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We present a new analytical method to see the exact dynamic behavior of solutions in extended
Klein-Gordon systems describing a continuum containing a dissipation term and an external force
term. The solutions are investigated geometrically in a state plane by transforming the equation into
three basic equations each of which is associated with derivatives with respect to x, t, and P, respec-
tively, under the condition that the solutions approach asymptotically the stationary solitary wave

solution as x and
~

t
~

approach infinity. The waves on P, are divided into the traveling-wave

component, V(x, t), and the others. The state plane is then constructed by V(x, t) and P. The
method for analyzing the soliton-antisoliton interaction is described in detail ~ The analytical method
is applied to the extended sine-Gordon system. Then, local distortions are found during the soliton-
antisoliton interaction instead of the emission of radiation, and their mechanism and properties are
clarified in detail from the singularities of the solution.

I. INTRODUCTION

Nonlinear Klein-Gordon equations such as the P equa-
tion, the sine-Gordon equation, the multiple sine-Gordon
equation, and so on are applied to many areas of
condensed-matter physics. ' The more general forms of
nonlinear Klein-Gordon equations are the equations in
which an external force term and a dissipation term is
taken into account. We refer to it as extended Klein-
Gordon systems. As one of the typical examples of such
systems, we exemplify a soliton (fiuxon) dynamic system
on the Josephson transmission line biased uniformly by dc
current, where the equation is constructed by adding a
dissipation term and an external force term to the sine-
Gordon equation. Another typical example of the sys-
tems is the dynamics of domain walls in ferrodistortive
materials, ' where the equation is constructed by adding
a dissipation term and an external force term to the P
equation. We may consider that the former follows essen-
tially the differential equation which expresses a continu-
um system, and that the latter originates in the difference
equation which expresses a discrete system. The investi-
gation on dynamic solutions has been made mainly for
the former systems by a computer simulation, " where
we take advantage of the finite-difference equation, and by
an analog simulation, ' ' because of nonintegrability of
the corresponding differential equation. In the above
simulations, it is certain that we obtain an exact solution
for a discrete system, but is not certain whether the result
always agrees with the real solution, if we apply them to
such continuum systems, for instance, as describing
fluxon dynamics in the Josephson transmission line, and
optical transparency in a degenerate atomic medium' '
and so on. ' A perturbation method' ' is sometimes
used for such continuum systems, if perturbation is small,
but is powerless for such phenomena as large perturba-
tion. Moreover, there may be phenomena not treated by

this method.
The geometrical method in a state plane (phase plane),

which consists of the relation between the derivative of the
amplitude of waves P with respect to the time coordinates
t, i.e., P„and P itself, is a useful means for the investiga-
tion of exact stationary solutions to the extended sine-
Gordon system. ' This method may be applied to ob-
tain a stationary solution in other extended Klein-Gordon
systems. One of the typical features of this method is in
that an autonomous first-order ordinary differential equa-
tion is treated on the state plane instead of treating an
original second-order partial differential equation on real
space. As a result, the region of the solution on the state
plane is limited to a certain area, though it expands
infinitely in the conventional treatment on real space.
From the above fact, we can treat geometrically the exact
solution easier than doing in real space. That is, once we
know the field of directions in the state plane, which is the
moved direction of solutions with increasing g=x —ut,
where x is the one-dimensional space coordinate and u is
the kink (phase) velocity of the wave in the stationary
state, we can visually clarify the properties of solutions in
the plane qualitatively almost with a freehand drawing,
and then can easily calculate the necessary solution quan-
titatively.

In this paper, we try to extend the above analytical
method using a state plane to the method to obtain a dy-
namic solution in extended Klein-Gordon systems as a
continuum described by

—(t' F(4)=G0 —J—
under the condition that the solution approaches asymp-
totically stationary solitary wave solutions as both

~

x
and

~

t approach infinity, where G is a dissipation
coefficient (conductance) and J~ a uniformly applied
external force (external current). Here, we do not try to
analyze the solution to Eq. (1.1) with known functional
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forms, nor to associate the equation with a linear
differential equation, nor to take advantage of a perturba-
tion method, since the equation is nonintegrable. Instead,
we make an effort to look for a type of equations
equivalent to Eq. (1.1) which can easily be analyzed
geometrically by using the state-plane technique.

There exist two kinds of phase planes for Eq. (1.1),
describing the relation between P, and P, and the relation
between P and P, respectively. However, since P, and P
are not independent of each other, it is convenient to
define a state plane which is common to these planes. To
do so, we express P, and P, as

P, = V(x, t)g(x, t),
P, = —V(x, t)h(x, t)/u,

(1.2)

(1.3)

introducing a state variable V(x, t), and other variables
g(x, t) and h (x, t). Then, we can construct the state plane
representing the relation between V(x, t) and P. In Eqs.
(1.2) and (1.3), if g(x, t) and h(x, t) are unity irrespective of
x and t, P, and P construct a stationary solution for Eq.
(1.1) since they satisfy the following equation;

tions are derived from our basic equations for the pure
sine-Gordon system to confirm the appropriateness of our
theory. In Sec. VIII, an analytical method is developed
for the soliton-antisoliton interaction. In Sec. IX, the
method is applied to the extended sine-Gordon system,
and the detailed behavior of solutions is discussed. Then,
we find local distortions of waves produced by moving
singularities, and its mechanism is clarified. In Sec. X, we
summarize our results.

II. DERIVATION OF BASIC EQUATIONS

The solution P to Eq. (1.1) is determined by designating
x and t. We can then consider that P and P, are deter-
mined through P by designating x and t, if we keep phase
planes consisting of (P,P„) and (P, P, ) in mind. Thus, we
can express P „and P„as

If we integrate Eq. (1.1) with respect to P using above re-
lations, we obtain the following equation:

y, +up. =O . (1.4)

In this special case, the state plane is identical to the
phase plane consisting of (P, P, ).

The most typical feature of this treatment is that we
can derive three basic equations each of which is associat-
ed with the derivatives with respect to x, t, and P, respec-
tively, and is quite equivalent to Eq. (1.1). This is due to
the fact that V(x, t) is included in common in Eqs. (1.2)
and (1.3). The equations associated with the derivatives
with respect to x and t are regarded as ordinary
differential equations, respectively, if t is fixed in the form-
er and x is fixed in the latter, and if the functional forms
of g(x, t) and h(x, t) are known. The functional forms of
g (x, t) and h(x, t) are determined by imposing the initial
and the boundary conditions on the state plane such that
the solution approaches the previously well-defined sta-
tionary solitary-wave solution as both

~

x
~

and
~

t
~

ap-
proach infinity. Thus, we can construct the solution from
any of the derived equations starting at the stationary
state and developing to the nonstationary state by using a
conventional analytical technique for the ordinary
differential equation without losing any distinctive
features of the analytical method in terms of the state
plane technique for the stationary state. Moreover, we
can obtain the exact solution in some cases, since we need
in principle to use no perturbation technique in our
method.

The plan of this paper is as follows. In Sec. II, we
derive three basic equations equivalent to Eq. (1.1). In
Sec. III, P, and P are divided into the traveling-wave and
the standing-wave component and/or the decaying radia-
tion component by introducing nonlinear coordinates. In
Sec. IV, the stationary state is described in association
with the state plane. In Sec. V, the properties of g(x, t)
and h(x, t) are investigated, and in Sec. VI the natures of
the nonlinear coordinates at singular points are clarified in
association with g (x, t ) and h (x, t ) In Sec. .VI I, the
soliton-antisoliton and the soliton-soliton interaction solu-

(2.1)

For convenience, we assume throughout this paper that
Js )0 and u & 1, and that F(P) repeats exactly the same
shape with a certain period of P. The extended sine-
Gordon system, the extended multiple sine-Gordon sys-
tem, and so on satisfy the latter condition.

We insert, in part, Eqs. (1.2) and (1.3) into Eq. (2.1)
and differentiate the result with respect to P. Equation
(2.1) is then rewritten as

av
h (x, t) —g (x, t)

av

where

—g(x, t) =
V(x, t)

(2.2)

j(x, t)=(1/u)h +g, +Gg(x, t),
r)(P) =F(P) Js, —

av
aO,

=
O„

(2.3)

av
(2.4)

av
ay

av av
aO

=
ae

(2.5)

Differentiating Eq. (1.2) with respect to x and Eq. (1.3)
with respect to t, and equating them, i.e., P„,=P, , we ob-
tain the following conservative relation:

and the subscripts t and x in ( ), and ( ) mean that they
are fixed, respectively. We integrate Eqs. (2.3) and (2.4)
with respect to P, respectively. Then, we obtain V(x, t)
for either case. Accordingly, we can set
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g +h, /u =0 . (2.6) where

Taking account of Eq. (2.5), we can rewrite Eq. (2.2) as

P(x, t) V(x, t) g—(x, t) V(x, t) =rj($),av
(2.7)

where

Q„„+X)(x,t)$ = h (x, t) il((t))
(2.8)

where

Xq(x—, t)P, =g (x, t)
x, t

(2.9)

h (x, t) g(x, t)
X)(x, t =

u p(x, t)

h

h (x, t)

X2(x, t) =g (x, t) ' +g(x, t) gt

x, t) g x, t

If the functional forms of g (x, t) and h (x, t) are known,
we can regard Eqs. (2.8) and (2.9) as the ordinary
differential equations consisting of derivatives with respect
to x and t, respectively, each of which is exactly
equivalent to the original equation Eq. (1.1).

III. WA VE COMPONENT

Throughout this paper, we assume that there exists a
stationary solitary wave at a position where both

~

x
~

and ut
~

are effectively regarded as infinity. If there is
no cause to disturb the solitary wave anywhere, the wave
keeps the stationary state, where g(x, t)=h(x, t)=1. On
the other hand, if there is a cause to do it somewhere, the
wave grows to deviate from the stationary state as ap-
proaching the source of disturbance, so that g (x, t) and
h (x, t) also deviate from unity.

By expanding each of g(x, t) and h(x, t) into a power
series consisting of only a function of x and only a func-
tion of t, and by using Eq. (2.6) under the condition that
both g(x, t) and h (x, t) should at least approach only a
function of t as

~

x
~

approaches infinity, and should at
least approach only a function of x as

~

t
~

approaches
infinity, since g(x, t) and h(x, t) approach unity with ap-
proaching both

~

x
~

and t
~

to infinity, it is proved that

g (x, t) and h (x, t) are finally expressed by '

g (x, t) =g (t),
h(x, t)=h(x) .

(3.1)

(3.2)

In order to see the meaning of V(x, t), we divide P, and

P, not P, into two components expressed by

p(x, t) = h (x, t) lu g(—x, t) .

If p(x, t) becomes zero at a certain range of x and t, it is
possible for a singularity to exist there. Using Eqs. (1.2),
(1.3), and (2.3)—(2.5), we can transform Eq. (2.7) into the
following expressions:

(y, )("=v(x, t),
(P, )("'= [g(t) —I ](P,)'",
(P, )'"= —V(x, t) lu,
(P )'"'=[h(x) —l](P )(" .

It is then noted that (P, )'" and (P, )'" satisfy

(y, )("+u(y„)")=O . (3.3)

From the analogy between Eqs. (3.3) and (1.4), we can ex-
pect that (P, )

' and (P, )'" will construct a traveling-wave
component. However, as they interact with (P, )'"' and
(P )'"', they constantly change their shape. Accordingly,
the conservative relation such as Eq. (1.4) is not preserved
in Eq. (3.3).

We express (P, )'" and (P„)'"by

(3.4)

by introducing nonlinear coordinates, T(x, t) and X(x, t).
Then, T(x, t) and X(x,t) are given from Eqs. (1.2) and
(1.3) by

T(x, t) = f', , dt'= f 'g(t')dt'+ Tp(x), (3.5)
V (x, t') dt'

X(x, t) = —f, , dx'= f h (x')dx'+Xp(t)V(x', t) ax

(3.6)

where Tp(x) and Xp(t) are arbitrary functions of x and t,
respectively. We also introduce "(x,t) coordinates, which
move with a constant velocity u, expressed by

:-(x,t) = —u
d(t =X(x, t) —uT(x, t) .

V(x, t)
(3.7)

By using Eq. (3.7), Eq. (3.4) is also written as

(y )(r) 0 (y )(t) (3.8)

Accordingly, we can replace V(x, t) by V(:-). As the
solution approaches the stationary state, T(x, t) and
X(x, t) approach t and x, respectively (see also Sec. V). As
a result, =(x, t) approaches g. Thus, we understand that
T (x, t ), X (x, t), and:-(x, t) correspond to t, x, and g for
the stationary state, respectively.

We refer to the components having (t) and (r) in the su-
perscript as the (t) component and the (r) component of
the wave, respectively. Then, the (r) component from its
definition must disappear as

~

x
~

and
~

t
~

approach
infinity at the same time, since g(t) and h (x) approach
unity. Thus, we can expect that the (r) component con-
structs a standing wave and/or decaying radiation.

We can rewrite Eq. (1.1) using the =(x, t) coordinates as

V= = —u[F'(:-)+GV(:-)—Js]/(I —u ) .

where

(3.9)
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1 —Q
2

F'(:-)+GV(:-)—Jq
V(:- )

(3.10)

Equation (3.10) is compared to the expression for station-
ary solitary waves in the extended sine-Gordon system.
The solution to Eq. (3.10) has singular points if the
denominator and the numerator vanish simultaneously.
Such singular points correspond to ~:-

~

~ co, where
V(:-)~0.

IV. STATIONARY STATE

In Eq. (3.9) if both ~x
~

and
~

ut
~

are much larger
than unity, the (r) component disappears, and Eq. (3.7) is
rewritten as

F'(:-)=F(P(:-))+F'"'(:-),
F'"'(:-)=—(P )'"'+(P, )t"'+(:- —l)V=/u

+(:-,+u)V=+G(P, )'") .

Equation (3.9) is in agreement with the expression on the
traveling wave in the stationary state, if:-(x,t) and F'(:-)
are replaced by g and F(P), respectively [see Eq. (4.1)].
Accordingly, from Eqs. (3.7) and (3.9), it may be con-
sidered that (P, )

' and (P )
' construct the traveling wave

having a constant velocity u in an extended Klein-Gordon
system with F'(:-) in the "(x,r) coordinates instead of
F(P) in the g coordinate. The equation on the state plane
can be written from Eqs. (3.8) and (3.9) as

a spiral point depending upon whether the sum of two
terms in the square root in Eq. (4.4) is positive or nega-
tive.

The stationary solitary-wave solution is constructed by
finding a solution starting from a saddle point, and ending
to another saddle point, for instance, as depicted in Fig.
l(a). The slopes at the saddle point, BV"/BP

~ ~, are
written as

av" = —ap+,
& =&o,2.

(4.6)

if the solution is in the region between
(P, V (P))=($0 p„2,0) and (Po, q„,O), where n is an in-
teger denoting the position of the singular point counted
from the origin. The arrowhead on the curve in Fig.
l(a) denotes the field of directions, where we assume
u &0, which means the forward wave. If u &0, which
means the backward wave, the field of directions points to
the opposite direction. The solution in the state plane
leaves the saddle point (P, V"(P))=(go q„,O) toward the
upper left with increasing g from —~, finally approach-
ing the saddle point (Po q„2,0) from the upper right as
g~+ ao. The relation between V"(g) and g and the re-
lation between P(g) and g are depicted in Fig. 1(b) and
1(c), respectively. The relations between Fig. 1(a)—1(c) are
described in detail for the extended sine-Gordon system in
Ref. 20.

(1—u )Pgg+uG(tg= —u[F(P) Jii], — (4.1)

since h(x) and g(t) are then regarded as unity, and since
Xo(t) and To(x) are regarded as constants (see Sec. V).
Equation (4.1) describes the stationary state. The equa-
tion on the state plane is then expressed from Eq. (3.10)
by

(s)(g)

F(P) + G V '(g) —Jg

1 —u V(s)(g )
(4.2)

, 2.1
where (s) means the stationary state. The singular point
corresponds to

~ g ~

~oo in Eq. (4.2), where V')(g)~0.
The singularity is determined by setting P=Po+itj and
linearizing Eq. (4.1), where Po is P at the singular point.
The solution to the linearized version of Eq. (4.1) around
the singular point can be written as

V' N)

Q

2

'2
uG 4 dI'

1 —u 1 —u

g=Po + exp(ko +(),
where Po + are constants,

kp + =+ap + /u,
ap + =8~ + cl2

1/2

(4.3)

(4.4)

,2B (c)

u Gd2=
2 1 —Q

(4.5)

and d ~ represents the discriminant. Since u & 1, if
dF/dP

~ y ~, &0 in Eq. (4.4), the singularity is a saddle

point, and if dF/dP
~ ~ ~, &0, the singularity is a node or

FIG. 1. Stationary-solitary-wave solution. (a) Solution in the
state plane. The arrowheads on the curve denote the field of
directions, and the dots the positions of the singular points at

~ g ~

~ co,' (b) V'*'(g) vs g; (c) P(g) vs g.
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V. FUNCTIONAL FORMS OF g (t) AND h (x)

We assume that the effect of the disturbance on the
wave most dominates at the origin in real space, i.e.,
(x, t)=(0,0). Then, the disturbance keeps weakened as a
whole with increasing x

~

and ut at the same time so
that the wave tends toward the pure traveling wave hav-

ing the phase velocity of u. This indicates that the (r)
component is confined eff'ectively in a region around
(x, t) = (0,0). This result also indicates that 8 V1 "1/i)P

should approach zero even with increasing only x or

~

ut
i

beyond a certain value. Under such a condition,
the (r) component can be disregarded in Eq. (3.9). As a
result, F'(:") is replaced by F(P) in Eq. (3.9). Thus, Eq.
(3.9) is rewritten as

VX ———u[F(p)+ GV(:-) J11 ]/(—I —u ), x i))1
(5.1)

Vr =u [F($)+GV(:-)—J11]/(1—u'),
~

ut &&1

(5.2)

[g'(t) 1] G[—g(t) 1]+ —=0, —
BP y y, dt

where we have used the relation between Eq. (3.4) and
(3.8). It is noted however that the state where only x
or

~

ut
~

&&1 is generally different from the stationary
state in Eq. (4. 1), because even if x

~

approaches
infinity, the state should be infiuenced by g (t) and Xp(t),
and even if

~

t
~

approaches infinity, the state should be
infiuenced by h (x) and Tp(x). That is, we cannot then
simply replace =(x, t) by g in Eqs. (5.1) and (5.2). Thus,
our approach presents us with more extensive informa-
tions than the conventional theory even in the limit to
small amplitude of waves. Under such a condition, we
can eliminate F(P) from Eqs. (2.7) and (3.10). As a re-
sult, we obtain the following expression:

g+(t)=
+[B+tanh(B~ap ~ t) —A+ ],
+[B+coth(B+ap +t) —2+],

(5.7)

(5.8)

where 3+ —G/(2ap+) and B+—I+++
Notice that if B &0 in Eq. (5.7) and (5.8), g (t) does

not satisfy the initial condition so that g (t) does not con-
verge to unity as t~ —oo. Then, it is seen that the ex-
istence region of such a solution is limited so as to satisfy
the condition 0 & 3 & 1.

Even if x
~

approaches infinity in Eq. (5.6), y'+(x)
does not necessarily approach unity, since we are always
observing the origin side of the wave in this process, and
the wave is always influenced by disturbance around
x =0. h(x) for t ) 0 and t &0, h~(x), can be solved from
Eq. (5.4), and are written as

h+(x) = .

ap+
(+)tanh '

J 'y+(x)dx
0

Qp +
(+)coth ' I y+(x)dx

u 0

(5.9)

(5.10)

where (+) signs are applied to x )0 and x & 0, respective-
ly, and the other + signs are applied to t )0 and t &0, re-
spectively, as well as the cases for Eqs. (5.5)—(5.8).

VI. SINGULAR POINTS IN NONLINEAR
COORDINATES

We define the following quantity at infinity of t:

As
~

t
~

approaches infinity in Eq. (5.5), tp+(t) approaches
unity, since we are always observing the far other side of
the wave measured from the origin in this process. Then,
the situation is in a stationary state. If tp+(t) are equal to
unity irrespective of the value of t as an ideal case, g (t)
for t &0 and t &0, g+(t), can be solved from Eq. (5.3),
and are written as

—[h (x)—1] — =0,
~

t
1 BV dh

u BP y-y„dx

(5.3)

(5.4)

Tp r(x) = + lim, , dt'. v(x, t') at'

) +(x)ap ~
(6.1)

av =+tp+(t)ap+, ~x
~

~~
a4

(5.5)

where the upper and the lower signs mean that the values
of t are positive and negative, respectively.

Since Bv/BP ~ ~, should be at most only a function of
x in Eq. (5.4) on account of

~

t ~oo, we can also write
it by introducing a function of x, y+(x), being positive, as

Since BV' /i)P ~ ~, is independent of both x and t as

expressed by Eq. (4.6), 8 V/BP
~ ~ ~, in Eq. (5.3) should be

at most only a function of t on account of
~

x ~ oo.
Thus, around the singular point corresponding to

~

x ~ co, we can write it by introducing a function of t,
tp~(t), being positive, as

tp+(t)a p +
(6.2)

which is proportional to the reciprocal of the slope at the
singular point at x =+&x&. We finally define =p (x, t)
from Eqs. (3.7), (6.1), and (6.2) as

:-p „(x,t) =+u
y+(x)ap + y+(t)ap +

(6.3)

which is the reciprocal of the slope at the singular point at
t =+ oo. Next, we define the following quantity at infinity
ofx;

Xp (t) =+u lim, , dx'a
+. V(x', t) ax

av =+/+(x)ap+,
~

t ~oo
a4

(5.6) Since Tp r(x), Xp (t), and:-p (x, t) are derived from the
definition of T(x, t), X(x, t), and:-(x, t), respectively, they
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can be included in Tp(x), Xp(t), and:"(x, t), respectively.
If we need to choose the kind of the form of Eq. (5.8) for
g+(t), then we see that g+(t)~ oo as t ~+0, which means
T(x, t)~+ tx), that is, the state at t =0 describes a singu-
lar point in Eq. (3.10). On the other hand, if we need to
choose the form of Eq. (5.10) for h+(x), then h+(x)~ oo

as x ~+0, which means X(x, t )~ + hatt) . Then, the solu-
tion at x =0 is in a singular point. Thus, we can also
define such expressions as Eqs. (6.1), (6.2), and (6.3) for
the state at t =0 or x =0. There is another kind of singu-
lar points at the positions satisfying P(x, t) =0 as described
in Sec. IX, which is also included in Tp(x) and Xp(t).

V(:-) is generally not a single-valued function of tf) on
account of the variation of Tp(x) and Xp(t). However, in
the stationary state, y+(x) and to+(t) become constants,
since the slope at the singular point in the state satisfying
either

~

x or
~

t
~

~ttt) is independent of both x and t.
Thus, "(x,t) is replaced by g', and V(g) becomes the
single-valued function of g, i.e., of (t, being replaced by
V(s)(y)

VII. PURE SINE-GORDON SYSTEM

The properties of the pure sine-Gordon system are well
known. So we first apply our basic equations to the pure
sine-Gordon system to verify the certainty of our theory.
In this case, we can set G =JB =0 and F(ttt) = sin()tt.

Then, ao + are written as

ao, + =ao=u/(1 —u )

We assume in Eq. (3.10) that

Eliminating sinttt from Eqs. (7.2) and (7.4), we obtain

BV A (x, t) 1—
=ao

A'(x, t)+ 1
(7.5)

where if we adopt Eq. (5.8) for g(t) and Eq. (5.9) for h (x),

sinh(aot)
A(x, t) =

ucosh(aox/u )
(7.6)

and if we adopt Eq. (5.7) for g(t) and Eq. (5.10) for h(x),

cosh(aot )
A(x, t) =

u sinh(aox/u)
(7.7)

Eliminating V( (ted) from Eq. (7.3) and (7.5), we obtain
well-known expressions,

P=+4tan '[A(x, t)], (7.8)

for two soliton interactions. The combination of Eqs.
(7.6) with (7.8) represents the soliton-antisoliton interac-
tion, and that of Eqs. (7.7) with (7.8) does the soliton-
soliton interaction. Thus, we understand that the as-
sumption in Eq. (7.1) is correct for the pure sine-Gordon
system.

However, for other nonlinear Klein-Gordon systems
such as the P equation, the multiple sine-Gordon equa-
tions, and so on, we cannot obtain the correct solution us-
ing such an assumption as F'(:-)=F(ttt) If V(:-.) is weak-
ened or strengthened in the state plane during the interac-
tion diAerent from the pure sine-Gordon system, the
equation should be deformed from

F'(:")= sinttt . (7.1) (7.9)

This assumption means that Eq. (3.10) is in agreement
with Eq. (4.2), that is, the expression of the traveling-wave
component in the state plane is not influenced by ex-
istence of the (r) component. Under such an assumption,
Eq. (3.10) is expressed by

a () sin(tt

BP V(:- )
(7.2)

However, it is again noted that the form of V(:") is quite
difFerent from that of V("(g) in real space. The solution
to Eq. (7.2) is given by

V(:")=+2ap sin(P/2) . (7.3)

Thus, V(:-) becomes the single valued function of (ft. Ac-
cordingly, we can replace V(:-) by V((t)).

On the other hand, Eq. (2.7) reduces to

1 sin(ft 1 dh dg
P(x, t) V((ted) u dx dt

+ — + (7.4)

We see from Eqs. (7.2) and (7.3) that t)V/t)P
~ ~ ~, is in-

dependent of both x and t at either
~

T
~

or
~

X = tx).
This means that we do not need to take account of the
effect of neither y+(x) nor co+(t), that is,
y+(x) =02+(t) = 1 in Eq. (5.5) and (5.6). As a result,
()V/Bttt

~ ~ ~ becomes equal to +ap, which is in agree-
ment with the value in the stationary state.

which is obtained by replacing sin(tt by F(P) in Eq. (7.2).
This is the situation for the above nonlinear Klein-
Gordon systems which are not integrable. Accordingly,
we may regard Eq. (7.9) as a condition of the firm solidity
of the wave in a pure nonlinear Klein-Gordon system.

ANALYTICAL METHOD
FOR SOLITON-ANTISOLITON INTERACTION

A. Energy flow and its related quantities

In the soliton-antisoliton interaction, we choose P in the
region between (to 2„2 and $0 2„+2. The net energy flow
of the soliton and the antisoliton, e'", is obtained by in-
tegrating the instantaneous power flow, p "(:-), on the
equivalent transmission line defined by

p(t)( —
) (y )(t)(y )(t) (8.1)

2JB($0,2n t|0,2 2)/(n uG) (8.2)

In the limit to the stationary state, ((ft )(" is replaced by

with respect to t from —oo to + ao through T(x, t) under
the condition that there is no energy stored in the non-
linear element F'(:") after the whole process is complete.
Here, we do not take account of the directionality of the
energy flow. Then, the result of the integration is given
b 23
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—V"(g)lu, (r}Irr
)'" by V"(g), X(x,t) by x, and T(x, t) by

t, and then we again obtain Eq. (8.2). Thus, we under-
stand that e'" becomes twice the energy of the stationary
soliton.

If we differentiate Eq. (8.1) with respect to rl}, we obtain

ap'" 2 av
BP u rjT

(8.3)

y+(x)ap++y (x)ap =ap++ap =2dr . (8.4)

B. Coordinate transformation and solution at t =0

We integrate Eq. (8.3) with respect to t from —oo to + ao

through T(x, t). The result shows zero, and is also in
agreement with the result for the limit to the stationary
state.

From the above two facts, we may also add the condi-
tion that the integration of ri p'"/r)P with respect to t
from —ce to + oo through T(x, t) is in agreement with
the integration of it in the limit to the stationary state.
Thus, we obtain the following expression exhibiting the
relation between y+(x) and y' (x): dX+ dX

dt dT+ dT

(8.1 1)

because of identity of these states.
The transformation from the x coordinate into the X+

coordinates is made as follows:

where Pr p is a constant.
In this stage, we do not know the exact form of g+(t)

yet. Accordingly, we are obliged to use Eq. (5.8) instead
of the exact expression. We rewrite the left side of Eq.
(5.8) as g+(t) for distinction from the exact form.

We try to derive the exact solution from Eq. (8.5) using
g+(t) for the exact value g~(t). We transform the t coor-
dinate into newly introduced T+ coordinates so as to
satisfy g+(t)=g+(T+). In this case, we also need to
transform x coordinate into X+ coordinates so that the
states in the (X+,T+ } spaces are identical to the state for
the exact solution in the (x, t) space. Then, we can also
impose the following condition at the limit to t ~0 for the
phase velocity w(x, t) defined by

dx
w(x, t) =

dt

We rewrite Eq. (2.8) or (2.9) as
r ap + y+(x) =d i + d2a+(X+ ) (8.12)

r)pr h+(x) 1 dh+ dg++ —„+ +Gg+(t)
r)x u +(x t u dx dt

by introducing a+(X+). Since Eq. (8.12) should satisfy
Eq. (8.4), we can set

where

g+(t)h+(x)
rj(p), (8.5)

up+(x, t)
a+(X+ }=a (X )=a(x) .

Taking account of Eq. (8.12) for h+(x) in Eq. (5.9), we
obtain

ay,
Bx

h+(x)
fr=0.

g+(t)
(8.6)

In Eq. (8.6), we impose the continuity condition at t =+0
as

P+(x, t) =h+(x)lu g+(t) . —

We remove the assumption co+(t)=1 here. From the
analogy of soliton-antisoliton interaction solution for the
pure sine-cordon system, we can choose such a kind of
the solution as Eq. (5.8) for g+(t), and can correctly do
Eq. (5.9) for h+(x). Thus, we can impose the condition
just around t =0 that g+(t)))h+(x). Then, Eq. (8.5)
reduces to

X~f ap+y+(x')dx'= f di 1+ a+(X+) dX'+ .
0 0 1

(8.13)

By using Eq. (8.13), h (x) is directly transformed into the
value in the X+ coordinates. The relation between x and
X+ is derived from Eq. (8.9) and (8.13) as

d2 x+
x =X+ + a+(X+ )dX+ . (8.14)

Again note that the states at x and X+ are identical to
each other. We can then transform Eq. (8.6) using g'+(t)
at t =0 into

4r I
r-+o=4r

(
r- o=4r

( r—=o .

Then, we obtain the following expressions:

(8.7) h (x) 1 dg+ dx
r}X+ T+ o u g2+(T+) dt dX+ ' T+-o

ay, d1

rlx, o /u
/

(+) h(x)Pr
i r p=0,

h (x) = h+(x) =h(x),
to+(0)ap + =l +(x)ap ~ =d]

(8.8)

(8.9)

Equation (8.9) indicates that yg(x) are constants. The
solution to Eq. (8.8) is given by

(8.15}

The solution to Eq. (8.15) is expressed by

Wr r o

+ 1 2=fr p exp (+ ) h(x) 1+ a~(X'+ ) dX'+
/u/ d,

(8.16)
x d]

—p (5 pexrp ( + ) f h (x')dx'
o iud

(8.10) where we use the relation in Eq. (8.13) for h (x). Notice
that
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because of identity of these states. It is then clear that
Eq. (8.16) is in agreement with Eq. (8.10).

C. Analytical method

In Eq. (2.9) in which g+(t) is replaced by g+(t), we
transform x coordinate into X+ coordinates using Eq.
(8.14) and t coordinates into T+ coordinates using the re-
lation g+(t) =g+(T+ ), and also use the identity condition,
dX+/dT+ ——dx/dt. As a result, we obtain the following
equation:

g+( T+ ) 1 dh+ dg++ +Gg(7+)
f3'+(x, r) u dX+ d T+

2 T
+ P,=, , (8.18)

g+(7+ ) d&+ p'+(x, r)

where

0+(x, r ) =& + (X+ )lu ' —g + ( T+ ) . (8.19)

We see that Eq. (8.18) is in agreement with Eq. (2.9) in
the form.

Taking account of Eq. (8.17) in Eq. (8.14), we obtain

x =(X+ +X )l2,
r=T++r(x, r),

(8.20)

(8.21)

where, r(x, t) is the time difference in traveling between x
and X+, and is expressed by

r(x, t) =1(x)lu) (x, t),
and

2 xl(x) = f a(x')dx' .
d~ o

It is noted that r(x, O) =0 since ut(x, O) = oo.
The waveforms of P, in the (X+,T+) spaces are calcu-

lated from Eq. (8.18) first by starting from the point
(p, p, ) = (pp 2„2,0) with increasing T and ending to the
point (do2n pt

~
T , o), and next by starting the calcula-

tion from the point (go 2„+2,0) with decreasing T+ and
ending to the Point (Pp 2„,P,

~
r p) so that

(ht
~
r p=Pg

~

y' p. The exact waveforms are obtained

by transforming the result into the (x, t) space using Eqs.
(8.20) and (8.21).

f a (X' )dX'+ = f a (X' )dX' = f a(x')dx',
0 0 0

(8.17)

D(x)=
h (x)—u

(9.1)

and the stationary antisoliton. With decreasing
~

x ~, the
coupling of the soliton and the antisoliton increases and
brings completely the one state at t =0. The solution
curves in Fig. 2(a) are divided into the traveling-wave
component and the (r) component as depicted in Figs.
2(b) and 2(c), respectively. The net waveforms in real
space are depicted in Fig. 3(a), and the traveling-wave
component and the (r) component are depicted in Figs.
3(b) and 3(c), respectively. It is seen that the (r) com-
ponent constructs a standing wave. As the soliton and
the antisoliton come near to each other, the traveling-
wave component decays to be transformed into the
standing-wave component. At x =0, it is completely re-
placed by the (r) component.

Next, we direct our attention to local distortions which
occur at the positions where the condition /3(x, t)=0 is
satisfied: Once the soliton and the antisoliton come near
to a certain extent, a wedge-shaped distortion is observed
in each wave at the same time. The distortion moves to
the direction opposing the corresponding soliton move-
ment. As the waves come closer to each other, the distor-
tion disappears. After the center of the wave passes
through each other, a thorn-shaped distortion is generated
in the front part of each wave this time. It moves to the
direction opposing the corresponding soliton movement,
and disappears when arriving around the center of the
wave. As these waves go to each other, they approach the
stationary state. As a result, (P, )"~ approaches a single-
valued function of P.

The conventional computer simulation based upon the
corresponding finite difference equation usually brings
some emission of radiation in a soliton-soliton interaction
on the extended sine-Gordon system, and the soliton-
antisoliton interaction for the P system, ' for the double
sine-Gordon system, ' and even for pure sine-Gordon
system. On the other hand, some analyses have been
made on the transmission of a soliton at a microshort put
at a position in the extended sine-Gordon system by using
a perturbation technique' ' and computer simulation.
Though in the perturbation technique no emission of radi-
ation is observed, in the computer simulation it is ob-
served. In our case, no emission of radiation takes place
but local distortions.

We linearize Eq. (2.9) around a singular point for the
extended sine-Gordon system. The discriminant D(x) of
the resultant equation is written as

2 2
dh 40+uG + (cosPo) .
dx h (x) —u

IX. APPLICATION TO EXTENDED
SINE-GORDON SYSTEM

To obtain the soliton-antisoliton interaction solution for
the extended sine-Gordon system, the numerical integra-
tion of Eq. (8.18) was made by using mainly the Runge-
Kutta method, and partly the Euler's method for
G =0.018 and J~ =0.4. As depicted in Fig. 2(a), the
solutions for

~

x
~

&&1 in the (P, P, ) plane are completely
separated into two isolated states, the stationary soliton

If
~

x
~

is smaller than a certain value, say
~
x,p ~, where

x,p satisfies h (x,p)=u, the relation h (x) & u g (t) is al-
ways preserved, since h (x) is an increasing function of

~

x
~

toward unity, and since g (t) is a decreasing func-
tion of

~

t
~

toward unity. The singular point at
~

t
~

= oo

is then a node or a spiral point from Eq. (9.1). The form-
er means that such a state as satisfying h (x) =u g (t),
i.e., P(x, t)=0, is never realized only with changing of t,
and the latter means that an arbitrary solution around the
singular point is always possible to reach the singular
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point by increasing
~

t
~

to infinity as seen from the prop-
erty of solution curves for the node or the spiral point.
Thus, we obtain a smooth solution curve under this con-
dition. The solution curves around x =0 in Fig. 2(a) cor-
respond to this kind of solutions.

If
~

x
~

is larger than
~
x,o ~, h(x) becomes larger than

u. In this case, the singularity at
~

t
~

= co is a saddle
point from Eq. (9.1). Then, almost every solution curve is
repelled before reaching it, except four routes. This sug-
gests that the route connecting Po 2„2 and Po q„+2 should
be very limited. Moreover, with decreasing

~

t ~, the situ-
ation is possible to be changed from h (x) ~ u g (t) to

0

(, )
I', 4()

80 &

Pet 3n
(~ )

FyG p Soliton-antisoliton interaction solUtion in the state plane to the extended sine-Gordon system, where 6=0.018 and

Jg —Q. 4. (a) Net solution. The dots denote the position of the singu1ar points at
l
T+

l

~~. (b) Traveling-wave cotnponent. (c)

Standing-wave component.
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h (x) & u g (t) via the state

h (x, ) —u g (t, )=0, (9.2)

at t =t, (x), where x =x, (t). It is also noted that the posi-
tion satisfying Eq. (9.2) is moving. Around t, (x), the
solution in the state plane is characterized from Eq. (2.7)
by

[g(P)+g(x, t)V(x, t) j//3(x, t) . (9.3)

Q. z

When t approaches t, (x), P(x, t) approaches zero. Then,
the numerator in Eq. (9.3) should also approach zero in
order to exhibit a definite value of the solution at t, (x).
The way bringing the denominator to zero is generally
different from the way doing the numerator to zero, and
moreover, it depends upon the values of x, J~, and G.
Thus, the distortion is forced to be concentrated just
around t, (x). It is rather exceptional that there appear no
such distortions for the pure sine-Gordon system. This
results from the fact that V(:-) happens to become a sin-
gle valued function of P.

X. SUMMARY

04--02
l

i3 .2

FIG. 3. Waveforms of the soliton-antisoliton interaction for
the solution in Fig. 2. (a) Net waveforms. (b) Traveling-wave
component. (c) Standing-wave component.

Dynamic behavior of solutions in nonlinear Klein-
Gordon systems with a dissipation and an external force,
referred to as extended Klein-Gordon systems, are treated
geometrically in a state plane by transforming the equa-
tion into three basic equations each of which is associated
with the derivatives with respect to x, t, and P, respective-
ly.

The solutions are expressed by the forms of P, and P
They are divided into the sum of the traveling-wave com-
ponent and the other wave components, respectively,
which one can analyze easier by using the state plane con-
sisting of the relation between V(x, t) and P, where V(x, t)
denotes the traveling-wave component of P, and is includ-
ed in common in the expressions of P, and P„ in the form
of multiplication. V(x, t) is then expressed by the station-
ary form in a more generalized extended Klein-Gordon
system on nonlinear coordinates.

The boundary and the initial conditions are imposed to
the slopes at singular points on the traveling-wave com-
ponent in the state plane under the conditions that there
exists initially either a stationary soliton or an antisoliton
at

~

x
~

= oo, and that finally either the stationary soliton
or the antisoliton is again established at x

~

= oo.
To verify the appropriateness of our model, the analyti-

cal method is first applied to the soliton-antisoliton in-
teraction and the soliton-soliton interaction in the pure
sine-Gordon system, and the well-known expressions are
derived. Next, the generalized analytical method is
developed for the soliton-antisoliton interaction in the ex-
tended Klein-Gordon system. As a numerical example,
the extended sine-Gordon system is treated. It is found
that when the soliton approaches an antisoliton up to a
certain distance a local wedge-shaped distortion is gen-
erated in the soliton and in the antisoliton at the same
time. The distortion moves to the direction opposing the
soliton movement, and disappears before the collision at
the center takes place. When they recede from each other
up to a certain distance, a thorn-shaped distortion is gen-
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crated in the front part of the wave. When the thorn
reaches the vicinity of the center of the wave, it disap-
pears. Such distortions appear around the position satis-
fying the condition P(x, t)=0, where the moving singular-
ities is generated. Their properties and mechanisms are
clarified. There appear no such distortions in the pure
sine-Gordon system on account of disappearance of the

moving singularity. This is because V(x, t) becomes a sin-
gle valued function of P.
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