperature dependence of the growth process at
a= 1 is illustrated via data for R(t) in Fig. 3. The data
for d,E (t ) and L (r ) show a similar dependence, except
that the log-log curves of these quantities are perfectly
linear up to T=0.95T„whereas the R(r) curves deviate
progressively from linearity for T ~ 0.7 T, . For
T ~0.7T„ the growth exponent is independent of temper-
ature and assumes the same value, n=0.50, for all three
quantities, Eq. (3). For T~ 0.7T„ the effective asymptot-
ic growth exponent decreases, and it becomes smaller go-
ing from L (t) to AE (t ) to R (t ). This is indicated in the
composite plot in Fig. 4. A similar decrease of the
effective growth exponent for T approaching T, was en-
countered in the study by Sadiq and Binder. The large
error bars in Fig. 4 at high temperatures reflect the

10

R {t)
10

2,10

10

~I
~ ~

~ ~

~I
~ ~

~ ~

~ 0
~ ~

~ ~

~ 0
~ ~

~I
~ ~

~ ~ ++&III
~ ~ ~ ~

O.00
0.12

0.24

0.36
0.48

P.71-

0.83

— —:—p. 95

10 10 10

FIG. 3. Log-log plot of the linear domain size R(t) (in arbi-
trary units) vs time for selected quench temperatures Tf in the
case of a 1. The data are obtained from Monte Carlo calcula-
tions on lattices with 100 spins. The curves are labeled by the
value of the reduced temperature Tf/T,

diA'erences between the asymptotic effective growth ex-
ponents of the diA'erent quantities used to monitor the
growth processes. Such diA'erences arise as the tempera-
ture is raised toward the transition region due to inAuence
of critical fluctuations. As shown by Sadiq and Binder,
this may be accounted for in the critical region by the in-
troduction of the dynamic exponent z via the concept of
extended dynamic scaling. Our data in this temperature
region are not accurate enough to sustain a quantitative
analysis along these lines.

The freezing-in phenomena found for quenches to zero
temperature for a & 1 are associated with metastable
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FIG. 4. Kinetic growth exponent n as a function of reduced quench temperature Tf/T, . Results are shown for three different
values of a. O, a 1; &, a=3; and &, a 0.8. The large error bars for T~0.7T, reflect the differences between the asymptotic
effective growth exponents of the different quantities. The inset shows the six different types of domain walls: superheavy (SH), su-
perlight (SL), antiphase (A), heavy (H), light (L), and 45' walls.
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glassy polycrystalline domain structures in which the
domain walls are pinned. Unpinning and resumption of
growth result when thermal fluctuations are introduced at
finite temperatures. This is clearly demonstrated by the
data for a =0.8, also included in Fig. 4. The effective ex-
ponent rises from a very low value at Tf =0 to the expect-
ed value of n=0. 5 at Tf=0.25T, . For temperatures
above this value, the kinetic exponent values are the same
as those obtained for a=1. A similar behavior is found
for lower values of a. However, the rise of n towards
n= —,

' is slower the smaller the value of a. For compar-
ison, Fig. 4 also includes data for a=3 showing that the
temperature dependence of n for a ~ 1 is the same as that
for a = 1. In the language of renormalization-group
analysis of domain-growth kinetics, these results could
be rephrased: For a~ 1, the dynamics for all T & T, is
governed by an equilibrium fixed point characterized by
n =

2 . For a & 1, the zero-temperature growth is con-
trolled by a freezing fixed point; wherea" at any finite tem-
perature the freezing fixed point becomes unstable and the
basin of attraction of the equilibrium fixed point includes
all initial unstable states; when the temperature is close to
zero, the early-time kinetics is strongly influenced by a

crossover from one fixed point to the other.
In conclusion, we have presented computer-simulation

results for the domain-growth kinetics of the (2X 1)-
ordering process as it takes place in a two-dimensional
square Ising model with antiferromagnetic next-nearest-
and nearest-neighbor interactions with a strength ratio of
a. We have shown that the growth exponent assumes the
classical value of n = —,

' independent of temperature for
a ~ 1. For a & 1, there are dramatic freezing-in eff'ects at
zero temperature which, however, may be released as the
temperature is increased. This latter observation may be
of some relevance to experimental studies of the ordering
dynamics in 0 overlayers chemisorbed on W(110). For
such overlayers it is found' that there is no ordering at
low temperatures, but that order develops after up-
temperature quenching to higher temperatures below T, .
This is in accordance with our results in Fig. 4, consider-
ing that the condition of a ( 1 is likely to apply for 0 on
w(»o). "
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