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Energy diffusion in disordered electronic systems near the Anderson transition
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The problem of heat diffusion for a noninteracting electron gas scattered by random impurities is
formulated in terms of a frequency- and wave-vector-dependent grand canonical energy-energy
(heat-heat) correlation function 7«(q;co). Consistently with a Ward identity associated with the con-
tinuity equation for heat diffusion, we show that the heat-heat correlation function has the same criti-
cal diffusive behavior of the density-density correlation function. This result enables us, in particular,
to predict that the electrical conductivity and the thermal conductivity (times the inverse tempera-
ture) of metals scale to zero in the same way near the Anderson transition.

I. INTRODUCTION

It is known that the electronic contribution to the
specific heat (at constant volume and in the low-
temperature limit) is not altered by the presence of disor-
der when the interaction among the electrons is neglect-
ed. It is not a priori evident, however, whether this
finding would remain true also for dynamical quantities
related to the specific heat, such as the heat-diffusion
coefficient and the thermal conductivity. The purpose of
this paper is to characterize the behavior of the heat
diffusion for a noninteracting electron gas scattered by
random impurities by calculating the heat-heat correlation
(response) function for small frequencies and wave vec-
tors. It will be found from this analysis that the heat-heat
correlation function exhibits the same critical diffusive be-
havior of the density-density correlation function.

We limit ourselves in this paper to consider a nonin-
teracting electron gas, regarding it as a "reference system"
which is worthwhile to study in itself before introducing
interaction effects. The importance of obtaining theoreti-
cal predictions on the heat diffusion even in the absence of
interactions (but beyond the weak-disorder limit) is evi-
dent when recalling that one of the most striking
successes of the semiclassical Drude-Sommerfeld theory
of metals has been the prediction of a universal ratio be-
tween electrical conductivity o. and thermal conductivity ~
(Wiedemann-Franz law). We shall verify as a by-product
of our analysis that quantum-interference effects do not
affect the validity of this law, which can actually be ex-
tended near the Anderson transition, thereby predicting
that cr and tciT (T being the temperature) scale to zero in
the same way near the localization transition. A short
summary of this work has been already presented in Ref.
4

We base our analysis of heat transport on the
correlation-function method, which is appropriate to
linear response. Linear-response theory to thermal pertur-
bations is known, however, to be less cleancut than

linear-response theory to mechanical perturbations (such
as the coupling to an electromagnetic field) on which the
more conventional analysis of number-density transport is
based. For this reason, in the Appendix we recall the
relevant Kubo-type expressions for heat transport driven
by thermal perturbations and recast them in a form amen-
able to the application of standard diagrammatic tech-
niques at finite temperatures. In particular, in order to
obtain the above-mentioned generalization of the
Wiedemann-Franz law, we shall express the thermal con-
ductivity ~ of Fourier's law in the form

CO
Ic= ——lim lim Im[X+z (q; co )],T co~0 q~o q

where Etc'(q;ca) is the space and time Fourier transform
of the heat-heat correlation function

X~tc(r —r', t —t') =e(t —t')( —t')([~(r, t),~(r', t')])

(1.2)

with the grand canonical Hamiltonian density %'(r, t) suit-
ably defined from

Ic. =H pN = J dr%'(r—) . (1.3)

In Eq. (1.2) the thermal average ( ) is taken at the
equilibrium temperature T, the average over the impurity
configurations is understood to be taken after the thermal
average, and the time dependence is in the Heisenberg pic-
ture with the grand-canonical Hamiltonian (1.3) replacing
the Hamiltonian H of the system (p being the equilibrium
chemical potential). X~~(q;ca) fully describes the static
and dynamical thermal properties of the system. In the
following we shall concentrate on evaluating X~~(q;ca)
from a microscopic analysis for a noninteracting electron
gas in the presence of disorder.

36 2270 1987 The American Physical Society



36 ENERGY DIFFUSION IN DISORDERED ELECTRONIC. . . 2271

II. HEAT VERTEX FUNCTION FOR A DISORDERED
ELECTRONIC SYSTEM IN THE ABSENCE

OF INTERACTION

In this section we shall express the temperature func-
tion corresponding to (1.2) in the fixed impurities
configuration in a form that allows averaging over the im-
purities configurations via standard diagrammatic
methods. The vertex function which is introduced by the
impurity average will then be analyzed in terms of a
Ward identity associated with the continuity equation for
heat diffusion.

A. Heat-heat correlation function in the fixed impurities
configuration

K= dxW x h r —pOx
dx br —pO x +x (2.1)

The grand-canonical Hamiltonian for a system of
noninteracting electrons can be expressed in the alterna-
tive forms

Xzz(r, r', r r') =——
& T,[%"(r,r)R'(r', r')] &, (2.2)

where T, is the imaginary-time T-ordering operator and

Ã(r, r) =A(r, ~) —&R(r) &,

A( r, r ) =exp(Kr )A( r )exp( Kr ),—
(2.3a)

(2.3b)

we exploit the Heisenberg equation of motion of the field
operators ql(x, r) and 4 (x, r), and write

A(r, r)= —,
' (a,—a, ) g +t(x, 7)%(x,r) (2.4)

via Eq. (1.3), the indeterminacy being connected with the
fact that A(r) is not an observable. This indeterminacy,
however, is not relevant for macroscopic quantities such
as the thermal conductivity and the heat-diffusion
coefficient we are interested in. To preserve the hermitici-
ty of the operator, we choose then to symmetrize%'(r) by
adding the two alternative forms (2.1).

To perform the average over the impurities
configurations of the temperature function corresponding
to (1.2), namely,

where x stands for the set of space (r) and spin (g) labels,
%(x) is a field operator, and h(r) is the independent-
particle Hamiltonian at given impurities configuration.
For simplicity, we consider nonmagnetic impurities
throughout. Equation (2.1) provides two different
identifications of the grand-canonical Hamiltonian density

where we have set a,—:a/ar. In this way the impurities'
potential enters A(r, r) only through the time dependence
of the field operators. The right-hand side of Eq. (2.2) can
thus be expressed in terms of a two-particle Green's func-
tion by transferring the (imaginary) time derivatives of Eq.
(2.4) outside the T,-ordering operator. We obtain

& T,[—,'(a, —a,)e'(x, r)qj(x, ~),'(a, —a, )e '(x', r )e(x', r')]. .. ,, , .&

=,(a,—a, )-,'(a, .—a,.) & T,[q (x, r)q (x', r')+ (x', Z')q' (x,Z)] &. .. ,. ,'
)5( — +)-,'[(a,—a, )&q'(, )q'(, )&],=,

——,
'

& [ +"(x,r)ql(x', ~')(a, —h (r)+p)5(x, x')5lr —r')

+4 (x, r')%(x, ~)(a, —h (r')+p, )5(x,x')5(r' —r)], ,+,. , + &, (2.5)

where r+ =r+il (ii~0+). Further manipulation of Eq. (2.5) rests on considering its space Fourier transform in the
limit of small wave vectors, wherein an irrelevant term O(q ) proportional to the number density will be neglected.
With this provision and summing over the spin variables, we recast Eq. (2.5) in the compact form

& T,[%'(r, r)A(r', r')] & = —,'(a, —a, ) —,'(a, —a, )

X g & [%(x,r)+(x', r')%' (x', r')~p (x,r)] &, ,+, , ++25(r —r')5(r —r'+)&R(r) & . (2.6)

1Cv= ——lim lim X~~(q;IIg),T q~O 0~~0
(2.7)

where Q~ ——2K~k& T (A, an integer), by invoking the ther-
modynamic identity

We have verified that the well-known expression for the
low-temperature specific heat Cv (at constant volume) of a
noninteracting electron gas in the absence of the impuri-
ties potential can be recovered from Eq. (2.6). Quite gen-
erally, we can in fact identify the specific heat with the
"static" limit

Cv = ( Vka T )
'

& (H pN —
& (H pN—) & ) &—

2 —1

aN
IEJ T v

BN

Bp
(2.8)

( V being the volume occupied by the system) and noticing
that the last term on the right-hand side of Eq. (2.8) can
be neglected, being O(T ) at low temperatures. In the
absence of disorder, Wick's theorem can be readily ap-
plied to the time-ordered product on the right-hand side
of Eq. (2.6). After standard manipulations we then ob-



2272 G. STRINATI AND C. CASTELLANI 36

tain, from Eq. (2.7),

C] ——(ir /3)XokJ]T, (2.9)

No being the single-particle density of states at the Fermi
level (including spin degeneracy).

In the presence of disorder the electronic contribution
to the specific heat maintains the above free-electron value
(see Sec. III). This finding, in turn, is consistent with a
Ward identity associated with local-energy conservation,
to be discussed next.

B. The vertex function introduced by averaging
over the impurities configurations
and the associated Ward identity

Having expressed the heat-heat correlation function
(2.2) by means of Eq. (2.6), the averaging over the impuri-
ties configurations of Xzz proceeds in the standard way'
since the impurities potential enters the right-hand side of
Eq. (2.6) only through the (imaginary-) time dependence
of the field operators. The averaging can then be de-

scribed in terms of an efFective scalar vertex function l".
Before discussing, however, the relevant approximations
for I, we examine a criterion to ensure that they are con-
sistent with local energy conservation as expressed by the
continuity equation between the grand-canonical Hamil-
tonian density and the heat-current operator

B~(r,r)+V 8&(r,r)=0,
with%'(r, r) given by Eq. (2.4) and

d'&(r, ~) =(4m) (a,—]3,)(V,—V, )

(2.10)

Xg+ (x, r)%(x,~)
+=X, 7=7

(2.1 1)

Following the approach previously considered for the
number- and spin-density correlation functions, " we im-
plement the knowledge of I in terms of a Ward identity
associated with Eq. (2.10). To this end, we consider the
equation

~„(T.[&'(r„.])q'(r, g2 r2')+(r2(2 rp)]}+V] (T [+Q(r] ~])q (ri'g2 rp')q(rpgp rp)1&

=5(r, —rz )5(r] —r2 )8, G (rz —r, , T2 —T] )+5(r, —rz)5(r] —r2)B, G (r, —r2, r] —r2 ),
(2.12)

which can be established directly from the continuity equation (2.10). In Eq. (2.12) the prime over the operators (2.4)
and (2.11) signifies that their equilibrium values have been subtracted as in Eq. (2.3a), the overbar denotes the average
over the impurities configurations, and the G on the right-hand side are impurity-averaged single-particle Green s func-
tions. Equation (2.12) as it stands holds within a term O(q ) in its Fourier transform. This term, albeit irrelevant in the
limit q~0 that we shall consider in practice for the Ward identity, has not been reported since it will cancel out in the
final equation (2.16) below, which is thus exact.

A scalar and a vector vertex function can be introduced by analogy with the scalar and vector couplings to an elec-
tromagnetic field. ' Accordingly, we define

—,'(a„,—a„)((T,[% (1')V(1)% (2')%(2)]}—(T,[q (I')q(1)]}(T,[4 (2')q(2)]}},, , = f 133'G(2, 3)I (3,3';1)G(3',2')

(2.13a)

and

—,
' (8„,—B„)(1/2m )(V, —V, )( ( T,[+t(1')]II(1)]Ilt(2')]P(2)]}

—( T,[%'t(1')%(1)]}( T,[+t(2')%(2)])), , = f d33'G(2, 3)1 (3,3';1)G(3',2'), (2.13b)

I (3,3'; 1)= ——,
' [(a„,—a„)5(1,3')5(1',3)], (2.14)

where 1,2, . . . stand for the set of space, spin, and
imaginary-time variables, 1+ signifies that ~] is augmented
by a positive infinitesimal, and the integration over the
time variables on the right-hand side of Eqs. (2.13) is re-
stricted between 0 and (k~ T)

In particular, in the absence of disorder, Eq. (2.13a)
provides the bare vertex

which, introducing the Fourier representation for the ver-
tex functions with entries specified in Fig. 1(a) becomes

I (Q, q;a)„,co„)=(2i) '(~„+co„) . (2.15)

By expressing the T, products appearing in Eq. (2.12)
in terms of Eqs. (2.13) we obtain eventually the desired
Ward identity
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f d33'G(2, 3)[B, I (3,3', 1)+V, I (3,3';1)]G(3',2')= —,'(a, —a, )[5(1,2')G(2, 1')—5(2, 1')G(1,2')]. . . (2.16)

whose frequency-momentum representation reads

G (Q+q/2;co„)[(co„—co„)I (Q, q;co„,co„)—q I (Q, q;co„,co„)]G(Q —q/2;co„)

=[G(Q+q/2;co„) —G(Q —q/2;co„, )](co„+co„,)/2 . (2.17)

A.part from the factor (2.15) on its right-hand side, Eq. (2.17) retains the same structure of the more familiar Ward iden-
tity associated with the continuity equation for the number density, the bare number vertex being unity.

III. DIFFUSIVE FORM OF THE HEAT-HEAT CORRELATION FUNCTION AND THE WIEDEMANN-FRANZ LAW

In this section we shall determine the critical behavior of the heat-heat correlation function by expressing it in terms of
the scalar vertex function I introduced above and retaining the dominant approximation for I that is consistent with the
identity (2.17). This analysis will eventually yield the generalization of the Wiedemann-Franz law anticipated in the In-
troduction.

By inserting Eq. (2.13a) in Eq. (2.6) we can express the Fourier transform of the temperature function corresponding
to (1.2) as follows:

X«(q;&~) = —f '
d (r, Tp)e' "—" "' f d(r, —r2)e

0

X g f d 33' —,
' [ G (2, 3)B„G(3', 2+ )

ki. kz

—G (3', 2+ )8, G (2, 3)]I (3,3'; 1)+26(1+,2) (~(1))

= —2k& T g e ""f [ (i/2)(2'„+Qq)G (Q —q/2;co„)G (Q+q/2;co„+ Qq)
(2'�)

X I (Q, q;co„, co„+Ag)+2ico„G (Q;co„)], (3.1)

f +
&

jf, CO&

1q, Q)
2

q.~n -n'

where Qq ——2i,m.k&T (A, an integer), d is the space dimen-
sion of the system, and small values of q and Qq are un-
derstood consistently with the hydrodynamic limit we are
interested in. In Eq. (3.1) the scalar vertex function I
contains all effects of averaging over the disorder that are
not included in the averaged single-particle Green's func-
tions, which (to leading order) are given by'

G (k;co„)= [ice„—(eg p)+(l—/27p)sgn(co„)] (3.2)

(a)
~0 being the scattering lifetime. To obtain I, the bare ver-
tex (2.15) is dressed by disorder as depicted in the
skeleton structure of Fig. 1(b), where, in the effective
ladder,

1 1L +(q;Ilg) =
Nocto i

Qg
i
+Dq.

(3.3)

(b)

FIG. 1. (a) Entries for the frequency-momentum representa-
tion of the vertex functions; (b) skeleton structure for the scalar
vertex function I . The solid circle represents the bare vertex
function (2.15) and the single-particle lines are labeled by (+ )

and ( —) to indicate the value of sgn(cu„) in Eq. (3.2).

D is the renormalized diffusion coefficient that describes
number-density transport and includes all quantum-
interference effects. Thus, besides the ordinary Drude
contribution (2ryg, m 'd '), D also contains logarithmic
corrections in two dimensions that drive the electronic
system toward localization in 2+v dimensions. ' It may
be verified that the skeleton structure of Fig. 1(b) with the
choices (3.2) and (3.3) is consistent with the Ward identity
(2.17) in the limit q~o.

Explicit calculation of the right-hand side of Eq. (3.1)
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proceeds now by standard contour-integration techniques
that transform the frequency sum into an integral over the
real frequency axis. It is convenient to identity for the
function Xxx.(q;Q~) a static and a dynamic contribution
that have a finite and vanishing static limit, respectively. "
The static contribution fully includes the second term
within large parentheses on the right-hand side of Eq.
(3.1), while the first term therein contributes to the static
part only for 6(co„)6(cu„+Qq)&0 (6 being the unit step
function) with the vertex function assuming its bare value
(2.15). The dynamic contribution to Xxx(q;Qz) contains
instead the effective ladder (3.3) since it originates from
the first term within large parentheses on the right-hand
side of Eq. (3.1) for 6(co„)6(co„+Q~)&0. For the static
contribution we obtain

Xxx (q'fix) = (3.4)

where Cv is the free-electron value (2.9), apart from ir-
relevant terms O(Qq) and O(q ). Some care should be
exerted in deriving Eq. (3.4) since one can actually use the
form (3.2) for the single-particle Careen's function only in
a small neighborhood of the origin (

~
co„~ &&p). For

larger values of co the self-energy correction
i (2—vo)

' sgn(ro) should, in fact, be replaced by a more
general expression that vanishes as

~

co
~

~ oo.
The result (3.4) can be obtained from Eq. (3.1) in an al-

ternative way that avoids these complications by calculat-
ing the dynamic contribution for q=O and small Az and
recalling that, at any finite temperature,

Xxx(q=0; Qg&0) =0 . (3.5)

The property (3.5) stems from the very definition of
Xxx(q;co) and corresponds physically to the energy con-
servation. ' Without even resorting to the specific form
(3.3) in the calculation of the dynamic contribution, we
can make use of the Ward identity (2.17) with q=0 and
of Eq. (3.2) for small co„ to obtain

single- (elastic) scattering process. A similar result is fa-
miliar in the kinetic theory of gases' and it is relevant
that quantum-interference effects do not affect it.

Performing the analytic continuation of Eq. (3.8) to the
upper side of the real frequency axis and entering the re-
sult into Eq. (1.1) for the thermal conductivity, we obtain
the generalization of the Wiedemann-Franz law near the
Anderson transition in the form

~=CvD . (3.9)

By recalling both the Einstein relation o'=e 1VOD (e being
the electron charge) and the free-electron result (2.9), Eq.
(3.9) asserts that the ratio v/o is a universal function of
the temperature. Moreover, since this function is not
critically affected by varying the impurity concentration,
Eq. (3.9) predicts that, near the electronic critical concen-
tration n„

(3.10)

s being the same critical exponent of the electrical conduc-
tivity. Existing theories' provide the value s =1 in three
dimensions for the case of nonmagnetic impurities. Re-
gardless of the importance of including the electron-
electron interaction in the transport process, Eq. (3.10) per
se awaits experimental confirmation.

In conclusion, we have shown that the electronic heat
diffusion in the presence of disorder (but in the absence of
electron-electron interaction) has the same critical proper-
ties of the number-density diffusion, in agreement with a
local Ward identity derived for the heat vertex. From this
result it follows that the Wiedemann-Franz law extends
its range of validity up to the localization transition. The
present analysis, besides being relevant in itself, is a neces-
sary preliminary step for including the electron-electron
interaction in the study of the heat-transport properties of
disordered electronic systems.

Xxx(q; Az) = Cv T (3.6) ACKNOWLEDGMENTS

apart from a term O(Qq). A combination of Eqs. (3.5)
and (3.6) then reproduces Eq. (3.4).

For XPP~(q;Qq), at finite values of q and Qz& 0, we ob-
tain

Xxx(q' &~)=— 2 df (z)
q2Np dzz

~+Dq' dz

Ag
CvT

Q~+Dq
(3.7)

where f(z) is the Fermi distribution function. Adding to-
gether the static (3.4) and dynamic (3.7) contributions
eventually leads to the diffusive behavior

Xxx(q; Qg) = CvT-Dq
Ag+Dq

(3.8)

This result amounts to the statement that, in the absence
of electron-electron interaction, the density and heat-
diffusion coefficients coincide. Physically, particle number
and energy diffuse at the same rate since there exists a

The authors are indebted to Professor C. Di Castro for
several helpful discussions and continuous support.

APPENDIX: KUBO-TYPE EXPRESSIONS
FOR ENERGY DIFFUSION DRIVEN

BY THERMAL PERTURBATIONS

Linear-response theory to mechanical perturbations is
relatively simple to describe since in this case one can
define an interaction Hamiltonian between the system and
an external agent. When the system is driven out of equi-
librium by thermal perturbations, on the other hand, non-
conservative forces come physically into play and the
problem can hardly be treated within the Hamiltonian for-
malism. ' In this case one has to rely on the existence of
a hydrodynamic limit whereby the inAuence of a thermo-
stat on the system can be characterized by a few parame-
ters (such as the local temperature and chemical potential)
slowly varying in space and time for a local thermo-
dynamic equilibrium to be established in the conjugate
variables (such as the energy and number density) at each
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stage of the transport process.
Alternative methods for nonequilibrium systems (such

as the method of local integrals of motion or the method
of nonconservative forces' ) lead to the following form of
the nonequilibrium statistical operator:

p(t) = expI —[A (t)+B(t)])
Tr(exp[ —[2 (t)+B (t)]I )

(A 1)

where

A (t)= f drP(r, t)A(r),

B(t)= —f dt' f dr[4&(r, t') VP(r, t+t')

+A(r, t')B, P(r, t+t')] .

(A2)

(A3)

In these expressions P(r, t) is the local inverse temperature
which may fluctuate both in space and time, %'(r, t) is the
grand-canonical Hamiltonian density which is suitably
defined from Eq. (1.3), and d'&(r, t) is the heat-current
operator defined in terms of the energy and number-
current operators'

8'&(r, t) =cPH(r, t) pcP(r, t) . — (A4)

The time dependence of the operators is understood in the
Heisenberg picture with the grand-canonical Hamiltonian
(1.3) replacing the Hamiltonian of the system. Notice that
%'(r, t) and cP&(r, t) given by (A4) are mutually related by
a local continuity equation and that in deriving Eqs. (A2)
and (A3) the fluctuations of the chemical potential have
been neglected.

Linear processes are consistent with the hydrodynamic
limit insofar as the derivatives of the thermodynamic pa-
rameters are small. One can thus regard the operator
B(t) as aperturbation to A (t) and expand p(t) to lowest
order in B (t) in Eq. (Al), in the form

where ( )L denotes the statistical average with the
local-equilibrium distribution

exp[ —A (t)]
PL, (t) =

Tr[exp[ —A (t)]I
(A6)

With the aid of the nonequilibrium statistical operator
(A5) one can calculate the space- and time-dependent
average value of the heat-current operator. The first term
within large parentheses on the right-hand side of Eq.
(A5) gives a vanishing contribution since the local-
equilibrium distribution, although needed to define the lo-
cal thermodynamic parameters, does not produce any
transport flow. In the remaining terms one may further
replace the statistical averages ( )t with the equilibri-
um averages ( . . ) by assuming that deviations from
complete equilibrium are small, and write

p ( t ) 1 f d z[ e A ( ( )~B ( t )e A ( t )w

0

—(e "'"'B(t)e '4(')') ] p (t) (A5)

( 8'g(r;t) )—:Tr[p(t)(PE(r)]

= —P ' f drt d'g(r)[ e 'B(t)e
0

—(e 'B (t)e ') ] ),

(8&(r;t)) = ~VT(r—, t),
where the thermal conductivity K is given by

1 . . 1~= ——lim lim—
T co~o q~O CO

)& Im f + dt'e'"" ' f dr'e

(A8)

(r —r;t —t)
Q Q

In this expression

Xg g (r —r', t t')—
Q Q

=B(t —t')( —i)( [cP&(r, t), d'&(r', t')) )

(A9)

(A 10)

is the diagonal component of the retarded heat-current
correlation tensor, and we have taken advantage of homo-
geneity and isotropy that result after averaging over the
impurity configurations. Notice that the "rapid" limit in
Eq. (A9), which is required to obtain a nonvanishing
value of the heat current, ' corresponds to taking the adi-
abatic limit after the thermodynamic limit.

In the theory of electrical transport one finds it some-
times convenient to express the current-current correla-
tion function in terms of the associated density-density
correlation function. A connection between these two
correlation functions is straightforward to derive from the
continuity equation essentially because the number-
density operators at different space points commute. As
this is not the case for the energy-density operators, the
corresponding relation between the heat-current and the
(grand-canonical) Hamiltonian density correlation func-
tions is unavoidably more involved. Nevertheless, these
additional complications are unnecessary as far as the rap-
id limit in Eq. (A9) is concerned since one can prove that,
in the small-q limit, the imaginary parts of any associated
current-current and density-density correlation functions
are proportional, provided a continuity equation holds. '

We may thus rewrite the thermal conductivity ~ in the al-
ternative form (1.1) of the text.

(A7)

where /3 is the inverse equilibrium temperature. One may
further show that in Eq. (A7) the term containing the
time derivative of the local inverse temperature [cf. Eq.
(A3)] can be neglected in the lowest significant order since
it actually involves higher derivatives of the form
a, V13(r, t').

The linear-response expression (A7) can be rewritten in
terms of the more familiar retarded correlation functions
by transforming the integration over imaginary time into
an integration over real time. ' In particular, by neglect-
ing nonlocality and retardation efFects, Eq. (A7) provides
a microscopic derivation of Fourier's law,
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