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F. de Pasquale, D. Feinberg, * and P. Tartaglia
Dipartimento di Fisica, Universita di Roma La Sapienza, Piazzale dido Moro 2, I-00185 Roma, Italy

di Struttura della Materia del Ministero della Pubblica Istruzione, Roma, Italy
(Received 4 August 1986; revised manuscript received 1 December 1986)

We study the response to a magnetic field variation of a system with continuous symmetry in the
ordered phase. Nonlinear relaxation of a vector order parameter is expected to occur even for a very
small field if this is switched on in a direction not close to the direction of the initial magnetization.
The transient behavior is explained in terms of fluctuations associated with the decay from the initial
state which, immediately after a field inversion, is unstable. We find a metastablelike behavior of the
magnetization, anomalies in the fluctuations of the order parameter, and a large growth of the corre-
lation length above the equilibrium values. We study the effects of both homogeneous and inhomo-

geneous fluctuations using two complementary theoretical approaches, i.e., the quasideterministic
theory and the spherical limit.

I. INTRODUCTION

Highly nonlinear phenomena occur when a system with
continuous symmetry is suddenly forced to be in an un-
stable state, for instance, by varying some external control
parameter such as the temperature or an external field. '

A typical nonlinear relaxation process which has been ex-
tensively studied, both experimentally and theoretical-
ly,

' is the quench of a magnetic system below the criti-
cal point, where the growth of a new phase is observed.
An analogous phenomenon is the nonlinear orientational
response to a magnetic field switched on in a direction
very different from that of the initial magnetization.

The aim of this paper is to study in detail the mecha-
nism of the orientational relaxation process for a noncon-
served vectorial order parameter with n components, in
the case of a complete inversion of the direction of the
external field. We treat both the case when only homo-
geneous spatial fluctuations are important and the case in
which inhomogeneous fluctuations are equally relevant.
The most relevant result we get is the interpretation of the
main features of the relaxation as due to the vicinity of
the unstable state that the system reaches immediately
after a magnetic field inversion. The fluctuations associat-
ed with the decay from the initial unstable state character-
ize the temporal relaxation.

The physical phenomenon we discuss can be summa-
rized considering the following four different temporal re-
gimes in the transient behavior of the system.

(i) An early stage when the system, after the magnetic
field variation, quickly reaches an unstable state.

(ii) Subsequently, the system remains close to the unsta-
ble state until thermal fluctuations cause the decay. This
behavior shows up in a quasimetastable state of the mac-
roscopic magnetization for times that depend logarithmic-
ally on the applied magnetic field and the strength of the
thermal fluctuations. A concomitant anomaly develops in
the fluctuations' correlation length which grows to values
much larger than the initial and final steady-state ones. A

further characterization of this regime can be given in
terms of the statistical properties of the temporal averages
of the order parameter which show an anomalous disper-
sion.

(iii) The magnetization inversion happens then very rap-
idly at a time which coincides with the maximum of the
magnetization fluctuations. The vicinity of the instability
manifests itself as anomalously large fluctuations of the
component of the order parameter transverse with respect
to the magnetization. This phenomenon is due to the
large spread of the time it takes to the system to leave the
unstable state.

(iv) Finally transverse fluctuations are reduced, the sys-
tem feels the direction of the external field and the magne-
tization reaches the new equilibrium value.

From the theoretical point of view two special cases are
of particular interest since they can be treated in an essen-
tially exact fashion. The first one is the case of a two-
component order parameter (n =2) with homogeneous
fluctuations, that can be solved taking into account phase
fluctuations by means of the quasideterministic approxi-
mation. ' The other important case is the large-n limit
(or spherical model), which gives a consistent description
of all the phenomena related to the inhomogeneous fluc-
tuations. In this case the modulus of the order parameter
is a nonfluctuating variable, the process becomes a Gauss-
ian process whose characterization is given by a single
deterministic nonlinear integro-differential equation.
The first approach is typical of the transient phase fluctua-
tions of a field in a laser; the second refers to the kinetics
of phase transitions in magnetic systems.

We have studied the homogeneous case in terms of
modulus and phase of a two-component order parameter.
In such a case the relevant relaxation phenomenon occurs
in the phase. Thermal noise is essential to initiate the re-
laxation after a field inversion since, as we already men-
tioned, the phase is initially in an unstable state. The de-
cay is studied from two points of view, namely, the tem-
poral evolution of the magnetization and its anomalous
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fluctuations and the passage time statistics.
An exact theory of the relaxation phenomena can also

be worked out for large n both in the case of homogene-
ous and nonhomogeneous fluctuations. An analytic solu-
tion is easily derived in the homogeneous case, while in
the nonhomogeneous case we get a piecewise analytical re-
sult. In the first case a comparison can be made with the
results for n =2; in the second one with a numerical solu-
tion of the relevant dynamical equation. In the inhomo-
geneous case the time behavior of the relaxation function
is quite close to that of the homogeneous system both in
the initial and final regime. However, nonhomogeneous
fluctuations are important for the intermediate growth
and to trigger the final regime. One of the important
features of the kinetics after a quench is the appearance of
a scaling regime at intermediate times. We find that in
the field inversion case, both in the decay and growth re-
gime, magnetization fluctuations exhibit a scaling behavior
with a spatial correlation which increases in time accord-
ing to the Lifshitz-Cahn-Allen t ' law. ' The analysis
of the structure factor also shows how the long-range
correlation of transverse fluctuations, if present in the ini-
tial state, will be maintained after the field switch but with
a relative weight which decreases in time.

The theory of the orientational relaxation is also able to
evidentiate the ergodic behavior of the system, that can be
summarized as follows. After the decay from the meta-
stable system the phase space available to the systems is
enlarged because of the possibility of very different orien-
tations of the magnetization in different regions of the sys-
tem. During the growth regime a local ordering develops
via a reorientation of the local magnetization which pro-
duces local domains of growing size. In the final ergodic
regime domains with orientations different from that of
the applied magnetic field will disappear.

Section II introduces the theoretical model and the dis-
cussion of the homogeneous two-component system. In
Sec. III we introduce the large-n limit and the analytic
solution of the model in the homogeneous case and the
numerical and approximate analytical solution for the
nonhomogeneous system. Section IV is devoted to the
conclusions.

II. THE MODEL: HOMOGENEOUS FLUCTUATIONS

dW(x, t)=g(x, t)dt .The effective free energy H is given
by

H= f dV —
/@/ + /tt/ +—[V.Q/ —ilnh@

(3)

for a system of finite size V=L . In order to obtain the
homogeneous limit we first Fourier transform Eq. (1),

@(x,t) =—g e'~ "Pq(t), q—:q; =1

V

277
I 7n i=1 23-

with n; (i =1,2, 3) taking integer values. We then have

(4)

(ro+—Dq ')yqat

+v'eg, +iln hV5, p .

p(t)= —(ro+u g l
)p+(eo)' Pt)+h

dt

where g' is a vectorial Gaussian white noise and eo=eln V.
Some of the most remarkable features of our solution

can already be seen studying the homogeneous system
with n =2. In this case an alternative picture is given by
introducing the modulus R and the phase 0 for the order
parameter through

cp& +1+2=Re

We use a method' which takes advantage of the fact that
when dealing with Ito equations, the noise is statistically
independent from the field evaluated at the same time.
Assuming the magnetic field in the direction 1, we have
the Ito stochastic differential equations

The homogeneous limit is obtained selecting the q =0
mode in Eq. (5) and assuming it is macroscopic,
fo(t)=iln Vq(t):

We assume as evolution equations for our system the
time-dependent Ginzburg-Landau model" for a noncon-
served order parameter

—g(x, t)= — + v'eg(x, t),a sa
ai

dt
—R(t)= —(rp+uR )R+ +(eo)' g~+h cosO,

2R

d h

dt R
O(t) = ——sinO+ —ge,R

g~ =gicosO+$2sinO, pe= —g~sinO+$2cosO,

(9)

(10)

where g(x, t) is the n-dimensional vector associated with
the local magnetization and g'(x, t) is the local thermal
noise with the usual properties

(g, (x, t)) =0,
(g;(x, t)g, (x', t') ) =&;,,6(x— )5x(t t') . —

We assume Eq. (1) to be an Ito stochastic differential
equation and, as is customary in the physics literature, we
use the stochastic force g'(x, t) instead of the multivariable
Wiener process d 8'(x, t), according to the relation

where h =hI & 0 and h = —hF & 0, respectively, before
and after the inversion of the magnetic field at t =0. For
t &0 the situation can be described as follows. From Eq.
(8) we see that when rp (0, for small enough ep and ht
and very large

~

rp and u, we can neglect the field and
thermal-fluctuation effect on R so that we can assume
R =(

~

rp
~

lu)' . On the other hand, the magnetic field
and thermal fluctuations strongly affect the phase. Equa-
tion (9) shows that the phase undergoes a Brownian
motion in a periodic potential V(O) = —(ht /R)cosO. The
steady-state probability distribution
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P(O) —exp ——V(O)
1

Eo

2hF t
1 ——,e Oo

m (t) = (cosO) =

has a maximum, as expected, for 0=0, which is also the
equilibrium state for the process of Eq. (9). For large R,
i.e., R ~& eo/hi, the phase has negligible fluctuations
around is equilibrium value. Field inversion transforms
the initial equilibrium state 0=0 into an unstable one that
the system will abandon because of thermal fluctuations.
We will use the limit of very large

~

ro
~

and u with fixed
ration R —(

~

ro
~

/u) =1 which is the so called hard-spin
(HS) limit. ' It allows a closer analogy with spin systems,
and at the same time neglects the inessential fast initial
dynamics of the modulus.

We will apply a quasideterministic theory to the tran-
sient behavior of fluctuations, exploiting the same approxi-
mation scheme already used to study the transient laser
radiation statistics and chemical explosions. ' The
idea is to derive an approximate solution of Eq. (9), i.e., a
process which reduces for short times to the solution of
the linear version of Eq. (9) and for long times to the solu-
tion of the deterministic limit of the same equation. In
other words, for long times we neglect in Eq. (9) the noise
obtaining the deterministic equation of motion. The main
justification of such approximate solution is that noise is
important to start the evolution and becomes negligible
when the system leaves the unstable state. Fluctuations of
the system when it comes close to the stable state can
then be added as a perturbation according the results of
Ref. 5. The approximate process we get is given by

and can be evaluated, using the properties of Oo(t), as

m (t) =2H (z) —1, H (z) =&nze' erfc(z),
1/2 (14)

2

o (t)
exp( hF t)—,

where erfc is the complementary error function. ' The
magnetization is a function of the scaling variable z which
vanishes for long times. Using a series development in z
for m (t) we can evaluate the instant t; when it vanishes.
To lowest order in z

1t;= ln
2hF

16nhF

hF tg

@2(t)=sinO= (16)

The average value is zero as expected from the symmetry
of the problem, and the variance is given by

The overall behavior of the magnetization is shown in Fig.
1.

Anomalous fluctuations are evidentiated in the trans-
verse component of the order parameter. From Eq. (11a)
we obtain

( y2(t) ) =2H (z) +4z [H (z) —1] (17)
O(t) =2 arctan[ —,'Oo(t)e ],
Oo(t) =(eo)'~ J dt'e gg(t'),

0

(1 la)

( 1 lb)

(Oo(&)) =o'(&)= (1 —e ) .
2hF

(12)

and it can be understood as a mapping, defined by the
solution of the deterministic version of Eq. (10), between
the process O(t) and a Gaussian variable Oo(t) of zero
average and variance given by

with the same symbols used in Eq. (14). Again we obtain
a macroscopic maximum value in the variance at times of
the order of t; when (sin O) =1. The macroscopic vari-
ance is actually a natural consequence of the fact that
different stochastic trajectories leave the unstable state at
quite different times. The result of Eq. (17) is shown in
Fig. 2.

We now consider' the time the systems needs to reach
a given angle 0, if it is initially 0=0, as a stochastic vari-
able that can be obtained from Eq. (16). Recalling the

The decay of an unstable state can be characterized in
terms of the approximate solution of Eqs. (11) and (12)
from two points of view that can be fully exploited in the
case of orientational relaxation. First of all we study the
transient statistics of the order parameter, which has an
analogy with the experiments performed on laser transient
radiation. The decay of the unstable state shows up in
the anomalous fluctuation phenomena, i.e., fluctuations in
the transient much larger than at steady state. In our
case this phenomenon is expected for the transverse com-
ponents of the order parameter. A second point of
view' ' is to consider the time the system needs to
reach a given state as a stochastic variable, the passage
time, and to study its statistics. We now discuss in some
detail the main features of the decay according to these
characteristics.

The longitudinal component of the order parameter,
i.e., the macroscopic magnetization m (t), is

lpxlp

5-
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n= co

0 = 0.5
r= -0.7

-10
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FICx. 1. The magnetization m (t) for homogeneous and inho-
mogeneous fluctuations for n =2 and n = ao. The values of the
parameters are hi =hF ——4.2X 10 ', @=2; V =10', u =1 in the
HS limit.
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FICs. 2. The anomalous fluctuations of the transverse field for
n =2. The parameters are the same as in Fig. 1.

properties of Ho(t) we can write Ho=o. (t)g, where g is a
time-independent Gaussian variable with zero mean and
unitary variance and cr(t) is given by Eq. (12). From Eqs.
(16) and (1 la) we obtain the passage as a function of H

and g

2 0 8hF
t~ = ln tan — +1

26F 2 Eog
(18)

This quantity, which we call passage time, is not the usual
first passage time since it also allows multiple crossings of
a given reference value 0. Moreover, in the quasideter-
ministic part of the motion the two quantities should be
essentially the same. The statistical properties of t~ can
be obtained from the generating function

given in Eq. (22) is a sum of three terms, the first one be-
ing the time the system spends close to the unstable state
and the second one the time the system needs to reach a
given orientation. This second contribution, under the
conditions mentioned above, is much smaller than the
first one. It is worth noting to note that the average pas-
sage time is just the time at which the magnetization van-
ishes and the transverse anomalous fluctuations reach the
maximum value [see Eq. (15)]. It is also interesting to
note the logarithmic dependence both on thermal noise
strength and external magnetic field. Thermal noise is
essential to move the system away from the initial state
while a vanishingly small magnetic field implies a very
long time for orientational relaxation to occur.

III. THE SPHERICAL LIMIT

We now approach the study of the relaxation after a
field inversion in the limit of a large number of com-
ponents of the order parameter. ' We assume again
the external field in the 1 direction and therefore a macro-
scopic longitudinal component of the magnetization in
that direction

g;( xt)=&n m (t)5; )+5/;(x, t) . (23)

The main point is that in such a limit the nonlinear term
of Eq. (1) becomes a time-dependent nonfluctuating quan-
tity

n

lim —
~ f '= lim —g (ttj;(x, t)1(, (x, t))

n —~ cc n~oo n 1=1

~(X)=&e '"), (19) =m '(t)+ (5g,'(x, t) ) =C (t) . (24)

where the average is over the distribution of 0p. The re-
sult is

hF
W(A. ) =

77Ep

1/2

2 tan —I
0 1+X
2 2

1+X 3 4~F 2 0XU tan—
2 2 Ep 2

(20)

where I and U are the gamma and the confluent hyper-
geometric functions. ' For the physical interesting case of
a macroscopic angle and a magnetic field larger than the
effective noise Eo, i.e., for

As a consequence, we have a linear stochastic differential
equation with an effective time-dependent restoring force.
In Fourier space

The solution of this equation is conveniently expressed
in terms of the nonlinear relaxation function y (t),

y(t)=exp 2 f dt'[ro+uC(t')]
0

(26)

Bt q5gq(t)= —[ro+Dq +uC(t)]5@q+&egq+&n hV5q o'

(25)

20 Eo
tan —~&

2 4hF

we obtain, using the asymptotic expansion of the function
U to the leading order

—Dq t

5fq(t) = 5pq(0)+ f dt'e q &y (t') &egq(t')
Vy(t) . 0

(27)

4hF 0tan—
2Ep

and for the average passage time' '

—A, /2

(21)
From Eq. (25) we get the self-consistency condition which
leads to the evolution equation for y,

2 dt
y(t) =(r +um )y + " f 'dt'y (t')

V o

&tp) = ln
1

2hF

16hF

Ep
+ ln —tan

0
4 2

(22)

+uE dt t —t'y t + Sq Oe
0 q

(28)

where g is the digamma function. ' The passage time as The average magnetization is given by
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(5gq, (t)6gq, (t)) = Voq+q pSq(t) (i&1), (30)

and Sq(0) is its value for t =0. The last term of Eq. (28)
contains the memory effect due to the local fluctuations

(31)

r

m(t)= m(0)+h f 'dt'&y(t')
&y (r) 0

As before h =hr) 0 for t )0 and h = —hF &0 for t )0.
The usual definition for the transverse structure factor
holds,

2hFp=
(~r ~/u)' aF

v=(ue/ r
~

VaF),

that verify the relation p +v= 1, derived from Eq. (34),
which gives

2hF

(/r i/u)'

Equation (36) can be readily solved
2

The primed sum is restricted to values of q different from
zero. The subtraction appearing in the preceding equation
is actually present only for space dimensionality larger
than 2, and is related to the renormalization of the param-
eter r which is given by

y(r)= —( i —~)(7/2) + V 7./2

1 —(v/2) 2[1—(%/2)]

' 1/2

&+ ( &/2 )e ( t —(v/2)]T

(37)

(38)

ue 1r =rp+
2V

q Dq
(32)

and the sum is limited by an upper momentum cutoff. It
is worth to recall that for negative r0 the renormalized pa-
rameter r can be positive for high enough temperature and
negative for small enough ones. The critical point is thus
defined by r =0. The steady-state solution of Eq. (28) is

y-e ', Sq(0)=
2Dq +a

m (0)= 2h
(33)

where a is the solution of the equation

4uh 2

r ——+
2 ct2

uea + 1 QE+
2Dq (2Dq +a)

(34)

We will always use a steady state as initial situation and,
consequently, we will use eI and eF when referring, re-
spectively, to the initial situation with h =hI or the final
one with h = —hF.

A. Homogeneous fluctuations

=(r+um )y+ + f dt'y(t') . (35)
2 dt V ai 0

From now on we will use the HS limit, in which Eq. (35)
can be reduced to

We shall first treat the homogeneous fluctuation limit
(infinite D) which can be solved analytically and com-
pared both with the n =2 case of Sec. II and the inhomo-
geneous case. Hence the equation for y (t) reads as

for hF ——hr and therefore aF ——&xi. The behavior of the
magnetization, shown in Fig. 1, has a close analogy with
the behavior of the two components model discussed in
Sec. II. However, a qualitative difference is evident as far
as higher moments are concerned and is a consequence of
the fact that in such a limit the process is Gaussian at any
time. The inversion time for the magnetization is easily
estimated from Eq. (38) in the case v « 1 when
aF =2hF/(

~

r
~

/u)'

7; =ln
1/2

4VhF

E
(39)

B. Inhomogeneous fluctuations

The situation is quite different in the inhomogeneous
case; in fact, thermal fluctuations are present even in the
infinite volume limit. In such a case Eq. (28) reads, in the
HS limit,

1/2
bra Fy(r)= p —

—,
' f dr'v'y(r')

hFaI ' 0

and it is very close to the one given by Eq. (15). It is also
important to note the behavior of the function y (t) in the
early and final stages of the relaxation (see Fig. 3). It is
very close, respectively, to a decreasing or an increasing
exponential with a time constant inversely proportional to
hF. As it is clear from Eq. (38) the magnetization inver-
sion occurs only because of the presence of thermal fluc-
tuations which are able to move the system away from the
unstable state. In the homogeneous limit these fluctua-
tions are vanishingly small for large volume.

y(r)= p' ——' f dr'&y(r')
hFQI 0

2 QF + d7y 7

+V + d7'y 7'
(XI 0

(36) +gl /2

AF

' 1/2

F Dl

CXF
+ f dr'f(r r')y (r')—

0

where we defined the scaled time 7=aFt and the con-
stants with

(40)
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FIG. 5. The structure factor S~(~) for br =hF = 8.4&( 10 ' for
the scaled times ~=5, 10, 15, 20, and 25.

I 8
(45)

q=O

Using this definition and the equation of motion (26), with
the initial condition S~(0)=el(2Dq +at), one gets the
expression of l (r) as a function of y (r),

l2( ) l~ 7 + f dr'(r 'r' l )y (r')— —
(46)

lt I+ f dr'y(r')
0

6
~og Sq (&)

regime could be evidentiated starting with an initial state
with very short correlation length (strong initial magnetic
field). This kind of scaling behavior has been widely stud-
ied in Ref. 2 and our results are in complete agreement
with theirs. The global evolution of the structure factor is
shown in Fig. 5 for equal values of the magnetic field in
initial and the final state. Figure 6 shows S~(r) for a
weak initial magnetic field corresponding to a long corre-
lation length. It evidentiates, especially when comparing
with the situation of Fig. 5, the fact that the memory of
the initial correlation survives for long times after the
external field variation.

The global behavior of the structure factor can be de-
scribed in terms of the time-dependent correlation length
defined as

f"dx x'S(x, t)
l2( )

0

6 dxS x, t
0

FIG. 7. The percentage increase of the squared correlation
length as a function of the scaled time for decreasing magnetic
fields hr=hp=8. 4& 10 ', 8.4&(10, and 8.4&& 10

l (r) —lt

Ir 1+2e
which shows the same behavior until it reaches a max-
imum at ~-2~; and then rapidly decays to zero. This be-
havior is verified numerically as shown in Fig. 7. It is a
manifestation of the reorientation of the magnetization
along the new direction of the magnetic field since the
new maximum of the local potential is felt by the system.
The anomalous increase of the correlation length is a
qualitative feature associated with the decay from the un-
stable state.

It is worthy to emphasize that the time at which the
correlation length has a maximum, i.e., t -2~;/al is dom-
inated by the spatial correlation length associated to the
initial state, i.e., lt =(2D/at)' . The latter quantity can
be very large if the system is initially in the presence of a
vanishingly small magnetic field. This fact clearly illus-
trates the importance of long-range field configurations in
the statistical properties of the system during the tran-
sient. The weight of these configurations is obviously em-
phasized in a quantity like the correlation length. From
this point of view the possibility of having a correlation
length which is still growing for times greater than the in-
version time is not unexpected.

where now ~=alt, and lI ——2D/a~ is the initial correla-
tion length. At times ~&&1 we get I —lI/lI -~, while
for 1«~&~;, l —ll/ll -~. This is the scaling regime
with the typical square root of time law, characteristic of
a system close to an unstable state. Neglecting the very
small contribution of the short intermediate region and
using the asymptotic form of y gives for z & ~,

IV. CONCLUSIONS
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FIG. 6. The same as in Fig. 5 for hI =8.3)&10
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Orientational relaxation is a conceptually simple
phenomenon in which many topical aspects of nonlinear
relaxation can be evidentiated. First of all we found all
the phenomenology of the decay from an unstable state.
This aspect has been analyzed in full detail in the case in
which only homogeneous fluctuations are taken into ac-
count. At first glance such an approximation could be
considered sufficient to describe the general case of the
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orientational decay. In fact, the system with inhomogene-
ous fluctuations can be considered as an ensemble of in-
dependent subsystems whose typical size is the final fluc-
tuation correlation length lF =(2D/aF)' . Actually one
observes that the inhomogeneous inversion time [Eq. (43)]
is nearly equal to the homogeneous one for a system of
volume V =IF. Such a picture actually works as long as
the average magnetization inversion time is considered.
However, the fluctuation correlation length is a quantity
which changes significantly during the transient, as we
have seen in the discussion of inhomogeneous fluctuations
in the large-n limit. Because of this circumstance the pre-
vious picture becomes ambiguous. This anomalous be-
havior is a new feature of the decay of an unstable state
which is closely related to the possible existence of a scal-
ing regime for the fluctuation correlation function.

Let us recall the mechanism underlying a scaling re-
gime for a system with continuous symmetry in the case
of nonlinear relaxation after a temperature quench in the
absence of external magnetic field. In a discretized ver-
sion of the model we have a local potential in each site
with a continuous degeneracy of equilibrium states.
Below the transition temperature the local thermal noise
is not sufficient to prevent the growth of the spatial corre-
lation of fluctuations which occurs through reorientation
of the local magnetization. This is the mechanism under-
lying the growth of fluctuations that are macroscopic in
size and their spatial correlations. In the case of orienta-
tional relaxation the system is close to the unstable state
and the situation is not very different from the previous
one if the magnetic field is sufficiently small. The main

difference is indeed in the more limited time range in
which scaling behavior can occur. Scaling is in fact
verified in the intermediate time range in which the sys-
tem has already lost memory of the initial spatial correla-
tions, but is not yet affected by the presence of the new
magnetic field. This time interval can be very small be-
cause of the following circumstances. The initial state can
have quite large spatial correlations due to a small initial
magnetic field. In this case field configurations with
long-range spatial correlations have a statistical weight
which is not negligible at intermediate times, and this
prevents the emergence of scaling behavior in the correla-
tion function. The spatial correlation of the final state is
not related to the size of the system, as in the case of tem-
perature quenches, but to the magnetic field and it is con-
sequently expected to be a much smaller quantity.

Finally we want to mention the limitations of the
theoretical approaches we used. The quasideterministic
theory, in the simple form we adopted, does not describe
the equilibrium fluctuations, although they can be taken
into account introducing perturbative corrections.
Another limitation of the theory is the difficulty to extend
it to systems where the spatial dependence of the fluctua-
tions is important, although some attempt in this direction
has been made. ' As far as the spherical limit is con-
cerned, the fact that the relevant stochastic processes for
the components of the order parameter are Gaussian is
the simplification that allows a consistent analytic solution
of the model but at the same time constitutes its limita-
tion.
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