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Largest current in a random resistor network
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The expected largest current in a random resistor network is shown to scale as (lnL), where L is
the size of the network and the exponent a depends on dimension and on the ratio of the smallest to
the largest conductances in the network. This result follows from an analysis of configurations which
carry large currents. The configurations which carry the largest currents in the network are shown
to be funnel shaped. The proof that these configurations carry the largest currents is based upon a
theorem concerning the minimum eigenvalue of a class of Sturm-Liouville problems.

I. INTRODUCTION

a= [ 1 —(4/~)tan '[(cr /cr &
)'r ] j /2 . (1.2)

For d =3, a is the solution of a more complicated tran-
scendental equation. In general, 0&a & 1/d, so that the
maximum expected current always diverges with L,
though extremely slowly if o.

&
/o.

& is near unity.
The present investigation was stimulated by the work of

Duxbury, Beale, and Leath, ' hereafter referred to as
DBL, who studied the limiting percolation case where
o.

&
——0. If p &p„ the percolation threshold, they showed

that Eq. (1.1) holds with a= 1/(d —1). They obtained
this result by considering a long, narrow region of insulat-
ing bonds oriented perpendicular to the average current.
They found the current through the conducting bonds at
the ends of such a defect and argued that the largest
currents in the network occur at these locations. Our ar-
gument proceeds similarly in that we identify the most
effective defect for producing large currents and calculate
the current through it.

The primary physical motivation for studying the larg-
est current in a random resistor network is to understand
the electrical and mechanical breakdown properties of

In this paper we study the expected value of the largest
current flowing in a random resistor network. The
specific problem that we address is stated as follows.
Each bond in a square or cubic lattice of size L is as-
signed a conductance o which is chosen independently
from a probability law of the form

p(cr ) =p5(cr —o. )+ (1 —p)5(cr cr &
—)

with 0&(o &/o &) & l. A current source is connected to
the lattice via bus bars on opposite faces so that the aver-
age current density, measured in units of the lattice spac-
ing, is j„,. Let i „be the largest of the currents flowing
in the L resistors of the system and let (i,„) be its
average over configurations of the conductances. How
does (i,„) depend upon L'? The main conclusion of this
paper is that, for large L,

(i,„)—j„,(lnL )

where cz depends on o. &/cr & and dimension. For d =2,
a is given by

composite materials. The random fuse network, intro-
duced by Arcangelis et al. and studied by DBL, is a
model system in which to study breakdown phenomena.
The random fuse network is obtained from a random
resistor network by introducing a critical current, i, , at
which the conductance of any resistor irreversibly drops
to zero. As the voltage across the network is increased,
breakdown first occurs at the resistor carrying the largest
current; that is, when i,„=i,. Thus, if j& is the average
current density at which breakdown begins, the results for
the maximum current imply that

j) —(lnL )

After the breakdown of the first resistor there is a new
distribution of currents. If any of these exceed i, the cor-
responding resistors are removed. Once a stable current
distribution is achieved the external voltage is again in-
creased and additional resistors removed until the system
becomes an insulator.

The breakdown of the random fuse model illuminates
several features of mechanical breakdown in real materi-
als. In the random fuse model, the scalar voltage field re-
places the tensor strain field in a mechanical system. Ad-
ditionally, the nonlinearity associated with the breaking of
a bond is a step function rather than the complicated
stress-strain relation found beyond the Hooke's-law re-
gime. Nonetheless, we expect the logarithmic size depen-
dence of the breaking strength to be a robust feature of
breakdown in a variety of models, though the exponent o;

may depend upon the field (voltage or strain) and on the
breakdown law of a single bond. The present work sets
the stage for the investigation of more complex models
such as an elastic fuse network where each bond is a
spring which may sustain both bending and stretching
forces and which may be broken at a critical stress.

In Sec. II of this paper we present the arguments lead-
ing to Eqs. (1.1) and (1.2) for the square lattice. In Sec.
III we consider three dimensions. In Sec. IV we outline a
proof that the critical defects analyzed in Secs. II and III
indeed lead to the maximum current in the network. This
analysis leads us to an interesting theorem concerning the
minimum nontri vial eigenvalue of a class of Sturm-
Liouville operators. The paper closes with a discussion of
the results and a comparison with the work of DBL.
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II. CALCULATION OF THE LARGEST CURRENT
IN A SQUARE LATTICE

[(t)gert)g)+ v cr]%=0, (2. 1)

subject to periodic boundary conditions, tP(0) = +(0+ 2').
Across discontinuities in o(0), continuity of the normal

The first step in estimating the largest current in a ran-
dom resistor network is the identification of a class of
configurations of resistors which give rise to large
currents. These configurations, henceforth called defects,
are necessarily large structures and we assume they can be
analyzed using continuum methods. The second step in
the analysis is an estimate of the size of the defects that
are likely to be found in a system of size L. As the sys-
tem size increases, larger defects appear and the max-
imum current in the network increases.

An example of a defect is shown in Fig. 1. It is a rec-
tangular region divided into quadrants having conductivi-
ties o.

& and o. &. This defect, which we call a funnel, is
embedded in an environment having a conductivity near
the average conductivity of the system. When it is orient-
ed so that the far field is parallel to the z axis, current is
funneled though the high-conductivity region and the
current density is greatest near the vertex at the center of
the defect. In the continuum version of the funnel the
current density diverges at the vertex. For a funnel of
size l in a lattice of spacing a, the current density reaches
a finite maximum in the bonds near the vertex. This
maximum increases as a power law in I/a and it is this
power law which determines a. In this section we carry
out an analysis of (i,„) considering funnel-shaped de-
fects.

The continuum version of the funnel may be analyzed
using elementary methods. Let @(r,0) be the potential at
position r and 0, where ~ is the distance from the vertex
and the angle 0 is measured from the z axis as shown in
Fig. 1. The current density j(r, 0) satisfies the continu-
ity equation V.j=O and Ohm's law, j(r, 0)
= —cr(r, O)V&&(r, 0). For small r, o is a function of 0
only and we may separate variables, @(r,O)=g(r)%'(0).
The radial equation is satisfied by g(r)=r, where v) 0 is
required since there are no current sources. The exponent
v is determined by the Sturm-Liouville eigenvalue prob-
lem,

and

cr(0+ )c)g+(0+ ) =cr(0 )c)g+(0 ), (2.3)

where + and —refer to the two sides of a discontinuity
in o..

Consider the funnel configuration with 13=~/4 In t. his
symmetric case, o.(0) is given by

o &, —w/4 & 0 & vr/4 or 3w/4 & 0 & 5n/4
o(0)= '

o. &, otherwise . (2.4)

Between discontinuities, the solutions are linear combina-
tions of cos(vO) and sin(vO). An eigenfunction can be
found which satisfies symmetry conditions that the poten-
tial along the y axis vanish, 4[(2n + 1)n/2] =0, and
current across the z axis vanish, c)g+(n~)=0. This solu-
tion is cos(v0) in the high-conductivity region and
sin[v(7r/2 —0)] in the low-conductivity region. Dividing
Eq. (2.2) by Eq. (2.3) at the n/4 boundary yields a tran-
scendental equation for v,

o. (tan(v~/4) =cr )cot(v7r/4),

whose nonvanishing solutions are

v=(4/~)tan '[(o, /o )' ] .

(2.5)

(2.6)

Although the full solution for N is a sum over the com-
plete set of eigenfunctions, sufficiently near the vertex the
solution is dominated by the eigenfunction with the
strongest singularity in r and, thus, the smallest eigenval-
ue. The smallest nonvanishing eigenvalue, which we
henceforth refer to as v, is given by the first branch of the
arctangent and lies in the range 0 & v & 1.

The current density is the gradient of N and thus
diverges near the vertex as

(2.7)

In the corresponding lattice the largest currents occur in
bonds near the vertex; thus the largest current in the fun-
nel behaves like j„,a '(a/1)'

The second step in the calculation is an estimate of the
size of the largest symmetric funnel in a network of size
L. In this we follow the arguments of DBL. Given a
square network of size 1, the probability, K(l), that the
network is configured as a symmetric funnel is

(2.g)

component of the current and parallel component of the
field leads to the requirement that

(2.2)

FIG. 1. The funnel configuration. Inside the rectangular re-
gion, the conductivity depends only on the angle o(0)=o., for
—P & 0 & P and ~—P & 0 & vr+P, while o (0)=o. , for
p&0& sr —p and n+p&0& —p. 0 is measured from the z
direction. The E field is taken to be in the z direction far from
the funnel.

For large l, K is small and the likelihood that two funnels
are near one another is very small. Thus, for 1 « l «L
we may treat funnels of size l as if they are uniformly dis-
tributed through the system with density K. The proba-
bility, p(l), of finding at least one funnel of size 1 is

p(l)=1 —exp( EL ) . — (2.9)

Assuming that the largest current in the network
occurs in a funnel, we have, setting a = 1,
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properties of the Legendre functions, this symmetry con-
dition implies that the eigenfunction in the o.

& region is
proportional to

(2/~)cot(7rv/2)P, (cos0)+ Q„(cos0) .

Matching these solutions across the discontinuity at 0=/3,
we obtain the following transcendental equation for v:

0=[1—(o (/o. ) )]P,P,'
0.2—

+(2/~)cot(7rv/2)[Q P' —(o /o ) )P Q' ], (3.2)

0. 1— 6=3

0. 0
0 ~ 0

l

0. 2 0.4 0.6 0.8 I.0

FIG. 2. a vs cr /o for d=2 [see Eq. (2.6)] and d=3 [see
Eq. (3.2)].

where the Legendre functions and their derivatives are
evaluated at cos(/3).

We have studied Eq. (3.2) numerically. For a fixed ra-
tio o. &/o & the optimal defect is determined by choosing
the /3 which minimizes v. We find that this P varies by a
small amount as o.

&
/o.

& varies from 0 to 1 and is always
close to 0.96. Equation (3.2) may be solved analytically in
the two limits v~0 and v~1. For v~0 the result is
that the best value for x =cos(P) satisfies

&i,„)-j,„,f dl l ' p(l) f dx p(x) f dx p(x) .
0 0 0

(2.10)

The integrand in the numerator is dominated by va1ues of
l for which K(l)L is of order 1; that is, where l is of or-
der (lnL )'~ . Thus,

(2.1 1)

which, in combination with Eq. (2.6), yields the results
given in Eqs. (1.1) and (1.2). The exponent a is plotted as
a function of o.

&
/o. & in Fig. 2.

III. THE LARGEST CURRENT
IN A THREE-DIMENSIONAL

RANDOM NETWORK

The calculation of the largest current for d =3 is very
similar to the d =2 calculation. We propose that the op-
timal defect is a solid funnel obtained by rotating the
two-dimensional funnel shown in Fig. 1 about the z axis.
In Sec. IV we argue that this is indeed the best shape.

Choosing polar coordinates r, 0,$ and separating vari-
ables, we find that the potential takes the form
4(r, 0,$)=r"Il(0). The exponent v is determined by the
Sturm-Liouville eigenvalue problem,

[ [clgsin(0)o (0)c)g]+v(v+ 1)sin(0)cr(0)] 4(0)=0, (3.1}

subject to the condition that 4(0) remain finite at 0=0
and m.. Across discontinuities in o(0), the potential must
satisfy conditions (2.2) and (2.3). For the d=3 funnel,
cr(0) takes the values cr( and o ), with jumps at O=P
and vr /3, where /3 is—chosen to minimize the first non-
trivial eigenvalue of Eq. (3.1). Between discontinuities in
o the solutions are linear combinations of Legendre func-
tions of the first and second kind, P„(cosO) and Q„(cos0).
The finiteness condition restricts the solution in the a &

region to be a Legendre function of the first kind, while
the symmetry of the conductivity about 9=m/2 means
that the eigenfunction vanishes at 0=~/2. Using known

2=(1+x)ln[(1+x )/(1 —x)]

(3.3)

The exponent a defined in Eq. (1.1) is plotted in Fig. 2.

IV. WHY IS THE FUNNEL SHAPE BEST?

In Secs. II and III we considered only funnel-shaped
defects. Are there other defects which typically occur in a
system of size L and which have current densities exceed-
ing those in the funnel? In this section we examine this
question for the d=2 case; the analysis for d &2 should
be similar.

Consider the Sturm-Liouville problem defined by Eqs.
(2.1)—(2.3). Among all functions o(0) which are piece-
wise differentiable and bounded by

0 & o ( & o. ( 0) & o ) , (4. 1)

we claim that the function associated with the funnel hav-
ing /3=m/4 has the smallest nontrivial eigenvalue.

To prove this claim, first note that for an arbitrary
function, o.p(0), the operator

Xp=—(I/crp)c)go pc)g (4.2)

is self-adjoint with respect to the inner product

&f ~g)p =—f dOcrp(0)f'(0)g(0) .
0

or P =0.971 and that, with this choice, v =0.278
X(o (/o ) ). For v~ 1 we find that cos (/3}= —,

' or
P=0.955 and that 1 —v=3.59[1—(o. /cr )]. As cr /cr
increases from 0 to 1, the optimal P decreases from 0.971
to 0.955. It is a curious fact that the optimal P varies by
less than 2% over the whole range of conductivity ratios.

The remainder of the calculation of the size dependence
of the largest current in a three-dimensional network
proceeds as in the two-dimensional case, except that the
number of bonds which must be specified to construct a
defect of size l is now l rather than l . Following the
reasoning leading to Eq. (2.11) yields
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Thus the eigenfunctions of Lp with periodic boundary
conditions can be chosen to be a complete orthonormal
set. We call the first nontrivial eigenfunction and eigen-
value %p and —A.p, respectively,

Lp%p ———Xp%'p, (4.4)

o'=o'p+ g E 0J'
j= 1

(4.5)

where c is a small positive number. This leads to varia-
tions in the operator L, the first nontrivial eigenfunction
4', and its eigenvalue —k,

X=Xp+ g E'X, ,
j=1

(4.6a)

(4.6b)

where kp & 0. The method of our proof is to use perturba-
tion theory to determine how the eigenvalue varies as o. is
varied and then to eliminate classes of functions o. for
which variations exist which reduce A, . Suppose we write
o. as a variation of o.p,

f(B)= [4'o(0) —ko+o(0) ] . (4.9b)

In order to have A. ] positive we require o.p ——o.
& wherever

f is positive and vice versa. Thus it suffices for us to learn
how many sign changes f has. Using the Sturm-Liouville
equation to rewrite f, we find that a sign change in f cor-
responds to a zero crossing of (o+p+p)'. Using standard
arguments from Sturm-Liouville theory it is possible to
show that both o.%'p and Op are piecewise diA'erentiable,
have two zeros, and that the zeros of o.+p are interleaved
with those of 'Pp. Thus cr+p%'p has four extrema and f
has four sign changes. This proves that if o has other
than four discontinuities, it cannot yield a minimum k.

It remains for us to show that the four discontinuities
of o. must be equally spaced in order to achieve the
minimum in k. The functions under consideration are
defined by four intervals in which u is constant. These
intervals begin at 0j and have widths yj ——0j+1—0j for
j=1,2,3,4 such that y]+ +@4——2~, o. =o.

& in the
first interval, and 0q =—01+2~. The corresponding eigen-
function takes the form A~cos[A, ' (0—0~)+a~] for
j=1,2,3,4. Using the conditions (2.2) and (2.3) across the
discontinuities in o. , we obtain the following set of simul-
taneous transcendental equations for k,

and
aj+( =tan '[(cr (/o. ) )

+—'tan(A, '/~y, +a, )], (4.10)

(4.6c)

By considering the equation (4p
~

%+A.
~

0')p=0 and col-
lecting terms of first order in c., we obtain the following
result for the first-order shift in the eigenvalue,

k& = —
& +o

l
& t+k(cr i/op) Vo&o

d0o.
1 0 +p 0 —A, p +p 0 (4.7)

We first eliminate all functions o., except those for
which either cr(0)=o ( or cr(0)=o & for all 0. For func-
tions which take other values the sign of o.

i may be freely
chosen so that we can make ki negative.

Thus we can restrict ourselves to functions which are
piecewise constant taking the two values o.

& and o. &.
Within this class, we can eliminate all functions except
those which have exactly four discontinuities. To see this
consider a variation 6o. which leaves o. =o.p+ 6o. two
valued,

5o =+(o.) —o. ()[H(0—Bi —E/2) H(0 Bi+E/2)], — —

(4.8)

where the + ( —) holds for j even (odd) and where
aq ——a1. The arctangent is defined so that aj+1 and

yj +aj are in the same quadrant. We have not had
the courage to attack Eq. (4.10) analytically. Rather, we
solved for A. numerically for 200000 randomly chosen
sets [yj I to show that the symmetric funnel yj =~/2
yields the smallest eigenvalue.

As an alternative to the above variational approach, we
have examined a variety of smooth functions o (0) by con-
verting the Sturm-Liouville equation (2.1) into a
Schrodinger equation. For example, we have solved for
the eigenvalue v associated with the continuous function

o»(0) =exp[A tanh[K cos(20)]/tanh(K) I,
where o (/o &

——exp( —2A). As K~ co, o.x. approaches
the symmetric funnel function of Eq. (2.4). Table I gives
v versus K and illustrates the fact that v is minimized
for piecewise constant functions.

For d =3 we believe that similar arguments may be
made based upon Courant's nodal domain theorem,
which shows that the lowest nontrivial eigenfunction on
the unit sphere has one node line.

where H(0) is the Heaviside step function, Bt is an arbi-
trary angle, and the + is chosen to be the sign of
op(0~ ) —(o & +o ( )/2 so that the condition (4.1) is
satisfied by o.. For example, if o.p ——~& at 01 then the
graph of 6cr is a rectangle of height o. —o. and width c
centered at 01. Formally expanding 6o. in powers of c we
find that o.

1 is proportional to a 6 function at 01 with the
same overall sign as in Eq. (4.8). Thus the first-order
change in the eigenvalue due to this variation is given by

(4.9a)

where

0.0
2.0
4.0
6.0
8.0

0.12
0.079
0.061
0.056
0.054
0.048

TABLE I. The eigenvalue v' vs K for the Sturm-Liouville
problem of Eq. (2. 1) for cr =o» (0)= exp [ A tanh[K cos(20)]/
tanh(K) j with o /cr, =exp( —2A)=0.03. As K~ op, o» ap-
proaches the symmetric funnel function of Eq. (2.4).

V2
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V. DISCUSSION

Let us first compare our results to those of DBL. In
the limit o. &/o. &~0 we predict that the exponent a in
Eq. (1.1) goes to 1/d. In contrast, for o &

——0, DBL find
that a= 1/(d —1). We believe that there is a discontinui-
ty in a at o. &/o. &

——0 and that this discontinuity is the
signature of a crossover in the lnL dependence of (i,„).

In DBL the critical defect is an insulating line (for
d=2) or disk (for d=3) which is oriented perpendicular
to the average current flow. For the purpose of analysis
they treat these defects as elliptical or ellipsoidal regions
of insulating material with d —1 long axes of length I and
one axis of unit length. Their result follows from the fact
that the maximum current associated with the defect,
found at its edge, scales like l, while the typical size of the
largest defect scales like I" '-lnI .

For finite o. &/cr& the current at the edge of an ellipti-
cal or ellipsoidal region of low-conductivity material can
be shown to approach the finite value j,„,(o &/cr &) as
l~~. However, if o &/cr & is large or I is small, these
(d —1)-dimensional defects behave as if they were perfect-
ly insulating and yield the largest currents in the network
until L reaches L, such that (i,„)=j,„,(rr & /cr &); that
is, lnL, =(rr &/cr &) '. For L &L, there is no further
growth in the maximum currents in the (d —1)-
dimensional defects and (i,„) is dominated by d-
dimensional defects. As o.

& /o.
& ~~, the crossover

length L, goes to infinity, leading to the discontinuity in a
at o. &/o. &

——0. As a practical matter, if o. &/o. & is large
the exponent a = 1/(d —1) will be observed for all accessi-

ble L. We note that for o. &/o. & large there may be an
additional crossover near the percolation threshold when
L & g, the correlation length.

In summary, we have studied the question of the ex-
pected value of the largest current flowing in the bonds of
a two- or three-dimensional random resistor network.
The analysis is based on the notion that the leading size
dependence of the largest current is determined by the
most critical defect in the system. That is, the resistor
carrying the largest current is surrounded by a large re-
gion, the defect, in which the conductivity is configured in
a way which funnels current through the resistor. The
critical defect is the one which yields the highest current
using the smallest number of bonds. We assumed that
this defect could be analyzed using continuum methods.
The surprising result is that the expected value of the
largest current grows as the a power of the logarithm of
the system size and that a depends on o. &/o. & in a com-
plicated way.

We believe our results are exact, but they have not been
arrived at using rigorous methods. Unfortunately, numer-
ical experiments will be difficult because of the extremely
slow growth in the largest current. Conceivably, physical
experiments could span a sufficiently large range of sizes.
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