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In this paper Wannier functions are introduced which are symmetry adapted to the magnetic space
group of perfect (or commensurate) antiferromagnetic chromium. They are defined as unitary trans-
forms of Bloch functions belonging to paramagnetic energy bands with certain symmetry labels. It
turns out that such Wannier functions can be constructed from one of the narrowest conduction
bands of paramagnetic Cr. There is evidence that the existence of this band is the cause for the sta-

bility of the spin-density-wave state in Cr.

I. INTRODUCTION

In the electron theory of metals, Wannier functions'
have proved to be a useful set of orthonormal basis func-
tions which emphasize the atomic character of conduction
electrons, particularly in narrow bands. Although their
general properties are known in great detail for simple
and composite bands and though their symmetry can
be determined in any space group, ' ' they presumably
have not yet reached their full potential in electron theory.
As explained in the following, this statement is suggested
by the individual symmetry properties of the conduction
bands of metals.

In an earlier paper" we reported on the finding that su-
perconductors (and only superconductors) possess a nar-
row, roughly-half-filled conduction band (called the t7

band) whose Bloch functions can be unitarily transformed
into optimally localized spin-dependent' Wannier func-
tions which are symmetry adapted to the full space group
of the considered metal. In fact, this finding suggests that
the existence of localized states which are represented by
such Wannier functions is necessary for the stability of
the superconductive state. One may ask whether there is
evidence for other physical phenomena which are connect-
ed with the existence of special localized states belonging
to narrow half-filled bands.

This paper reports on a characteristic of the band struc-
ture of chromium: it is possible to transform the Bloch
functions of one of the narrowest rougly-half-filled bands
of Cr (called the AF band, see Fig. l) into an orthonormal
set of optimally localized Wannier functions which are
symmetry adapted to the space group D4h of the com-
mensurate antiferromagnetic phase of Cr. The fact that
the other nonferromagnetic bcc transition metals (except
for Mo), V, Nb, W, and Ta, do not possess such an AF
band (or have an AF band which is far from being half
filled) suggests that the existence of this special conduc-
tion band is the cause for the stability of the spin-density-
wave state in Cr. There is also experimental evidence for
symmetry-adapted localized states belonging to the spin-
density wave: Polarized-neutron diffraction experiments
performed by Stassis et al. show that the induced magnet-
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FIG. 1. Energy bands of paramagnetic Cr as estimated by
Laurent et al. (Ref. 34). The heavy line denotes the antiferro-
magnetic band (AF band) whose Bloch functions can be unitarily
transformed into Wannier functions being symmetry-adapted to
the antiferromagnetic space group D4q. Between I and H, the
AF band consists of two branches corresponding to the different
lines 6 (lower branch) and A (upper branch) in the antiferromag-
netic Brillouin zone.

ic moments of the spin-density wave in Cr are of both
spin and orbital origin. "

This finding on the chromium bands should be theoreti-
cally interpreted in the framework of a suitable localized
model which extends (but does not contradict) the famil-
iar concept of a spin-density-wave state as initiated by
Overhauser, " and which is compatible with the present
understanding of the commensurate-incommensurate
transition in terms of special features of the Fermi surface
of Cr. ' " In the author's opinion, such a suitable model
would be the nonadiabatic Heisenberg model as presented
in Ref. 16. In the framework of this model, the connec-
tion between o. bands and superconductivity can be inter-
preted in terms of superconductive eigenstates' ' in such
a way that the quantitative results of the standard theory
of superconductivity remain essentially unchanged.

The nonadiabatic Heisenberg model emphasizes the du-
alism of bandlike and atomic character of conduction
electrons to a higher degree than it is possible in the
framework of the adiabatic (or Born-Oppenheimer) ap-
proximation. This is because, within this model, the
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nonadiabatic localized functions exactly diagonalize the
operator of Coulomb interaction [see Eq. (2.23) or (3.20)
of Ref. 16] and hence have certain properties of one-
electron eigenfunctions. As a consequence, the ground
state of the electron systen1 crucially depends on the sym-
metry properties of these localized functions. The nonadi-
abatic model within the form given in Ref. 16, however,
cannot be simply applied to magnetic phenomena and
hence a theoretical explanation of the evident connection
between the AF band and the stability of a spin-density-
wave state in Cr is not given in this paper.

The arrangement of the paper is as follows. In Sec.
IIA we give the matrix equations which determine the
optimally localizable and symmetry-adapted Wannier
functions derived in three former papers. ' ' ' These
equations are solvable if the symmetry labels of the con-
sidered bands fulfill certain conditions, equivalent to the
conditions derived by Des Cloizeaux. ' For simplicity we
write down these equations for only two composite bands;
corresponding equations with n-dimensional matrices hold
for n composite bands in any space group. The formalism
given in Sec. IIA hence may also be used for the con-
struction of Wannier functions symmetry adapted to other
spin arrangements in other metals. In Sec. II B the ma-
trix equations are solved for two distinct composite bands
(see Fig. 2) in the space group D4i, of antiferromagnetic
Cr. In Sec. III the band structures of the nonferromag-
netic bcc transition metals Cr, V, Mo, Nb, W, and Ta are
examined for the existence of Wannier functions symme-
try adapted to D4&.

and hence

Ia
I
tI '=Ia '

I

—a 't) (2.4)

is the inverse of Ia I
tI. If f(r) is a function of position

then, as usual,

I ~
I
t lf (r) =f ( I ~

I
tI 'r) . (2.5)

The point group Gp is the tetragonal point group D4~,

Gp ——D4& (2.6)

(2.7)for a ED4~ XC4„

The magnetic group of perfect antiferromagnetic
chromium is

=G+ IK
I
rlG (2.&)

since the time-inversion operator E is associated with the
nonprimitive translation r (cf. Fig. 1 in Ref. 25). The
operator K acts on a function of position, f (r), according

27

with the sixteen elements listed, e.g. , in Eq. (1) of Ref. 25.
In the group D4~, eight elements of D4&, namely the ele-
ments of the group C4i, (in the Schonflies notation), are,
on their own, symmetry operations of the crystal (cf.
Sec. II of Ref. 25). The remaining operations of D&I, are
associated with the nonprimitive translation r=( —,', —,', —,') as
indicated in Fig. 1 of Ref. 25. In the following, we denote
by Ia I

r(a) I an element of G with

0 for aEC4, ,
( )

II. GROUP THEORY OF OPTIMALLY
LOCALIZABLE WANNIER FUNCTIONS

Kf(r)=f*(r) . (2.9)

A. General analysis

The space group G of perfect antiferromagnetic chromi-
Um 1S

G =D4g6 (2.1)

Ia I
tIr=ar+t .

The multiplication rule of space-group operators is

Ia
I
tI Ia'

I

t'I = [aa'
I

at'+t)

(2.2)

(2.3)

M2p

VIP

FICr. 2. Schematic plot of the first pair of energy bands in
Table I.

in the usual Schonfiies notation. The space-group
operators are denoted by I a I

t I, where a is an operator of
the point group Gp of G and t is a translation according
to

The magnetic point group Gp belonging to G reads as

Gp ——Gp+EGp . (2. 10)

Consider the two composite bands depicted in Fig. 2 in
the Brillouin zone of antiferromagnetic chromium (as
given in Fig. 3 of Ref. 25), with symmetry notations
which may be identified from Table II of Ref. 25. (The
connection of these bands with the paramagnetic band
structure of chromium will be established in Sec. III.)

Assume the Bloch functions y„.„(r)(n =1,2) of these two
bands to be known within the basic domain" of the anti-
ferromagnetic Brillouin zone, whose characteristic proper-
ty is that it contains one and only one k vector of each
star. (The basic domain is the small prism which is
bounded by the symmetry planes ZI MA, I MX, I XRZ,
and ZTR. ) In what follows k' and k,' denote vectors in
the basic domain (e.g., vectors within or on the surface of
the basic domain), and on the surface of the basic domain,
respectively. From now on, the basic domain is called the
first basic domain. We assume the Brillouin zone to be
divided into sixteen basic domains and, as usual, k space
to be divided into Brillouin zones with the first Brillouin
zone containing the first basic domain.

If k' runs through all vectors in the first basic domain
then ak' (with a&GO) runs through all vectors in one of
the sixteen basic domains of the first Brillouin zone.
Since [a

I
r(a) )pk „(r)is a Bloch function with wave vec-

tor ak' we assume, as usual, the Bloch functions in the
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first Brillouin zone to be calculated from the given func-
tions in the first basic domain by

g g „(r)=[~~~(~)}qg g(r) (~&GO), (2.1 1)
where v(a) is defined by Eq. (2.7). The Bloch functions
in the other Brillouin zones are assumed to be given by

quasi-Bloch-functions from which the best localized Wan-
nier functions are constructed are necessarily continuous
in k space. "

Generally, and in particular for the two bands con-
sidered, F(k) cannot be chosen periodic in k space.
Hence we put

(2. 12) F(k+ K) =S(K)F(k), (2.15)

y, (r)

ygz(r) (2.13)

where K runs through all vectors of the reciprocal lattice.
Finally, we assume yz „(r)to vary smoothly (for fixed r)
within the first basic domain (such a choice of the Bloch
functions is possible because of the analytic properties of
the Hamiltonian operator ). From (2.11) and (2.12) fol-
lows that the Bloch functions also vary smoothly within
the other basic domains in each Brillouin zone of k space.
The Bloch functions defined in this way, however, will
generally be discontinuous if we go from any basic
domain into another adjacent basic domain (which may
lie within the same or another Brillouin zone). '

We write the above defined Bloch functions as a vector

where S(K) is a (two-dimensional) unitary matrix with

S(K'+ K")=S(K')S(K") (2.16)

and K is (still) a vector of the reciprocal lattice. We now
may give the equations for F(k) as they have been derived
in Ref. 14. Let Pq be given as stated above. Pz then
varies smoothly in k space if four conditions are satisfied:

F(ak') =Do (a)e' "" 'F(k') for aEGO (2.17)

and for ak'&k' holds in the first Brillouin zone;

S(aK, )=D o(a)S(K, )[D o(a)] 'e ' for aEGO

(2.18)
and set

Pg ——F(k)gg . (2.14)

holds for the fundamental vectors K, K~, and K, of the
reciprocal lattice;

The k-dependent two-dimensional unitary matrix F(k)
shall be chosen such that P„is continuous in the whole k
space. Fortunately, this demand on F(k), which deter-
mines this matrix partially, may be treated by group
theory. From the two components of the vector P„(which
are quasi-Bloch-functions") we will later construct Wan-
nier functions. These are optimally localizable since those

I

D„*,( [a
~

r(cz) } ) = [F(k,' )] 'Do (a)F(k,')e

for (x&G ~, (2.19)

holds at any point k,' on the surface of the first basic
domain which is an interior point of the first Brillouin
zone;

D„*,([a
~

r(a)})=[F(k,')] 'S(K„,(a))DO(a)F(k,')e ' for aEG
S S S

(2.20)

holds at any point k,' lying on both the surface of the first
basic domain and the surface of the first Brillouin zone.
G„, and G denote the little group at point k,' and its

S S

point group, respectively. ' Do(a) and D„,([a
~
v(a)}) are

S

the matrix representatives of [a
~

r(a) } in the representa-
tions R„,at points I and k'„respectively, to which PS

(2.13) belongs. At point I one has R, =I 3++1 4+, and at
point M, e.g. , RM =M,o (cf. Fig. 2). The vector K„(a)of

S

the reciprocal lattice is defined by

K„.(a ) =k,' —ak,' .
S

(2.20')

Dq ([KI
~
v} )=[F(k')] 'Do (KI)F*(k')e'"' (2.21)

must hold at each point k' in the first basic domain and

The form of F(k) as expressed by (2.17) and (2.19) en-
sures that the Wannier functions will be symmetry adapt-
ed to the space group G. If we demand that they are
adapted to the full magnetic group G™(2.8), F(k) and
S(K) must follow two additional equations: '

S(K) ) =Do (KI)S*(K,)[DO (EI)] 'e (2.22)

I

D, ( [a
~

r(a) } ) =Do(a)e
S

(2.23)

get unitarily transformed by F*(k,') into the matrices

must hold [besides (2. 18)] for the fundamental vectors K„,
K, and K, of the reciprocal lattice [cf. Eqs. (7.1) and
(11.21) of Ref. 17; in (11.21) K =0 according to (11.9)].
D, (KI) is the matrix representative of the product of the
time-inversion operator E with the inversion I in the
corepresentation" of Go (2.10) derived from
Ro= 1 3++ I 4+, and D„([KI

~

v } ) is the matrix representa-
tive of [KI

~
r}=[IC

~
r}{I

~
0} in the corepresentation

derived from the small representation R„atpoint k'.
We now ask under which conditions the above equa-

tions for F(k) are solvable. The following statements hold
for all (composite) bands which satisfy the compatibility
relations if we go from any point k,' to a point in its
neighborhood. The first equation (2.17) states how F(k)
in the first Brillouin zone must be calculated from F(k')
and hence is trivially solvable. In Eq. (2.19) the matrices
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D& ([a
~

r(a)I ). Since in this equation k,' denotes an inte-
S

rior point of the Brillouin zone the matrices (2.23) form,
for a= EG, a small representation R„ofG„,." For

S S S

k,' ~0, both R„and R„. are compatible with R,
3 + I 4 Consequently, R„and R„areequivalent

and hence Eq. (2.19) is solvable.
In Eq. (2.20) the matrices

I

Dk, ([a
~

r(a)I )=S*(Kk,(a))Do(a)e ' (2.24)
S S

B. Symmetry-adapted Wannier functions

We determine the matrices S(K) for the two composite
bands depicted in Fig. 2 and consider first Eqs. (2.18) and
(2.22) and the four operators [C&+

~
0[, [I

~
OI, [C2

~
rJ,

and [KI
~
rj of the magnetic space group. (The notation

of the point-group elements is given in Ref. 26 and in Sec.
II of Ref. 25.) In the representation Ra= I &++ I 4+ on has
Do(KI) =Do(I) =(o i), Do(C4+ ) =( o

' i), and D, (C,„)
=(o &).

" With these matrices and e ' = —1 (j=x,y, z)
we get from (2.18) and (2.22) twelve (in some cases
equivalent) equations having the general solution

get unitarily transformed by F*(k,') into D„([a
~

r(a) [)
S

at points k,' on the surface of the Brillouin zone. As
shown in Ref. 14, the matrices (2.24) form a small (or al-
lowed ) representation Rk, of Gz, if and only if S(K)

S S

obeys Eq. (2.18). Equation (2.20) is hence solvable if, in
addition to (2.18), S(K) may be chosen such that Rk is

S

equivalent to Rk. ,
S

Rk, ——Rk
S S

(2.25)

This condition, which is equivalent to Eq. (34) of Ref. 10,
often cannot be fulfilled and hence, in these cases, op-
timally localizable Wannier functions cannot be construct-
ed. We will find, however, suitable matrices S(K) for the
composite bands depicted in Fig. 2.

At points k,
' on the surface of the first basic domain,

Eq. (2.21) together with (2.19) or (2.20) is an equivalence
transformation of corepresentations (which also contain
antiunitary elements). Two corepresentations are
equivalent if they are derived from equivalent represen-
tations. At interior points k,' of the Brillouin zone
Do(KI)e '" ' and Dk ([KI

~
r})belong to the corepresen-

S

tations derived from the equivalent representations Rk
S

(2.23) and Rk, , respectively, and hence (2.21) together
S

with (2.19) is solvable. At points k,' on the surface of the
Brillouin zone, Do(KI)e '"' is matrix representative of
[KI

~
rI in the corepresentation derived from Rz, (2.24) if

5

and only if S(K) obeys Eq. (2.22) [in addition to (2.18)].'

Eq. (2.21) together with (2.20) is hence solvable if and
only if (2.22) and (2.25) is fulfilled.

We summarize as follows. Equations (2.17) and (2.19)
together with (2.21) are solvable; (2.20) together with
(2.21) is solvable if and only if matrices S(K) (2.16) can
be found which satisfy (2.18), (2.22), and (2.25). The task
to find such matrices S(K) gets considerably simplified by
a theorem which, in another form, was proven by Des
Cloizeaux R„,is equivalent to R„ateach point k,' on

S 5

the surface of the Brillouin zone if these representations
are equivalent at each point of maximum symmetry" on
the surface of the Brillouin zone. " Because of this
theorem, which is a consequence of the compatibility rela-
tions, we need only examine (2.25) at the points M, X, R,
Z, and 2 in the Brillouin zone of antiferromagnetic Cr.

S(K„)=S(K, ) =+ 0 i
—i 0

and (2.26)

S(K, ) =+ —i 0

For the other operators of the magnetic group we do not
get new equations from (2.18) and (2.22).

Now consider point 3 of the antiferromagnetic Bril-
louin zone (as given in Fig. 3 of Ref. 25) and condition
(2.25). According to (2.24) the matrix representative of
the operator [S4+

~
Oj in the representation R

„

is

Dg ( [Sg+
~
OI ) =S*(K +K, )

—1 0
(2.27)

since

Kq(S4+)=K +K,
[cf. Eq. (2.20')] and

Do(S4+ ) =
—1 0

The matrix representative of [S4+
~
OI in the representa-

tion R z ——3 &o also is

—1 0
Dg ( [S4+

)
OI )= (2.28)

as given in Table II(c) of Ref. 25. Both matrices (2.27)
and (2.28) are equivalent (in the present case even equal) if

S(K +K, )=I . (2.29)

This gives with (2.26) and (2.16)

S(K ) =S(Ky ) =S(K, ) =+ 0 i
(2.30)

The minus in this equation may be omited since the ma-
trices with the minus sign are equivalent to those with the
plus sign. In the same way it may be shown that the ma-
trix representatives of the other two generating elements
of G„(seeTable II(c) of Ref. 25) in the representation R

„

[with S(K) as given in (2.30)] may be transformed into
those in the representation A» each time by the same ma-
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l
F(A)=

1
(2.31)

trix. Thus, at point A, (2.25) is true and hence Eqs.
(2.20) and (2.21) are solvable; their solution is

now are appropriate for the construction of Wannier func-
tions. According to Eqs. (2.15) and (2.37) the functions

yk, (r) and e ' 'yk 2 are periodic in k space and hence
we can define Wannier functions, as usual,

since [in Eq. (2.21)] w, (r —R)= —pe '" [F(k)]&jpkj(r)
j,k

(2.42)

and

0 1

D„(IKI
~
r] )= (2.32)

and

1
wq(r —R —r)=

&
—pe '" +"[F(k)]z,yk, (r)

j,k

1 0
DP(KI) = 0 (2.33)

S(K)=M S(K)M (2.34)

as derived from Eq. (7.3.45) in Ref. 26.
The matrices S(K) now are completely determined by

(2.30). Consequently, the small representation 8 k, (2.24)
S

at the other points of maximum symmetry are also fixed.
In the same way as shown for point A we find that at
points X, M, Z, and R, Eq. (2.25) is true if the con-
sidered bands are labeled by X5, M2o Z

~ &, and R 5, re-
spectively, as indicated in Fig. 2.

With (2.30) all equations determining F(k) are solvable
and hence the two components of pk can be assumed to
vary sn1oothly through k space. They are, however, not
yet appropriate for the construction of Wannier functions
with well-defined local symmetry centers since the ma-
trices S(K) are not diagonal. Because of (2.16) all S(K)
commute and hence all of them can be diagonalized by
the same matrix M,

(2.43)

and

[D,(a)],, w, (r —R—p, ) for a ~ G, (2.44)
j =1

2

Kw, (r —R —p, )= g [D,(K)],, w, (r—R —p, ) . (2.45)

These equations show that the vectors p; (2.37) denote the
symmetry centers of the Wannier functions. Equations
(2.38) and (2.39) give with (2.36)

with k running through the N vectors of the antiferromag-
netic Brillouin zone and j = 1,2. R denotes a lattice point
of the primitive tetragonal lattice labeled in Fig. 1 of Ref.
25 by the, say, spin-up direction.

The symmetry of the Wannier functions is determined
by Eqs. (2.17}, (2.19), and (2.21). The lengthy derivation,
which is given in Ref. 1 5 for the space group operators
and in Ref. 1 7 for the time inversion, results in

w, (a '(r —R —p, ))

S(K)= iK p~ (2.35)

Equation (2.30) gives, with

and further the diagonal matrices S(K) have the form
i K.pl 1 0

d (a)
Do(a)= .

0 1

1 0

for a E C4h,

for a &D4„yC4„,

and

1
M =

v'2

p, =0

(2.36)

(2.37) 0 1
D, (K) = (2.47)

S(K) may be replaced by S(K) if in Eqs. (2.15), and
(2.17)—(2.22) the matrices Do(a), Do(KI), and F(k) are re-
placed by

where

1 for a =E, I, C2„,C2y Czz ) 0 z 7 oy and o.
„d(a)= —1 for cx =C4 S4 C2, Czb, o d, , and o db .

Dp(a) =M Do(a)(M*)

Do(KI)=M *Do(KI)M

F(k) =M F(k),
respectively.

The two components @&„(r)(n = 1,2) of

(2.38}

(2.39)

(2.40)

w*, (r) =w, (r) (2.49)

(2.48)

Equation (2.47) follows from (2.33) since Do(KI)
=Do(K)DO(I) and Do(I)=I. With (2.47) and (2.9) Eq.
(2.45) simply reads as

(2.41) and hence, with (2.46), Eq. (2.44) becomes
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td(a)w(r) for a&C~t, ,
w(a 'r)= '

d (a)w*(r) for a&D4t, XC'41,
(2.50)

The functions w(r —R) and w*(r —R —r) form an
orthonormal set of basis functions for the considered
bands (Fig. 2) and are situated at the atoms with spin-
down and spin-up direction, respectively. They belong to
a one-dimensional representation of the group C,„(which
is the group of their symmetry centers R and R+~, re-
spectively) and hence have the most simple symmetry
which localized functions may have in antiferromagnetic
chromium. Thus, the two composite bands in Fig. 2 are
"simple bands" and "class-I bands" in the notation of
Kohn' and Zak", respectively, having uniquely defined
Wannier functions. In this paper, their uniqueness is ex-
pressed by the fact that the matrices S(K) are, according
to (2.30), completely determined for the optimally localiz-
able Wannier functions.

III. ANTIFKRROMAGNETIC WANNIER FUNCTIONS
IN BCC TRANSITION METALS

r'„r++r+, 0'„r++r+, s,
I

N1~M20& N1~R „A,~X, +X10 62~Z11
(3.1)

Wannier functions which are symmetry adapted to the
perfect antiferromagnetic state of chromium exist if S(K)
follows Eq. (2.30). The four types of composite bands (in
the space group D4q) with such matrices S(K) are listed
in Table I. By means of Table I in Ref. 25 it may be es-
tablished whether or not the Bloch functions of a given
paramagnetic band can be transformed such that they
form, in the antiferromagnetic state, one of the bands list-
ed in Table I.

Consider, e.g. , the band structure of paramagnetic Cr
(Ref. 34) depicted in Fig. 1, in particular the band denot-
ed by the heavy line. It is labeled by the representations

I 25, H25, N, , P, 5, and 4p

If the symmetry is restricted to the antiferromagnetic
space group D4&, we get, according to Table I in Ref. 25,

nected to other bands since these connections disappear
when any small antiferromagnetic perturbation is activat-
ed. ) Any paramagnetic band which is compatible with
one of the bands listed in Table I, e.g. , the Cr band denot-
ed in Fig. 1, we call antiferromagnetic band (AF band).

Between the points I and N, the AF band of Cr
"jumps" from the lower to the upper X& band. This is al-
lowed since both bands have the same symmetry and the
jump does not cross the Fermi level (see, for a detailed
consideration, Sec. 4. 1 of Ref. 17). However, the jump
should be very small (compared with the bandwidth) since
it impairs the localization of the Wannier functions.

The antiferromagnetic band of Cr is one of the nar-
rowest bands of Laurent et al. (Fig 1) which is roughly
half-filled. These findings are confirmed by further pub-
lished band structures of paramagnetic Cr. ' (In the
band structure of Kulikov et al. the state N~ has about
the threefold distance from the Fermi level as the state N'I

and hence the jump between I and N has the order of
magnitude of the half bandwidth. In this case, the Wan-
nier functions will be badly localized. In the band struc-
tures as estimated by Asano and Yamashita ' and Rath
and Callaway, on the other hand, the state N, lies be-
tween the state N& and the Fermi level. For this position
of N& the jump does not exist and hence the Wannier
functions will be best localized. )

Among the other nonferromagnetic bcc transition met-
als V, Nb, Mo, Ta, and W there is only Mo (Ref. 40) hav-
ing a narrow roughly half-filled AF band. (We notice
that the positions of the states N& or N4 is decisive for an
AF band since only the states N z, N 3, N ~, and N4 are
compatible with M&o or M2O (see Table I of Ref. 25 and
Table I) and N2 or 1V3 does not occur in d-band groups. )

In the band structures of Nb and Ta (Ref. 41) the AF
band is nearly empty; in the band structure of W (Refs.
42 and 43) the jump between I and N tends to be
markedly greater as for Cr; V (Ref. 37) has an AF band
which is far from being half-filled. Summarizing we state
that, as to the existence of a narrow half-filled AF band,
Cr and Mo evidently have a special position among the
bcc transition metals.

The paramagnetic Bloch functions of this band may hence
be transformed such that they form basis functions for the
small representations labeling the bands depicted in Fig. 2
(and given in the first row of Table I). Consequently,
from the Bloch functions of this paramagnetic band we
may construct optimally localizable Wannier functions
(2.50) which are symmetry adapted to the antiferromag-
netic state. (In this context, it is meaningless that, in the
paramagnetic band structure, the considered band is con-

IV. RESULTS

We have determined all pairs of energy bands in the
Brillouin zone of perfect antiferromagnetic Cr ( or of any
antiferromagnetic metal with the space group D41, ) whose
Bloch functions may be unitarily transformed into Wan-
nier functions which are symmetry adapted to D4& and
which have one Wannier function at each atom. These

TABLE I. Symmetry labels of all the pairs of energy bands in the Brillouin zone of antiferromagnetic
Cr which have at each atom one symmetry-adapted Wannier function. For the symmetry notations see
Table II of Ref. 25.

r+ r+
r;, r;
r;, r;

X5
Xlp
X5
Xlp

Mzo
Mlp
M2o
M10

A1P

~11
A1P

Z 1 1

Zl I

Z 10

Z 10

R5
R1P
R5
~10
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pairs of energy bands are listed in Table I ( and the two
bands in the first row of Table I are depicted in more de-
tail in Fig. 2). By means of Table I of Ref. 25 it may be
established whether or not the symmetry of the Bloch
functions of a given paramagnetic band is compatible with
the symmetry of one of the band pairs listed in Table I
(see Sec. III). This is the case for the energy band of
paramagnetic Cr denoted in Fig. 1 by the heavy line.
Consequently, the Bloch functions of this band, shortly
called AF band, may be unitarily transformed into Wan-
nier functions being symmetry adapted to the commensu-
rate antiferromagnetic phase of Cr.

Among the other nonferromagnetic bcc transition met-
als, Cr has a special position: the metals Nb, V, W, and
Ta do not possess an AF band or it is in these metals far
from being half-filled (the only exception is the supercon-
ductor Mo which has a band structure very similar to Cr).

This evident connection between the existence of a narrow
AF band and the stability of a spin-density-wave state to-
gether with the evident connection between narrow o.

bands and the stability of superconductive states (as estab-
lished on eighteen metals' ) suggest that the symmetry
(and spin dependence) of the Wannier functions which be-
long to the narrowest half-filled energy bands of a metal
determines the physical properties of the conduction elec-
trons in a similar way as the symmetry of the valence-
electron orbitals determines the physical and chemical
properties of an atom.
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