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Peierls instability in spinless one-dimensional conductors
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The effect of nearest-neighbor Coulomb interactions on the Peierls instability of a spinless one-

dimensional system is studied. Finite-size systems with half-filled bands are studied using a modified

Lanczos method. Correlation functions and a qualitative phase diagram are presented. The results
show that small and moderate Coulomb repulsion favors the Peierls state while large repulsion inhib-

its the distortion and produces charge redistribution. The coexistence of Peierls distortion and charge
redistribution is found to be stable in a small region of parameter space.

I. INTRODUCTION

The eff'ect of electron-electron interactions in the
broken-symmetry states of one-dimensional systems has
been the subject of a number of recent works. ' It has
been shown that Coulomb correlations may have an im-
portant effect on the Peierls instability of half-filled bands
in both monatomic' and diatomic systems. In the case of
a monatomic system, the on-site Coulomb U increases the
dimerization for U smaller than the bandwidth, and
reduces the lattice distortion in the limit of strong interac-
tions. In strongly correlated diatomic systems the site-
energy difference favors the Peierls state in contrast to
what occurs in the uncorrelated case.

The effect of the correlations depends strongly on the
band filling. It is known that in the case of —,'-filled

band, strong Coulomb interactions can produce a Peierls
instability with wavelength X=2a (Q=4kF) as opposed to
the R=4a (Q=2kF) instability expected in uncorrelated
systems. The —,

' -filled band in the strong —intra-
atomic —repulsion limit (U~ oo) is equivalent to a spinless
—,-filled band which stabilizes a dimerized state. This 4kF
instability observed in a number of tetracyanoquinodi-
methane (TCNQ) salts can be considered as evidence of
strong correlations in these systems. In this case it may
be important to consider intersite Coulomb interactions.
The 4kF instability can be produced not only by bond di-
merization but also by changes in the intramolecular ener-

gy as is pointed out in Ref. 6. It is the purpose of this pa-
per to investigate the stability of the broken-symmetry
states in a spinless one-dimensional system with nearest-
neighbor interaction G for the half-filled band case. In
this model there are two different broken-symmetry states:
The Peierls state or dimerized bond-order wave (BOW)
which is stabilized by the electron-phonon interaction and
a charge-ordered state (COS) which for a rigid lattice is
stable for G )2t (here t is the hopping integral). With the
use of a simple real-space renormalization procedure it
has been shown that small values of G increase dimeriza-
tion while strong Coulomb repulsion reduces the lattice
distortion.

Recently Bendt studied the same model by diagonaliz-

ing finite systems. In Ref. 8, however, because of the
method used in the calculation nothing can be concluded
about the effect of dimerization on charge ordering.

We calculate the exact ground state of finite rings and
present results for the equilibrium value of the dimeriza-
tion as a function of the various parameters. Results for
different correlation functions and structure factors are
also included. These results allow us to give a complete
description of the nature of the ground state. We con-
clude that the two kinds of broken-symmetry state corn-
pete with each other. Small or moderate values of the
Coulomb repulsion G increase dimerization; however, the
BOW inhibits charge ordering for G ~ 2t. Strong
electron-electron interaction stabilizes the undimerized
COS.

These results are in agreement with previous calcula-
tions. ' The study of the correlation function and the
phase diagram obtained in this work allows us to present
a better characterization of the ground state of the system.
The rest of the paper is organized as follows. In Sec. II
the model and the numerical method are described. Re-
sults are presented in Secs. III and IV includes a sum-
mary and discussion.

II. MODEL

Our starting point is a half-filled band described in the
tight-binding approximation with nearest-neighbor repul-
sion by

0, = g t;;+,(C; C;+)+H.c. )

+g G;;+,(n; —
—,
' )(n;+, ——,

' ),

where C; creates an electron at site i and n; =—C, C;. t;~ is
the hopping integral connecting sites i and j and G; the
Coulomb repulsion between electrons at sites i and j.

The Hamiltonian Eq. (1) represents an extended Hub-
bard model in the limit of infinite intra-atomic Coulomb
repulsion. Using a Wigner-Jordan transformation we can
map H, onto an anisotropic Heisenberg model. In fact,
Eq. (l) is equivalent to a spin-Peierls Hamiltonian' if we
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take G;;+ &

——2t;; + ~.

For G,z ——G and t,~=t, the system shows an instability
at G=2t. If G &2t the charge is uniformly distributed in
the chain, while for the case G & 2t the ground state is a
COS in which the expectation value of the charge at two
neighboring sites alternates between —,

' (1+in) and

—,'(1 —5n).
We consider here the possibility of a lattice distortion of

wavelength A, =2a. Including the lattice degrees of free-
dom in the Born-Oppenheimer approximation M= oo the
total Hamiltonian is given by

0.3—

0.2—

HT ——H, +2KNx ) (2)

where N is the number of sites, K the elastic constant, and
x the bond distortion. In the dimerized state we take

0.0
0 0.5 1.5 a,2/K

K 1 16t sin (k +P)
2 4N (e2 +g2 )1/2

(3)

t, , +, t [1+—
( —1)'2ax ]

as in the SSH model for polyacetylene. " Here tu is the
electron-phonon coupling constant. The Coulomb repul-
sion G;;+ i is also a function of the distance between sites
i and i +1. However to simplify the model and reduce
the number of parameters, we take in what follows
G, , +, ——G independent of x. Then for G =0, Eq. (2)
reduce to the SSH model which is exactly soluble. Clear-
ly, in this limit the ground state is always dimerized.

We consider finite systems with N sites and N/2 parti-
cles. For G =0, the ground state of rings with N =4n is
a dimerized state for any value of a /K. In finite rings
with N=4n +2, the distortion is stable only for a /K
larger than a critical value. This behavior is a conse-
quence of the degeneracy of the ground state. To improve
the systematics of finite systems we consider rings with N
sites and periodic or antiperiodic boundary conditions for
N=4n +2 or N=4n, respectively. With these boundary
conditions all chains are dimerized only for o. /K larger
than a critical value which itself is a function of N. The
relation between 1/K and x is easily established. The
value of x that minimizes the total ground-state energy of
the system satisfies the equation

FIG. 1. Minimum lattice distortion as a function of a /K for
different lattice size.

limit. However, different numerical approaches can be
used to obtain information about the ground-state proper-
ties of finite systems' ' and using finite-size-scaling pro-
cedures we can infer some properties of the N~ ao limit.
In this work, we diagonalized rings with different values
of N in the interval (4,20). The exact diagonalization of
H, is performed by using a recently developed modified
Lanczos method. This procedure which we will use has
been developed in detail in Ref. 12. Here we provide a
brief description of the method before making use of it.
To begin with, we consider Pp as an approximation to the
exact ground state 1t/p of energy Ep such that (pp

~
po) &0.

Then,

Hko =colo+ b4o

where Ep= (@o
~

H
~
Pp) and b =((Pp

~

~'~Po)
—(po H

~

po)2)'/ the two states 1I)p and pp are orthogo-
nal and define a (2&&2) subspace.

Diagonalization of H in this subspace gives a better ap-
proximation of go and Ep. The new trial state and energy
are given by

where the sum runs over the N/2 —k values that give the
N /2 lower single-particle energy states. In Eq. (3)

e1,
———2tcos(k+p) and b1, =(4atx)sin(k +p). /=0 for

periodic boundary conditions and ~/N for antiperiodic.
The k values are given by ~n /N with
n = N/2, . . . , N/2—. In the N~ oo limit Eq. (3)
reduces to

and

4o+a4o
(1+ 2)1/2

where

Ci
——Co+ O.b,

(6)

K 4t K(~/2, a) E(rr/2, a)—
7T 0

(4) f (f2+ 1 )1/2

where a =(1—z )', z =2xtz, and K, E are complete el-
liptic integrals of the first and second kind. In Fig. 1 the
distortion as a function of a /K is shown for different
values of N. It has been proposed that the behavior of
finite systems with u /K near the critical value mimic the
behavior of infinite systems with infinitesimally small
electron-phonon interaction. For nonzero 6 the Hamil-
tonian H, cannot be diagonalized exactly in the N~ ao

and

&4ol(~ —eo)' 4o&

2& Co I
(0—eo)'

I

Po&'"

The method may be iterated by considering P, as a new
trial state and repeating the steps (5)—(9). For small sys-
tems, the iterative procedure covers the whole Hilbert
space and rapidly converges to the exact ground state and
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energy. For large systems, the method can be used to cal-
culate approximated energies and wave functions. In the
next section we present exact results for finite systems
with N (20.

III. RESULTS

AE = [E(G,ax—) E(G,O)], —1
(10)

where E(G,ax) is the ground-state energy of the system.
In both cases (N =8 and 10), the parameter a /K has

been chosen smaller than the critical value for G =0. The
curves for G =0 then have an absolute minimum for
ex =0. As G is increased a minimum occur for ax
different from zero and for large values of the interaction
the undistorted state is again stable. These results show

AE/t (10 ) (

0.6

The ground-state energy and eigenfunction has been
evaluated for rings with different number of sites using the
2&&2 procedure of the modified Lanczos method. ' We
take as initial ansatz the strong-coupling state,

~

0101 ); the N numbers in the ket give the occupa-
tion of the N sites of the chain. This is a good choice for
an intermediate-size lattice. However for larger systems,
it gives a slow convergence rate. This limitation can be
relaxed using other trial states. ' In order to reduce the
dimension of the ground-state Hilbert subspace we exploit
the translation symmetry of the ring. This allows us to
work with subspace dimension of the order 2(~&2)/N in-
stead of (fz2).

Results for the stability energy per site on dimerization
AE as a function of ax are shown in Fig. 2 for N =8 and
10. The stability energy AE is defined as

that the Coulomb repulsion favors dimerization for small
or moderate values of G. The same effect has been ob-
served using the renormalization-group approach. The
behavior is best illustrated in Fig. 3, where the equilibri-
um value of ax versus G is shown for different chains. In
all the cases presented here the elastic constant e /K has
been chosen such that for G =0 the distortion (ax/t) is
0.2. Except for very short chains (N =4), the distortion
increases as G is increased, it reaches a maximum for
G-2t and then decreases. The ground state for large
values of G is undistorted. The results are not very sensi-
tive to the size of the chain for N) 12. Similar results
corresponding to Figs. 1 and 2 have been obtained in-
dependently in Refs. 7 and 8. Our results are in qualita-
tive agreement with these works.

As mentioned above, the undistorted state with G )2t
shows a COS. In what follows we discuss what happens
when G) 2t in the distorted chains. Information on the
charge distribution on the chain can be obtained by study-
ing the charge-charge correlation function D (1), defined as

D(1)=—g ((n, —(n; ) )(n;+t —(n; ~+))),
1

where ( . ) indicates the ground-state expectation
value. For the undistorted case, it is known' that D(l)
behaves like ( —1) /1 for large 1. This behavior is illus-
trated in Fig. 4 for a ring of 20 sites. Figure 4(a) illus-
trates the results for G =t. For these values of the pa-
rameters D (l) decreases with I indicating the lack of
charge ordering (G &2t). Note the D(l) decreases more
rapidly in the distorted case. The behavior is again
( —1) /1"; however, a good estimation of g requires longer
chains or more elaborated finite-size-scaling analysis.
More interesting are the results for G&2t, Fig. 4(b). In
this case the amplitude of the correlation function D(l)
saturates exponentially to a constant value, for the undis-
torted chain, as a consequence of charge ordering [full
line in Fig. 4(b)]. Results for the distorted chain with ax
obtained with the criterion used in Fig. 2 show that for

0.0 {aX).,„

0.2

0.6

0.1

0.0

0.1 0. 2 0.0

FICx. 2. Cxround-state energy per unit site as a function of the
distortion parameter. (a) N =8, (b) N = 10.

FIG. 3. Minimum lattice distortion as a function of the
Coulomb repulsion parameter for different lattice size.
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FIG. 4. Charge-charge correlation function as a function of
the distance I for (a) 6=0.2156, (b) 6=0.1956. Full line, undis-
torted case. Dashed line, distorted case (6=ox). N =20.

The ( —1)'/l" decay of D(l) implies the structure factor
will have a logarithmic divergence at q=~/a for g=1.
This corresponds to the G =2t case, where the system un-
dergoes a metal-insulator transition. For finite rings this
divergence is cut off by the finite size of the system. For
G (2t there is only "incipient" long-range order such that
S(q) peaks at q =sr/a but has a finite width. For G &2t
the ground state has long-range order which for (z ™)
approaches the

~

1010 ) configuration. If we calcu-
late S(q) for this particular configuration we find
S(q) —6(n/a —

~ q ~

). In Fig. 5 we show S(q) for G =t
and G =3t. The obtained results for the undimerized
chains are in good agreement with previous Monte Carlo
results' '' and show the expected behavior. For the dis-
torted case, the G =t results present a decrease in S(m/a )

and the overall tendency is like the G =0, x =0 result.
For G =3t, the dimerization inhibits the charge ordering
instability reducing S(vr/a). In this case the structure
factor S(q) resembles the 0 & G & 2t undistorted results.

Another interesting correlation function is the transfer-
charge density function which measure the difference in
the electronic density of the short and long bonds in the
chain.

W(l) = —g ((C, +&C;+H.c. )(C;+I+&C;+i+H.c. ) ) .
N

S(q)= —g e'~'((n;n;+I ) —(n; )(n;+I ) ) .
i, l

(12)

this parameters the dimerization inhibits charge ordering
[dashed line in Fig. 4(b)] and our results suggest in
( —1)'/I" asymptotic law. It is also interesting to deter-
mine the charge structure factor corresponding to the
correlation function D(l). In Fig. 5 we show the struc-
ture factor

(13)
In Fig. 6 we show W'(I) for G =t and 3t Because. we

use antiperiodic boundary conditions for chain with
length 4n, for N =20 W(N/2)=0. For the undimerized
systems, the charge is uniformly distributed in the chain,
then a monotonic decrease towards W(N/2) is expected.
For a nonzero dimerization, the charge transferred be-
tween two neighboring sites depends on whether the bond
is short or long. Then, oscillatory behavior is expected.
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FIG. 5. Charge structure factor as a function of k. (a)
6=0.2156, (b) 6=0.1956. N =20.

FIG. 6. Transfer-charge density correlation function as a
function of the distance l. (a) 6=0.2156 (b) 6=0.1956. N=20.
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The oscillations in these functions show the existence of a
bond-ordering wave. These results have been also ob-
tained for G =0, by Fradkin and Hirsch, ' for a nonadia-
batic SSH model. Finally, for completeness we give in

Fig. 7, the single-particle Green's function which defines a
length that measures the distance over which the electrons
are localized in the ground state

1.0

(a) G=1

G(l)= g (C, +iC;+H. c. ) .
2N

(14)

In the free-electron limit (G =0), and in the undistorted
case, we obtain

G(l)= g e'"'(nk)
k

1.0 (b) G =3

ikla

k( (kF)
(15) 0.5

It is easy to prove that for this case G(l) decay algebrai-
cally with oscillations suggesting that the ground state is
extended over all the system. In the N~oo limit we
found

sin(k~la )
G(&)=

~l
(16)

G(l)

0.25
(a) G =t

Equation (16) shows that for the noninteracting case G (I)
is zero for I even. This result is also obtained for finite
ring, as is illustrated in Ref. 15.

As we note in Eq. 15, for G =0, the Fourier transform
of G(I) is the zero-temperature Fermi function. When G
is increased a tail appears at k =kF and a nonzero but
small value is obtained for G(21). For N~ Qo we expect
(nk ) to be discontinuous at k =kF in the metallic phases
and continuous in the insulating one. This change in be-

FIG. 8. The occupation number nq for a ring of 20 sites. (a)
6=0.2156, (b) 6=0.1956.

havior is rejected in the results obtained for finite chains
as is shown in Fig. 8.

Finally a phase diagram in the parameter space
(a /K, G/2t) is shown in Fig. 9. As mentioned above, we
expect a region near the BOW-COS boundary where both
charge ordering and dimerization coexist. However, our
results for finite rings suggest that this mixed phase is
stable only in a small region near the boundary.

The phase diagram shown in Fig. 9 has been obtained
using short rings. The extrapolation to large N is very
tedious, however we expect the same qualitative behavior
for large systems.

--o/

—0.25—

c( /K

0.25—

I

(b)G =3t

0~0~4~~~

15

1.0

0.5

BOW

COS

-0.25— 0.0

G/2t

FIG. 7. Single-particle Green's function as a function of the
distance l. (a) 5=0.2156, (b) 0.1956. N =20.

FIG. 9. Qualitative phase diagram for the competition be-
tween charge-ordering state (COS) and bond-ordering wave
(BOW).
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IV. CONCLUSIONS

We have studied the effect of nearest-neighbor Coulomb
interaction on the stability of Peierls states in one-
dirnensional spinless conductors. For the half-filled band
the results can be summarized as follows.

(a) Numerical diagonalization for finite rings allows us
to obtain the well-known results for the charge ordering
in rigid lattices and for the Peierls instability in the G =0
systems. In the rigid lattice the transition from a metallic
state (G &2t) to an insulating COS (G & 2t) is very well
reproduced. The Peierls instability in the G =0 case is
sensitive to the length of the chain and on the boundary
conditions; however, extrapolations to large systems
reproduce again the exact results obtained for infinite sys-
tems (see Fig. 1).

(b) Small Coulomb repulsions G favor the Peierls insta-
bility. The BOW order parameter increases for increasing
G, reaches a maximum for G =2t, and then decreases and
rapidly goes to zero for G larger than a critical value G, .

(c) The charge transfer which occurs in the rigid lattice
for G &2t is totally or partially suppressed by dimeriza-
tion. Coexistence of COS and BOW is found only for
values of G in a small region near the distorted-
undistorted boundary.

(d) The phase diagram obtained for short chains (Fig. 9)
shows that in dimerized chains the critical value G, for
the occurrence of charge ordering is larger than 2t and as
the elastic constant increases G, tends to 2t. The region
a /K —1 (dashed line in Fig. 9) is not well described.
Our results indicate that when G is increased the system
from a distorted (BOW) to an undistorted (COS) state
through a mixed phase in a continuous transition.
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