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Interface unbinding transitions, such as those arising in wetting phenomena, are studied in d di-
mensions with general interactions. Three scaling regimes must be distinguished: a mean-field (MF),
a weak-fluctuation (WFL), and a strong-fluctuation (SFL) regime. A simple picture clarifies the ori-
gin and nature of the different regimes and correctly describes the MF and WFL critical behavior.
In the SFL regime, however, this picture fails, as do more elaborate perturbative methods. To over-
come this an approximate functional renormalization group is introduced: it acts as a nonlinear map
in the space of interaction potentials, V(l), for two interfaces at a separation l. The formulation is ex-
act to first order in V and embodies the correct scaling behavior at a continuous unbinding transition.
In the SFL regime, it reveals two nontrivial fixed point potentials, Vo (l) and V, (l), which describe,
respectively, the completely delocalized phase and the critical manifold for the unbinding transition.
On approaching the upper boundary dimension, d„=3, these fixed points do not coalesce with the
standard Gaussian fixed point but, rather, mutually annihilate leaving a line of novel "drifting" fixed
points. For at & 3, suKciently long-ranged perturbations cause crossover to the WFL and MF re-

gimes. Thus the functional renorrnalization-group approach yields a unified description of all scaling
regimes.

I. INTRODUCTION

In many situations, the behavior of an interface (or
domain wall or membrane) is constrained by external
fields or by the presence of other interfaces. These exter-
nal constraints usually tend to localize the interface. On
the other hand, thermal fluctuations or fluctuations in-
duced by quenched impurities lead to an interfacial
wandering which competes with this localization. As a
result, the interface may undergo an unbinding (or delo-
calization or depinning) transition where it transforms
from a localized to a delocalized state.

Various classes of unbinding phenomena can be dis-
tinguished: (a) the delocalization of a single interface in
an external potential. An example is the roughening tran-
sition;' (b) the unbinding of two interacting interfaces:
this is the mechanism behind the critical effects at wet-
ting; (c) the unbinding of an assembly of interfaces
which occurs at commensurate-incommensurate transi-
tions and during the swelling of lyotropic liquid crys-
tals. '

This paper mainly concerns the unbinding of two inter-
faces. First, we discuss the construction of effective inter-
facial models. Then, a simple picture is presented in Sec.
III which shows that unbinding transitions can exhibit
three different scaling regimes depending on the spatial
dimensionality, d, and on the character of the microscopic
interactions: (i) a mean-field (MF) regime for large d
and/or sufficiently long-ranged interactions; (ii) a weak-
fluctuation (WFL) regime with nonclassical exponents but
the same (trivially determined) phase boundaries as in MF
theory; (iii) a strong-fluctuation (SFL) regime in which
both exponents and phase boundaries are nontrivial. The
critical behavior in the MF and in the WFL regime is
correctly given within the simple picture as can be dernon-

strated by more elaborate perturbative arguments. How-

ever, in the SFL regime, both the simple picture and the

perturbative methods are not applicable. As described

briefly in a previous communication, we have introduced
and applied a nonlinear functional renormalization group
(RG) in order to study this nontrivial regime. This RG
approach, which is an extension of Wilson's approximate
integral recursion relation, ' is described in Sec. IV. It is
exact to linear order in the effective Hamiltonian. Some
useful bounds on the behavior implied by these recursion
relations are obtained in Sec. V. The numerical results
obtained from this functional RG for short-range interac-
tions are described in detail in Sec. VI. Two distinct non-
trivial fixed points are found for interfaces subject only to
thermal fluctuations. These fixed points bifurcate in an
unusual way from a line of "drifting" fixed points at the
upper borderline dimension d=3 rather than from the
gaussian fixed point as normally expected. The two fixed
points describe the critical manifold and the completely
delocalized phase, respectively. Long-range perturbations
are considered briefly in Sec. VI D. Finally, Sec. VII con-
tains a summary and a discussion of our results.

II. INTERFACE MODELS

In this section, we will discuss effective models which
describe the fluctuations and interactions of two interfaces
or domain walls. We motivate these models by reference
to wetting phenomena. However, similar models can
also be used to discuss different phenomena such as
commensurate-incommensurate transitions and the swel-
ling of lyotropic liquid crystals. 4 511

Interfacial wetting phenomena arise in systems where
three distinct thermodynamic phases, a, f3, and y can
coexist. In such systems, the o,y interface may contain, in
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I1I = f d 'x[ —,'X(V'1) + Vii(l)]/kiiT . (2.1)

The first term represents the elastic free energy of the a/3
interface, the second term the direct interaction free ener-

gy of the interface with the wall. The model (2.1) impli-
citly contains a small-scale, spatial cutoff, 1/A, which is
of the order of the intrinsic width of the interface, i.e., of
the order of the bulk correlation lengths.

thermal equilibrium, a layer of the /3 phase, see Fig. 1(a).
We will assume here that the system is not close to any
bulk critical point. Therefore, the thermal fluctuations
within the bulk phases a, /3, and y are governed by micro-
scopic length scales. On the other hand, the thermal fluc-
tuations can be correlated over a much wider range within
the interfacial regions Then, the interfacial correlation
length, see (3.15) below, increases with increasing thick-
ness of the intermediate /3 layer. This happens if the tem-
perature, T, is above the roughening temperature, T~, for
one of the interfaces bounding the layer.

Each interface will have its own roughening tempera-
ture. We will focus on the case in which the af3 interface
is rough while the /3y interface is smooth, see Fig. 1(b).
Thus, we will in effect study a fluctuating a/3 interface in
the presence of a rigid wall which may represent a solid
surface. Our results do apply, however, equally well to
the case where both interfaces bounding the P layer are
rough. The equivalence of these two situations has been
shown previously. ' ' ' If both interfaces are smooth,
i.e. , T & Tg~ and T & Tgr, the correlations in the interfa-
cial region will not grow significantly above those in the
bulk phases. This situation which occurs, for example,
for multilayering and commensurate-incommensurate
transitions, is not considered here (but see, e.g. , Ref. 11).

To proceed, let x be the longitudinal coordinate
(xi, . . . , xd i) and z be the coordinate perpendicular to
the wall, and call the fluctuating distance of the aP inter-
face from the f3y plane 1 (x); see Fig. 1(b). The free-
energy functional or effective Hamiltonian for the interfa-
cial configurations is then taken to be

A. Elastic free energy

The elastic free energy controls the interfacial fluctua-
tions when the interface is "free," i.e., completely separat-
ed from the wall. The parameter X in (2. 1) is the interfa-
cial stiQness. If both a and /3 are fluid phases, the interfa-
cial tension, X, is isotropic and X=X. If a and/or /3 are
solid phases, the tension is anisotropic, i.e. , X =X(n)
where n is the unit vector normal to the a/3 interface.
Quite generally, X(n) attains a local minimum, say Xo, for
n parallel to a lattice axis. Here, this axis is taken to be
the z axis; see Fig. 1(b). Since we assume that the a/3 in-
terface is rough, the tension X is a smooth function in the
vicinity of this minimum. If X(n) does not depend
strongly on the azimuthal orientation of n, the stiffness in
(2.1) is given by' ' X=Xo+(d X/dO )o, where 0 is the
angle between the z axis and the normal. If X(n) depends
on the azimuthal orientation, one should replace X(V'l) in
(2. 1) by the tensorial expression (t)1 /t)x„)X (3( t)//t)xi' ),
where 2 p is a symmetric tensor.

Strictly speaking, the stiffness 2 which enters in (2.1)
depends on the length scale of the interfacial fluctuations.
For excitations on molecular scales, this parameter is
determined by microscopic intermolecular forces. In the
long-wavelength limit, on the other hand, X is given in
terms of the interfacial tension X of a planar interface.
This macroscopic stiffness is infinite for temperatures
below the roughening temperature, T~, and zero at the
critical temperature, T, . As mentioned, we are concerned
here with the temperature range T~ & T & T, which im-
plies that the long-wavelength limit of the stiffness is
finite. In this case, the scale-dependent part of 2 is a
correction term and will not affect the interfacial critical
behavior described below.

B. Interaction free energy

The interaction free energy, per unit area, of the inter-
face with the wall is described by Vii (1) in (2. 1). Near the
a/3 phase boundary, it has the generic form

Vti (I)=Hl + V( 1), (2.2)

0

(b)

FIG. 1. (a) A prewetting layer, p, intruding between two bulk
phases a and y and bounded by two interfaces ap and py. (b)
Specification of the a/3 interface by its separation, l(x), from a
rigid-wall interface, Py.

with V(l)~0 for l~ co. The variable H measures the
distance from the a/3 phase boundary. In a fluid context,
H is typically a chemical potential difference, 6p, measur-
ing departure from bulk coexistence. At a/3 phase coex-
istence with H=O, the interaction is given by V(l) alone.
In general, V(l) may have several minima. Here, we will
focus on the situation where V(l) achieves a single
minimum at finite or infinite l. This form is appropriate
for the purpose of discussing phase transitions in which
the interface unbinds continuously from the wall.

To describe wetting phenomena, the precise form of
V(t') depends on the microscopic forces between the parti-
cles in the a, P, and y phases. Let us assume, for in-
stance, that a and /3 are both fluid phases while y is a
solid phase. Then, we can distinguish between fluid-fluid
and solid-fluid interactions. If both types of microscopic
interactions decay at least exponentially for large separa-
tions between the molecules, one has' ''

V(l) = —W exp( —ml/g )+. U exp( —nl lg„), (2.3)
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(2.4)

Again, W is regarded as a basic thermodynamic field
passing through zero as the temperature or a surface held
varies. If both solid-fluid and fluid-fluid interactions vary
as 1/R + for large separations R between the molecules,
one finds' " (r, s) = (o.—l, o. ), (o. —I,cr+1), and
(o.—l, o. +2) for critical, tricritical, and tetracritical tran-
sitions. Finall y, one may also consider the interaction

V(i) = —IV/i "+ U exp( —I /g ),
which would be appropriate for short-range fluid-fluid and
long-range solid-fluid forces. '
V l r

Strictly speaking, the above expressions (2.3)—(2.5), fns, . — . , or
( ) represent the asymptotic behavior for 1 1. F

small l isma, i.e. , near the wall, V(l) will, in general, have some
different l dependence. Near a solid wall, for instance,
V(l) is expected to contain oscillations on a scale which is
set y the size of the molecules. However, since we are
interested in the critical behavior when l, the mean dis-
tance of the interface from the wall, is large, we will ig-
nore the details of V(l) for small l and will accept the
above expressions for all positive values of l.

negative values of l are, in fact, unphysical since l is a
distance. Thus, for consistency, one should supplement
the interface potentials V(l) by the hard wall condition

lare lg, where m and n are two dimensionless con-
stants with n &m. The parameter g„ is the correlation
length within the P layer. The amplitude IV will be re-
garded as a basic "control" parameter or thermodynamic
field varying, typically, through zero as the temperature,
T, and/or a short-ranged surface field increases. If (i) the
microscopic interactions decay faster than exponentially,
one has (m, n) =(1,2) for critical unbinding transitions.
These values for m and n also apply if (ii) the microscopic
fluid-fluid and solid-fluid interactions decay exponentiall

ange, Ro. of the solid-fluid interaction satisfies
For (iii) g & Rp & —,'g, on the other hand, '

/Ro). For tricrrtical and tetracriti-
cal unbinding transitions one h, fas, or case (i),
( m, n ) = (1,3) and ( m, n ) = (1,4), respectively. '

If the molecules interact through power-law forces, the
interaction V(l) has the general form '

V(l) = —IV/i "+U/1', s & r .
A. Free interface

, w en t e inter-irst, let us consider the case W & W h h
ace is completely separated from the wall. Such an inter-

face is controlled by the effective Hamiltonian

Hp(lI = f d 'x —'X(V'1)' (3.1)

which should be compared with (2.1). The interfacial
configurations can be characterized by the difference
correlation function defined by

AC (x) = —,
' ( [i (x) —i (0)]' )

/- T d d —]
1

iP.x

X (2ir) ' p' (3.2)

in which the momentum integration extends up to a cutoff
p =A. The behavior of AC(x) for large x depends on

the dimensionality. For d & 3, one finds

kgT
AC (x) = Ao/A

X
(3.3)

for large x, with the nonuniversal coefficient

small value of l and a repulsive part which favors a large
value. For W & 0 and W & 0, the potentials have a
minimum at finite and infinite l, respectively; see Fig 2~ ~

By varying W one can change from a net attractive to a
net repulsive regime. A continuous unbinding transition
occurs w en W approaches, from above a critic 1 1

or & W„ the attractive part is strong enough to
bind the interface to the wall. For W& W
hand th

or & „on the other
an, t e interface is completely separated fro th 11.

or xed interaction, V(l), three different scaling re-
gimes have to be distinguished: (a) a mean-field (MF) re-
gime for d & d], (b) a weak fluctuation (WFL) regime for

i & d & d2, (c) a strong-fluctuation (SFL) regime for
&d2. The borderline dimensionalities d] and d2 de-

pend on the form of V(l). In this section, we show that
aine, quite genera y,these dimensionalities can be obtained t

within a simple heuristic picture. ' '

V(l)= ~ for l &0 . (2.6)

Such a wall is h, however, difficult to treat in a perturbative
way. Furthermore, one might expect that the precise na-
ture of the wall will not affect the critical behavior at the
unbinding transition. Therefore, two other types of walls
have been considered: (i) a soft wall, ' i.e.,

V(l)~ ac as l~ —cx

and (ii) aconite wall given by

V(l)=c for l &0,
with c a positive constant.

(2.7)

(2.8)

III. CONTINUOUS UNBINDING TRANSITIONS:
SIMPLE PICTURE

(2.3 —2.
uite generally, the interface potentials bs as given y

) —(2.5) consist of an attractive part which favors a
FIG. 2. Typical interfacial potentials for positive and negative

values of the parameter W.
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(3.4) (3.16)

which depends on the details of the cutoff. Clearly
AC( ao ) also depends directly on the momentum cutoff'.
For d=3, one has

is finite for a bound interface as one would expect. Note
that gi is related to the difference correlation function

(3.17)
kgTbC(x)= ln(Ax)+O(1),

271

while, for d & 3, one obtains

(3.5) via

bC(ao)=pi . (3.18)

b, C(x) = 4p
i
x

i
+O(1),kgT 3 —d

X

with the universal coefticient

(3—d),

(3.6)

(3.7)

It is natural to assume that, for g~ finite, b, C(x) has a

scaling form b, C (x) =g
~

''P(x /g~~) with, say, 'Il(z) -z ' for
z~ oo. At the transition point, i.e. , for g~~~ oo, one must
recover the behavior for the free interface. This implies

yi ——y2 ——2g with g given by (3.13). Thus, for d &dp=3,
the difference correlation function should assume the scal-
ing form

which is cutoff-independent. Thus, a free interface subject
only to thermally-induced fluctuations has a borderline
dimensionality

b C(x) = (ke T/X)$~~~%(x/g ),
with

(3.19)

do=3 . (3.8) +(z)=4pz ~ for z~O, (3.20)

Now, an interfacial segment of longitudinal dimension L~~

has, on average, a transverse dimension

where %p is given by (3.7). This scaling behavior is fully
confirmed by exact calculations for d =2. ' For the mar-
ginal case d =do ——3, scaling arguments lead to

Li—= [b,C(L~ ))'i

Using (3.3)—(3.7), this relation leads to

(3.9) kgT
AC(x)= In[A/ N(x/g )],

2~2
(3.21)

Li = [(k~ T/X)alp]' /A' ford)3, (3.10) with

= [(kti T/2~2)ln(AL~~ )]' for d =3, (3.1 1) N(z) =z for z~O . (3.22)

and finally, From (3.18)—(3.22), the interfacial roughness follows as

L =[(k T/X)iII ]'
L~~ for d &3, (3.12) for d &do, (3.23)

for Li~ large compared to 1/A where we have defined a
spatial anisotropy or roughness exponent '

= [(ks T/2~2)ln(Ag~~)]' for d =dp (3.24)

g= —,'(3 —d) . (3.13)

Thus, the typical fluctuations which might be pictured as
"humps" of an interfacial segment with longitudinal di-
mension L~~, are characterized by a transverse dimension
Li «L for d) 1. pi=[(ktiT/X)IIp]' /A", d &dp . (3.25)

when g~ is large. Note that the coefficient ~II„ is, in gen-
eral, not equal to ~Ilp as given by (3.7). Finally, for
d )do, the typical amplitude for the long-wavelength ex-
citations depends on the microscopic cutoff' A. From
(3.10), one finds

B. Anisotropic scaling

Now, consider an interface whose mean distance l from
the wall is large but finite. In this case, its fluctuations
are governed by two length scales, g~~ and gi. For large x,
the correlation function

In summary, the typical configurations of an interface
which is bound to the wall consist of large excursions
with longitudinal and transverse dimension g~, and
These humps are thus essentially confined between
z —1 —gi and z =1+pi, see Fig. 3. As we will see, one
has either 1 » gi or 1 =pi.

C (x)—:( [1(x)—1][l(0)—1]) (3.14) C. Effective interactions

will decay in directions parallel to the interface as

C (x)-exp( —x /g~ ), (3.15)

where g~ is the longitudinal correlation length This ex-.
ponential behavior has been found both within Ornstein-
Zernike theory ' and from exact calculations in d =2.
These calculations also show that the interfacial rough-
ness, V(l) = Vg (1)+ Vg (1); (3.26)

Now, we attempt to estimate the difference between the
free energy of a bound and a free interface. This free-
energy difference consists of three parts: (i) an energy
change resulting from the interaction with the wall which
we divide into an attractive part Vq (l) & 0 and a repulsive
part Vg(l) )0:
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faces in systems with quenched impurities where the in-
crease in bending energy has a more singular behavior as
g l~ ao than does the entropy loss.

For d &dp, it is useful to express gll in terms of gi and
to define

VFL((i)—:UFL(kll((J. )) (d & dp )

Then, one has

(3.35)

VFL(gi) =(Xgi+kiiT)A exp( —4ngtX/kti T) (3.36)

/ j// '// /, '///// /// / ///, !,I!'.'/
for d =dp, and

VFL(g'i) =kti T(king T/X)'! /gi

for d & dp, with a decay exponent

(3.37)

FIG. 3. Illustration of a typical interfacial fluctuation show-
ing the mean thickness, l, and the longitudinal and transverse
correlation lengths, pl and g&, respectively.

r:—2(1 —g)/(=(d —I)/(=2(d —1)/(3 —d) . (3.38)

D. Three scaling regimes

(ii) the increase in the bending energy; (iii) an overall loss
of entropy resulting from the confinement of the interfa-
cial fluctuations, ' see Fig. 3.

The increase Ae, in the bending energy per unit area
arises from the gradient term in the effective Hamiltonian
(2.1). For humps with longitudinal and transverse dimen-
sions gll and gi, this increase can be estimated from (2.1)
as

(3.27)

Similarly, the loss of entropy per unit area, As, can be es-
timated if we imagine putting rigid walls at z=l —gi and
z =i+pi. Then, each collision of the interface with these
confining walls leads to an entropy loss of order kz. '

Furthermore, the density of collisions is of order I/g"
Therefore, we obtain

bs = —kit/gll
d —1 (3.28)

~f VA ('t )+ ~R (I )+ UFL(Nil)

with a fluctuation-induced part

UFL(gll) =be —Tbs,
which on using (3.23)—(3.25) becomes

(3.29)

(3.30)

UFL(g'll) kit T(1/A gll+ I/gl ) d &dp

=k T[(2tr) 'in(A~I + l~/gll, d =d

=kit T/g"l ', d &dp

(3.31)

(3.32)

(3.33)

with dp=3. In (3.33), we have used the fact that, for
d &dp, both the bending energy and the entropy loss give
a contribution of the same order since (3.23) implies

X(gi/gll) =kiiT/g~ ', for d &dp . (3.34)

This property is special to thermally-induced fluctuations
of the interface as studied here. It does not hold for inter-

Thus, the total change in free energy per unit area, b,f, of
the interface resulting from the interaction with the wall
can be written as

Now, we will determine the equilibrium values of l, g, l,
and gi by minimizing the excess free energy (3.29). First,
consider d &dp where UFL(gll) is given by (3.31), and let
us assume that the leading contribution to bf is given by
the interaction V. Then, I follows from the condition
BV(l)/c)l I

——0, while gll is determined via the curvature
from 2/gll ——d V/dl

~ i as in standard MF theory for
bulk critical phenomena. If this expression for g' is in-
serted into (3.31), one finds that UFL(g ) is indeed a
correction term as assumed. In fact, UFL(gl) as given by
(3.31) can be obtained in a more systematic way from the
one-loop contribution to the free energy.

Next, consider d & 3, and the expression

Af = Vq (I)+ VR(l)+ VFi (gt) (3.39)

with VFL given by (3.35)—(3.37). If we postulate 1 »(J,
we find again that bf= V~ (I )+ VR (1) prouided the direct
repulsive interaction Vit(l) decays more slowly than the
fluctuation-induced repulsion VFL(l), i.e.,

VFL(l)/Vg (l)~0 as l~ (n (3.40)

In this case, one again recovers the results of MF theory.
One can now check that the assumption l »gi is self-
consistently satisfied by calculating gi within the
Ornstein-Zernike approximation. One indeed finds l »gi
provided (3.40) is satisfied.

For fixed interaction V(!), the upper critical dimension
d ~ can be obtained from

Vit (l) —VFL(l) —I /l' (I~ ~ ), (3.41)

d i =(3s +2)/(s +2) . (3.42)

On the other hand, if V~(l) decays faster than any power
as in (2.3) and (2.4), one finds

—dp —3 (3.43)

where r(d) is given by (3.38). This simple criterion is ful-

ly confirmed by hyperscaling arguments and by a sys-
tematic perturbation expansion of the Hamiltonian (1.1)
around MF theory. Thus, for the power law interactions
(2.4), d, follows from s =r(d i ) which yields
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since MF theory is correct for d & 3, as mentioned, and
one also has VFL(l)»Vq(l) for d&3. The same con-
clusion follows from (3.42) in the limit s ~ oo, which
should correspond to faster than power-law decay.

If the direct and the fluctuation-induced repulsions are
equally important —see (3.41)—the roughness, gi, as cal-
culated within Ornstein-Zernike theory is of the same or-
der as the mean separation l, i.e., gi —I for l~oo. Since
the interfacial fluctuations become more pronounced for
lower d, this relation is expected to remain valid for
d &dl. The possibility gi» 1 can be ruled out since the
typical excursions are small-amplitude excitations in the
sense that gi « g~~,

' see Fig. 3. If 1 —g'i is assumed,
minimization of the excess free energy (3.39) leads to the
conclusion that the critical behavior is governed by

U (x V
2—

0
i

z ocg

Af = Vg(l )+ VFL(l)

provided

Vii ( I) / VFL ( l ) —VF'L ( I ) / Vg ( I )~0

(3.44)

(3.45)

FIG. 4. The reduced fixed point potentials, U, (z), corre-
sponding to the critical unbinding transition, and Uo (z), describ-
ing the unbound, delocalized interface phase, for d=2 dirnen-
sions.

~

V~(l)
~

—VFL(l) —I/l'"' as l~~ (3.46)

with r(d) defined by (3.38). Thus, for the power-law in-
teractions (2.4) and (2.5), dq follows from r =r(dq) which
leads to

d2=(3r +2)/(r +2) . (3.47)

If Vq (l) decays faster than any power as in (2.3), one has

d2 —d ] —dp —3 (3.48)

In such a situation, one may have several scaling regimes
for fixed d= 3. Indeed, various regimes have been found
for the short-range potential (2.3) within the linear renor-
malization group. ' ' ' '

If one defines the critical exponent v~ via

as i~co. (Note that the case d =do ——3 with potentials
decaying faster than a power law is excluded here. ) In
fact, this characterizes the intermediate weak fi'uctuati-on
(WFL) regime. In this case, the critical behavior can be
obtained in a MF fashion if the repulsive interaction V~(l)
is replaced by VFL(l) in (2.1). One then finds that the
critical exponents acquire nonclassical values which de-
pend on r, as given by (3.38), and thus, on d. However,
the phase boundary is still given by W = W, =0 as in the
MF regime. Furthermore, the roughness gi is found to
satisfy 1 —gi as postulated. The critical exponents deter-
mined in this simple way are fully confirmed by (i) a sys-
tematic perturbation expansion which can be solved self-
consistently up to arbitrary order in V(l), and (ii) by a
linear functional renormalization group which includes
terms up to first order in V(l), where V(l) is taken to
have a finite wall as in (2.8).

For fixed interaction V(l), the scaling properties of the
weak-fluctuation regime hold for d& &d &d2, where dz is
determined from

for unbinding in the long-range interface potential (2.4).
Thus, v~~~ m as d ~d2+. One must then ask what hap-
pens for d & dz, i.e., in the strong Puctuati-on (SFL) regime
in which

Vg (1)/VFL(l) —Vq (l)l'~0 for l~ oo . (3.51)

IV. RENORMALIZATION-GROUP APPROACH

The divergence of v~~ as d~d2+ at first seems to suggest
that d2 is the lower critical dimensionality and that there
should be no transition for d &d2. On the other hand,
the minimization of Af = V~ (1)+ Vq (I)+ VFL(l) might
still lead to a first-order transition if W in V~(l) is so
large that bf develops a second minimum at finite 1 which
can compete with the minimum at l = ao. Furthermore,
exact calculations for d =2 show that, indeed, an unbind-
ing transition remains present when d & dq but it is actu-
ally continuous rather than first-order! ' Apart from
the marginal case d = 3 with short-range interactions,
there are no results for the SFL regime when d&2 since
all the perturbative techniques employed in the WFL re-
gime fail for the SFL regime. In the remainder of the pa-
per, we show, within a nonperturbative renormalization-
group (RCs) scheme that, for fixed dimensionality
d &do=3, the critical points for all V(l) satisfying (3.51)
map onto the same nontrivial fixed-point potential, V;(1).
Hence, the whole SFL regime is characterized by univer-
sal critical behavior. On the other hand, all potentials
V(l) satisfying (3.51) which lead to complete interfacial
separation are mapped by the RG onto a second nontrivial
fixed point, Vo (1); this potential is purely repulsive, i.e.,
Vo (I) & 0 for all i, while the critical potential V,*(l) has an
attractive tail for large l; see Fig. 4.

(~i
—( W —W, ) (3.49) A. Rescaling

2 l

2+r d —d2
(3.50)

with W, =0 in the WFL regime (di & d & d2), one finds
A renormalization-group method involves a scale trans-

formation of the spatial coordinates and of the fluctuating
field. For the unbinding transitions studied here, the ap-



2132 REINHARD LIPOWSKY AND MICHAEL E. FISHER 36

propriate scale transformations are particularly simple as
shown in this subsection.

At the transition point W = W )0, the interface is no
longer affected by the interaction with the wall, and as
explained —see (3.6)—the difference correlation function
behaves as

AC(x)=(kiiT/X)%'p x
~

for x ~~1/A and d &do ——3. Since one has

(4.1)

b 'b, C(x/-b) =AC(x), (4.2)

with g = ( 3 —d ) /2 by (3.1 3), the ffuctuations are in uarian t,

for length scales large compared to 1/A, under the scale
transformation

x—+x =x/b

l~l'=l/b-' .

(4.3)

(4.4)

This implies that the fluctuating field l does not have an
anomalous dimension and, thus, that the critical point de-
cay exponent is given simply by

g=O . (4.5)

In other words, there is no "wave-function renormaliza-
tion" ' ' apart from the rescaling (4.4). Alternatively, one
may consider the effective Hamiltonian (3.1) which is also
invariant under the scale transformation (4.3) and (4.4)
provided one does not rescale the interfacial stiffness X.
Indeed, the long-wavelength limit of X is finite for the
systems considered here as discussed in Sec. II A. This is
in contrast to a normal bulk critical point where the cor-
responding coefficient of the gradient term varies as P .

The scale invariance (4.2) holds at the transition point
W= W, &0. It should also apply when W exceeds W,
but remains sufficiently close so that g is large compared
to 1/A. Thus, the correlations should be scale invariant
on the intermediate length scales given by 1/A «x «g~.
This expectation is fully confirmed by exact calculations
for d =2. ' Thus, the scale transformation of any
renormalization-group method when applied to continu-
ous unbinding transitions should be given by (4.3) and
(4.4). In the next section, we will describe a
renormalization-group approach which embodies this
property.

B. Nonlinear recursion relations

In this subsection, we describe the nonlinear recursion
relations which we will use in order to investigate the in-
terfacial model defined in Sec. II. These recursion rela-
tions are an extension of Wilson's approximate recursion
relations. ' In its original form, this renormalization
group has been applied to various bulk critical phenome-
na. In this context, its major drawback is the fact that it
necessarily leads to the vanishing of the critical exponent

However, for the unbinding transitions studied here
one has, indeed, q=O as argued in the previous subsec-
tion. Therefore, these recursion relations are expected to
be more reliable for the interfacial phase transitions con-
sidered here than for standard bulk critical phenomena.

One step of the RG consists of the following procedure.

First, the fluctuating interface coordinate l is divided into
a short-wavelength and a long-wavelength part:

1(x)=1'(x)+1'(x) (4.6)

(1 b)A—/4~ for d =3
C

(1 b')A—lrt for d =2 .
(4.7)

In momentum space, on the other hand, they are sup-
posed localized within the momentum shell A/b
& ip &A."

Now, the trace over the short-wavelength fluctuations,
1 (x), is performed in an approximate way. The various
approximations involved have been described previously
in the literature in some detail, '"' so we will not repeat
them here. The partial trace over 1~(x) leads to a new
Hamiltonian with momentum cutoff A/b. In order to
bring this cutoff back to its original value A, the coordi-
nate x is rescaled according to x~x' =x/b. At the same
time, the fluctuations are also rescaled by putting

1(x')=—1'(x=bx'}/b-' (4.8)

with g= —,'(3 —d) as in (3.13). Note that this is just the
scale transformation (4.3) and (4.4) which, as mentioned,
must apply at an unbinding fixed point even in an exact
RG method. As a consequence, the gradient term in (2.1)
remains unchanged and the RG acts only in the function
space of nongradient interactions as represented by the
potential V(l).

In order to write the recursion relation for the potential
in the most transparent way, we recall (4.7) and introduce
the scale

U(b }= kti T /A( b),
for the free-energy density, and the length scale, a(b),
defined by

k~T
a '(b) = f d" 'p/(2~) 'p'

A jb

k~ T 2~~d —i ~»Ad —3 (b 3 —d I ) (4.10)
X (2~) 'I ( —,'(d —1)) (3 —d}

(kti T/X)(b —I )/~A for d =2
C

(k&T/2~2)lnb for d =3 .

where l ~ and l ~ contain all Fourier components of l with
wave numbers p ~

&A/b and A/b &
~ p ~

& A, respec-
tively. Here, A is the high-momentum cutoff implicitly
contained in the Hamiltonian (2.1), and b & 1 is the usual
arbitrary spatial rescaling factor. The short-wavelength
part 1 ~(x) is now expanded in a complete set of suitably
chosen eigenfunctions, E„(x),which are taken to be local-
ized both in real space and in momentum space. ' In real
space, these eigenfunctions are assumed to be localized
within a cubic cell with volume 0, given by'

I /II(b) =—f d" 'p/(2ir)"
A jb

=2(1—b ' ")A" '/(4rr)" " (d —1)I
0 —1

2
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V" (( 1 ) =% [ V' '(1)] (4. 1 1)

Comparison with (3.16) and (3.2) shows that the length
scale a can be viewed as the interfacial roughness arising
from short-wavelength fluctuations. Then, the initial po-
tential V' '(1)—= V(l) is renormalized according to

C. Linearized recursion relations

In this subsection, we show that the recursion relation
(4.11) is exact to first order in the potential as a conse-
quence of the choice (4.10) for a(b). The linearized recur-
sion relation which follows from (4.11)—(4.13) is

with

%[V(l)] =——ub 'ln
dl'

—- &K.a

X exp[ ——,'(1'/a )' —G (l, l')]

(4.12)

t

V(N+1)(1) bd —i f e
—I' /2a

V(N)(baal

1 )
&2vra

(4.17)

Note that the factor u(b), which depends on the volume 0
of the cells in real space, has dropped out here. Now, if
V '(1) has a Taylor expansion in 1, one can rewrite this
linearized recursion relation as

where the potential enters through

G (1',1):—[ V(b ~l —1')+ V (b ~l +1')]/2u (4.13)

t

V(N+l)(1) bd i f—- &2tta

in which g= —,'(3 —d) as before.
Compared to Wilson's original method, ' the new

features of our RG are: (a) the normalization of the in-

tegral in (4.12), which has been set to preserve the form of
V(l) for large 1 as required for interface problems; (b) the
specific definition of the length scale a(b) which was origi-
nally treated as arbitrary it transpires that the choice
(4.10) ensures that our RG is exact to linear order in V
for all b and d; see Sec. IV C below; (c) the trivial "wave-
function renormalization" as given by (4.8) and embodied
in (4.13) is to be regarded as exact in the present context,
as discussed in Sec. III A above.

In the infinitesimal rescaling limit b =e (5t~0) the
recursion relation (4.11) leads to a relatively simple fiow
equation. If one takes the b dependence of the scale fac-
tors u(b) and a(b) into account, one finds from a straight-
forward calculation that this nonlinear flow equation is

=(d —1)V+gl + 'B ln 1+—
Bl ' B Bl2

Xe.p , (1/a)' —1 v'N—'(.)

=b 'exp —'a V' '(z),
dz

(4.18)

where we have put

z=—b~l . (4.19)

~[1]=~o[1I+~([1[
with terms

(4.20)

&o[ 1 I
= f d" 'x ( X(V1) /king T,

&([1I= f d 'xV' '(1)/k Ts.
(4.21)

(4.22)

On the other hand, one may obtain the exact linear RG
by an explicit integration over the short-wavelength fluc-
tuations. In order to do this, let us first rewrite the re-
duced interface Hamiltonian as

with the b-independent length parameter
1/2

a (3 —d)
b —1

kg T 2~(d —1)/2pd —3

(2vr) 'I ( —,
' (d —1))

and energy scale

B—=u(d —1) 2A" 'kt( T
(477)(~ (~~1 (

( (d 1))
2

(4.14)

1/2

(4.15)

(4.16)

Now, we divide 1(x) into a short-wavelength and a long-
wavelength part as in (4.6). Since 1 ~ and 1 ~ have, by
definition, no common Fourier component, one has

&0[1'+1'
I =&0[1' I +&o[l (4.23)

The intermediate, unrescaled, renormalized Hamiltonian
is defined as usual via the partial trace:

exp[ —&'[1~ I]=No ' f 2)l exp[ —&[I +1 []
(4.24)

For bulk critical phenomena, an approximate RG flow
equation equivalent to (4.14) has been recently derived
and examined independently by Hasenfratz and Hasen-
fratz.

with normalization

No ——f 2)l ~exp[ —&0[1~
I ] .

On using (4.23), this leads to

(4.25)

exp[ —&'[1 ~ I]=exp[ —&0[1 I) 1 1Vo
' f 2Ã ~e ' &([1—+1 I+0(&() (4.26)
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Assuming again that V' '(I) has a Taylor expansion the
integration over l can now be performed explicitly to
give

~—1 f ~/) 0 V(N)(/ (+I )
)

K (y, z) = —,
' U' "(b'z —y)+ —,

' U' "(b'z +y), (4.33)

where g= —,'(3 —d), as before, and the symmetry
K( —y, z)=K(y, z) has been used in order to restrict the
integration in (4.32) to y&0. The linearized recursion re-
lation which follows from this is given by

1= exp —'a V' (I ),dl~
(4.27) U,',„I( )=b"-' f " 'U—' "(b-'y) .

~Fr
' (4.34)

(4.28)

Finally, one must rescale x and l as before, via
x~x'=x/b and l(x')—= 1 (x=bx')/b-'; see (4.3) and
(4.4). As a result, (4.28) reduces to the expression (4.18)
for the renormalized potential V];„+"(l) computed to
linear order from (4.11)—(4.13).

Thus, to first order in the interaction potential V, the
recursion relation (4.11) reduces to (4.18) which is exact
for arbitrary rescaling factor b& 1. It follows that our
linearized RG has the appropriate semigroup property as
can be checked easily by use of (4.18) and the identity

a (b))b2 +a (b2)=a (b(b2), (4.29)

which follows from (4.10). For infinitesimal rescaling fac-
tor b =e ' (6t~0), the linear recursion relation (4.18)
leads to the flow equation

d2
=(d —1)V(l)+ gl + —,

' 3 ' V(l), (4.30)

where 2 is given in (4. 15). This equation was the basis
of the study by Fisher and Huse who denoted —,

' 3 by
1/o =—top, where g is the bulk correlation length.

with a (b) as given by (4.10). Therefore, up to first order
in the interaction potential V (or A~), (4.26) leads to

A'Il ~] =AOII ~]+ f d" 'x exp —,'a V' '(I ) .l —2 d (A)

The same recursion relation follows directly from (4.18)
via the scale transformation (4.31). One should note,
however, that the full semigroup property (i.e. , for arbi-
trary b) is not possessed by (4.34) because of the implicit
dependence of z on b.

E. Hard wall potentials

U' (z)= co, for z &0, (4.35)

for all N if the relation holds for N=O. For z&0, on the
other hand, (4.35) and (4.32) yield

2 A~zU' '(z) = —b 'In — dy e ~ '~" (4.36)
v'rt

with K (y, z) still given by (4.33). Thus, compared to
(4.32), the only effect of the hard wall is to introduce the
upper limit b'z on the y integration.

It has been emphasized in Sec. II B that negative values
of l are unphysical and that one should ideally study a
hard wall, i.e., V' '(l)= co for l&0 which, via (4.31) im-
plies U' '(z) = oo for z & 0. Such a wall cannot be handled
by the linearized recursion relation since (4.34) would lead
to UI„'(z)= ~ for all z if U' I(z)= m for z&0. On the
other hand, a hard wall is easily handled by the non1inear
recursion relation. Indeed, it is not difticult to see from
(4.32) that the hard wall remains fixed at z=0 under sub-
sequent iterations of this nonlinear recursion relation, i.e.,
one has

D. Dimensionless variables

In the balance of this paper, we study the discrete non-
linear recursion relations with fixed b& 1, usually taking
b=2. It is then convenient to absorb the scale factors
a(b) and U(b) in (4.10) and (4.9) into the potential. Thus,
let us define the rescaled quantities

V. SOME BOUNDS FOR THE NONLINEAR
RECURSION RELATION

In this section, we establish some general properties of
the nonlinear recursion relations (4.32) and (4.36) ~ Con-
sider, first, two initial potentials, U' and P ', satisfying

z—:1/v'2a(b), U '(z) = V' [&2a(b)z]/v(b) . (4.31)

b, (z) —U'"'(z) P' '(z) &0 (all —z) .

We may now define the "partition function"

(l)
2 I z

d y —K(y, z) —aK(y, z) (5.2)
Both U and z are dimensionless; however, since both a
and v depend on b, the rescaling also depends on b.

The full nonlinear recursion function (4.12) now be-
comes

with K(y, z) as in (4.33) but with U ' replaced by P
and

U "( )=T7[U ' ''( )]

= —b 'ln (2/v'tt) f"dy e
0

(4.32)

E(y,z)—:—,'5(b~z —y)+ —,
' A(b~z +y) (0 .

The corresponding free energy is

F„(z)= b" '1n[Q—(z)] .

(5.3)

(S.4)

with kernel
Comparison with the recursion relation (4.36) shows that
one has
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Fp ——P"' and F[——U'" . (5.5) with V);„determined by (4.18). As mentioned, the linear
recursion relation for V has the semigroup property.
Therefore, N applications of this bound lead to

Furthermore, it follows from Schwarz's inequality that F
is convex upwards as a function of a, which implies

I

V(N)(i) & b N(d —1) f ~
(

) (ig/ )2]
&2~a~

F &Fo +( ()F /(3a)o . (5.6) x V"'(b 'I —I'), (5.16)

However, the relations (5.2) —(5.4) yield

(r)F/Ba)p &0 . (5.7)

where aN is related to a in (4.10) by

a 2 (b) a 2( b)( bN(3 —d) 1)/(b3 —d 1) (5.17)

U(N)( ) &P(N)( ) (5.8)

Combining this with (5.5) then gives the inequality
U(')(z) &P("(z) (all z) so that the nonlinear recursion re-
lation preserves the original inequality U & P. Finally,
iterating N times gives

B. Lower bound

A lower bound for U" (z) can be obtained from a
lower bound for the kernel K(y, z). Thus, if one has

which is valid for all N ~ Np if it holds for N =Np. K (y, z) & B (y, z), (5.18)

A. Upper bound
one may conclude from (4.32) in the presence of a hard
wall,

Let us define the further partition function U'')(z) & —b dy e
b

~
2 —y —B (y, z)

V'~ p
(5.19)

Q (z): — dy e
2 b'-z

p (5.9)

and the corresponding free energy F~ as in (5.4). Evident-
ly, we have

Furthermore, if U' '(z) is convex down(vards as a function
of z, one has from (4.33), by definition,

K(y,z): ,
' U'—'(—biz —y)+ ,'U' (b'z+—y)

FI(z)= U'"(z), (5.10) & U( '(b&z) =K(0,z) . (5.20)

where U'"(z) is the result of applying the recursion rela-
tion (4.36) once. For /3=0, on the other hand, one ob-
tains

Then, (5.19) leads to

U'''(z) & b" 'U "'(b'z)+b" 'S(b'z), (5.21)

Fp(z)/b =S (b ~z)—:—ln f" dy e

F, &F +(BF/BP) (5.12)

Thence (5.10) and (5.11) yield the bound

U" '(z) & b" )S (b'z)--
+b 'exp[S(b'-z)] f, —e ~ U' (b'z —y).—b'-z V'~

(5.13)

In the absence of a hard wall, one must extend the in-
tegration range to ( —ao, co ) and replace S (b ~z) by
S ( ao ) =0. This leads to

U' "(z) & U,",„'(z), (5.14)

where the right-hand side represents the result of using
the linearized recursion (4.34). In terms of the original in-
teraction potential V ( l ), this becomes

v "(I)& v„'„'(I), (5.15)

(5.1 1)

It follows again from Schwarz's inequality that Fp is con-
vex upwards as a function of P so that

b'-'v'"(b~&) & v'"(I) & v'„'„'(I) . (5.22)

Furthermore, for potentials without a hard wall as studied
in Refs. 17 and 7, the upper bounds (5.15) and (5.16) have
a direct consequence for the phase diagram of the unbind-
ing transition. As explained in the next section, the
bound or localized phase of the interface corresponds to a
RG How in which the potential well becomes deeper and
deeper. Therefore, these upper bounds imply that the full
recursion relation predicts a localized state of the interface

where S(x) is defined by (5.11). In the absence of a hard
wall, this simplifies further: the last term may be dropped
because S(ao ) =0.

Not all the interface potentials of interest to us are con-
vex downwards for all values of z. Nevertheless we may
obtain bounds valid near a hard wall even for potentials
which have an attractive well and vanish for large z.
Thus, suppose (0 U/Bz ) & 0 for 0 & z & zp. The inequali-
ty (5.20) is then valid for b~z +y &zp, furthermore, for a
hard wall we have y &b~z. Thus (5.20) and thence (5.21)
remain valid for 0&z &zp/2b&.

We learn from these bounds that the nonlinearities of
the full recursion relation are relatively weak. For exam-
ple, for interface potentials V ' which are convex down-
wards and have no hard wall, a combination of (5.15) and
(5.21) implies
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whenever the linearized recursion relation leads to the
same conclusion. Finally, the bounds described in this
section provide useful checks on the accuracy of numeri-
cal iterations of the full recursion relation. U(iv+ J)( ) ~ J[U(N)( )] U(N)( (6.6)

It then follows from (6.2) that further iterations of the re-
cursion relation lead to

VI. STRONG FLUCTUATION REGIME:
NUMERICAL STUDY

with

(6.7)

In this section, we will describe a numerical study
based on the nonlinear recursion relation (4.32) for initial
potentials U '(z) = V' '(i 2 az)/u which satisfy (3.51)
and, thus, belong to the SFL regime. This reveals the ex-
istence of two nontrivial fixed points for d & 3, as illustrat-
ed in Fig. 4. These fixed points describe the critical mani-
fold and the completely delocalized phase, respectively.

Since the shape remains (essentially) unchanged one may
say that one has attained a "drifting" fixed point. Howev-
er, for d & 3, the successive shifts decay as b ~ and one
will eventually attain a true or "stationary" fixed point.
Once the drifting fixed-point regime is attained the sta-
tionary fixed point may be well estimated by

A. Numerical determination of fixed points

A fixed point, U*(z), of the recursion relation (4.32)
satisfies

with

U* (z) = U' '(z —5„) (6.8)

(6.9)

U*(z)=A[U*(z)] . (6.1)

However, it is important to realize that this relation
refiects the choice of origin for z. It follows from (4.32)
that a translation, z~z —Az, leads to

T7[U*(z bz)]= U*(z —hazy—b~) .

To first order in M, this yields

U*(z) —M
az

= U*(z) —e -~az aU'
az

(6.2)

(6.3)

which implies the presence of a RG eigenperturbation
with scaling index

A.2= —g= ——,'(3 —d) .

U(cY+ i)( ) ~ [0 ()v)( )] U( )( g ) {6.5)

For d & 3 and d = 3, one has X2 & 0 and A, q
——0 and so this

perturbation is irrelevant and marginal, respectively.
It is found numerically that k2 is the leading negative

scaling index for all d &3 provided the initial potential
U' '(z) decays to zero for large z faster than any power
law. In this case, the vicinity of a fixed point can be con-
veniently found numerically by using the observation that
the RA acts like a simple translation, as in (6.2). In this
way, two fixed-point potentials, Uo (z) and U,*(z), have
been determined for various dimensionalities in the range
2(d &3. Some of the results are shown in Fig. 4 and
Fig. 6, below.

The fixed point Uo (z) for the delocalized phase is easy
to find numerically since it is completely stable within the
space of potentials which belong to the SFL regime as
specified by (3.51). Thus, within this space, the fixed
point Uo has a domain of attraction of codimension zero:
one may thus start with any purely repulsive potential or
with any potential which has a sufficiently small
minimum and under iteration the potential Uo (z) will be
approached. Once one gets sufficiently close, the RG no
longer affects the shape of the potential but merely shifts it
according to (6.2), so that

,~
—we "+e " for z &0,

(z) = for z &0, (6.10)

which are a special case of (2.3) when rescaled according
to (4.31). In this case, one may vary either the parameter
u or s. This leads to a separatrix alias a critical locus,
w = w, (s), which divides the (s, w) plane into two parts as
shown in Fig. 5 for various values of the dimensionality d.

Thus, in practice, one may stop iterating the RG once
(6.6) is well satisfied and then use (6.8) and (6.9) to deter-
mine the fixed point. Note, however, that 6 diverges
when d~3 —since g= —,'(3 —d). This refiects the fact
that the translation becomes a marginal perturbation
when d=3.

The second fixed point, U,*(z), is more difficult to
determine numerically since its domain of attraction has
codimension one, i.e., there is one relevant perturbation
within the SFL regime specified by (3.51). Consequently,
in order to find U,*(z) one must systematically vary one
parameter, say p, of the initial potential U' '(z) until this
potential comes close to the attractive manifold of U,*,
which represents the critical-unbinding transition surface.
Then, as a function of p, the iterated potentials U' ' for
large N are observed to exhibit three types of behavior: (i)
for a critical value p =p„ the potential U ' is eventually
mapped onto the fixed point U,*. In numerical calcula-
tions, this behavior can be maintained only for a limited
number of iterations owing to the effects of numerical
roundoff; (ii) for p &p„say, the minimum of U' ) be-
cornes deeper and deeper: this behavior describes, as in
bulk critical phenomena, ' ' an "ordered" or bound
phase in which the interfacial separation remains finite;
(iii) for p &p, , on the other hand, the attractive part of
U' ' decays to zero, and U' ' is eventually mapped onto
the repulsive fixed point Uo which describes the com-
pletely unbound phase.

We have implemented this procedure in a detailed
study of the RG trajectories for initial potentials of the
form
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B. Fixed- oin-p nt potentials in th e vicinity of d=3
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(6.15)

(6.12) with 2 and 8 given bgiven by (4.15) and (4.16 . N
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0 V B 2(d —1) BN( V)

B BV

various values of d. One finds that

z*(d) =Zo/e as e~0 —, (6.21)

(6.16)

This equation can be viewed as the conservative motion of
a classical particle with positional coordinate V moving
with time I in a potential

B 2(d —1) B
2(d l)A' B

(6.17)

which is convex downwards with a unique minimum at
V=O. Now, the boundary condition for large "times" l is

V(l)~0 for i~ oo (6.18)

%[U (z)]= U (z —b,z*), (6.19)

with Az * ~ 0. For b =2, we find Az *= 1.168. As evident
from Fig. 6, these drifting fixed points prove to be com-
pletely repulsive, i.e., U (z) & 0.

It is clearly of interest from an analytic point of view to
inquire how this behavior in d = 3 connects to that found
for d & 3. Specifically, as

6=3—d (6.20)

approaches zero from below, the fixed points UD (z) and
U,'(z) exhibit a special character which indicates that they
bifurcate from the line of drifting fixed points in d=3. In
the coordinate system in which the two fixed points Uo
and U,' are stationary, their position, as measured, say,
by the location of the minimum or some fixed, positive
value of U, moves out towards infinite z as @~0. To
study this quantitatively the location, z', of the minimum
of U,*(z) is listed in Table I for rescaling factor b=2 and

Therefore, the particle must eventually reach the
minimum of N(V). However, this is impossible unless
V(1)=0 for all i since (6.16) conserves the energy func-
tional E = —,'(BV/Bi) +@(V) for all i. Thus, the only true
fixed point in d=3 is the trivial fixed point V (i) =0 or
U*(z)=0. For b& 1 the numerical studies confirm the
identical conclusion; it can probably also be established
analytically.

Even though no true nontrivial fixed points exist when
d=3, numerical iterations reveal a line of drifting fixed
points, U (z), which satisfy the defining relation

with ZO=3. 34 (b=2). [Note that (4.31) and (4.10) imply
1 =z (kii T lnb /&2~X)' when d ~3.] Similarly, it is
convenient to define the abscissae z/, and z/', - via

UB(zi, )= U,. (2/, )=k &0 .

~z/, /,
——zp —z/, and Az/, /,

——z/, —z/,
0 0 0 C C C

as d ~3; see Table I and note that the values shown for
d= 3 correspond to U (z). On the other hand, although
the minimum of U,* remains close to the steeply rising
part of Uo —recall that z

~
—z *=0.14 as d ~3—the

repulsive parts of U,* and Uo actually drift apart when
d ~3. This can be seen from the differences
Az/,*=zk —z/',-, listed in Table I, which appear to diverge
roughly as AZ/,*=AZ/e' when e~O, with hZ=1. 5 in-
dependent of k. [There may well be logarithmic factors
present in the divergence of b,zq* see (6.22) and (6.33)
below. ]

While the repulsive part of U,*(z) approaches the drift-
ing fixed point U"(z) the attractiue part exhibits a scaling
behavior. The depth U,*;„=—U,*(z*) rapidly decreases as
e~O; see Table I. The numerical values displayed in this
table for rescaling factor b=2 are well fit by the expres-
sion

U,*;„=—A, e /[In(B, /e)+ C, e] '~ (6.22)

with A, = &51, B, = 18.75, and C, = 19.02. Furthermore,
as e~O, the rescaled and shifted potential

U,*(z)—:U,*(z*+z)/
~

U,*,„ (6.23)

Table I lists z ~ which is found to diverge like (6.21) with
the same value of Zo,' indeed, the difference z

~
—z* ap-

pears to approach a fixed value close to 0.14 when d~3.
As the fixed point potentials Uo (z) and U,*(z) move

outwards, the shape of their repulsive parts become in-
creasingly close to the shape of the drifting fixed point
U (z). This can be gauged qualitatively from Fig. 6 and
can be evaluated quantitatively by noting the smooth evo-
lution of the shape-sensitive differences

TABLE I. Fixed-point parameters as a function of dimensionality d. The critical fixed-point potential, U, (z), attains its minimum
at z =z . The abscissae zk and zf, are defined by Uo (z/, ) = U, (zq') =k & 0 and then Azf, /,

——zf,. —zf, , Azq /,
——zk —z/, describe the shape

of the repulsive parts of the potentials while Az/,
*——z/,. —z/', . measures the separation between Uo and U,*. The data have been comput-

ed with rescaling factor b=2.

2
2.8
2.9
2.95
2.975

0.714
13.09
29.39
62.46

129.1

z',

1 ~ 51
13.59
29.73
62.70

129.3

0.02'
0.284
0.34g
0.382
0.409

Azi20

0.23o
0.36p
0.392
0.413
0.426

hz2 4

0.04o
0.313
0.373
0.41 I

0.436

Az2 4
0

0.22 I

0.377
0.41,
0.44)
0.458

1.148
1.91
2.38
3.05
3.90

Uc, miti

1.975
3.64 &&

10-'
6.33 &&

10--'
8.86 ~ 10
1.00 X 10-4

0.49
0.31
0.22
0.15
0.10

0.444 0.473
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appears to approach a well-defined function near its
minimum: this is illustrated in Fig. 7. It should be possi-
ble to derive (or correct!) these results by analytic studies
of our recursion relation for b& 1 or of the differential
form for 6 ~1 but we have not yet achieved this.

C. Relevant short-range perturbations

Within the SFL regime, there is only one relevant per-
turbation at the critical fixed point U,*(z). The corre-
sponding scaling index, A, &, yields the exponent

E (z)-b c, f, (z)+b ' "c' f,(z)+ (6.28)
A. I M

provided b ' cI 'fi «1 which justifies the use of the
linearized RG. For sufficiently large N +M, the ir-
relevant perturbations in (6.28) are numerically small, and
may be neglected. It proves most convenient to use this
relation at the minimum of U' + (z) at location

z =z~+M =z*+0(E) with E =c'i 'fi(z*), (6.29)

where z* is the location of the minimum of the fixed-
point potential U,*(z). Consequently, one has

v~ ——1/X), (6.24) U(%+M) Univ+I)( )min zx+M

(6.25)

with coefficients c,' '. The perturbation f; (z) has an
eigenexponent A, ; so that

A[U,*(z)+c 'f;(z))= U,*(z)+b 'c 'f;(z) . (6.26)

For initial potentials without power-law tails, the leading
irrelevant scaling exponent is A.p= —26, as mentioned.
Thus, A, ; &k2 for i & 2 and further iteration of the RG
leads to

U' + i(z)=U,*(z)+E (z)

for the divergence of the parallel correlation length
pi~i~

as
defined in (3.49). This exponent has been determined by
studying the RG trajectories in the vicinity of U, (z).

Consider an initial potential U' '(z) close to the critical
manifold. Then, after N iterations of the RG, the poten-
tial U' i is close to the fixed point U,*(z). Typical values
encountered for b =2 were N =20 for d =2 and N = 50 for
d=2.95. Then, one may expand the difference U' ' —U,*

in terms of the eigenperturbations f;(z), of the linearized
RG as

= U,*(z*)+b 'E +0 (E'), (6.30)

so that the ratio

(
UiA'+2) U(A'+

(i�

)/( U(iv+ ii U(ivj ) (6.31)

can be employed to estimate A, ~ via

A, I
'—=1nSiv/1nb =A, i+0(E) . (6.32)

In practice, it proves effective to change the chosen pa-
rameter in the initial potential Ui '(z) until k'i exhibits a
plateau value as a function of N for initial potentials locat-
ed on either side of the critical locus (which is a separatrix
for the flows). In this way, the scaling index A, i has been
determined for several values of d. The numerical results
are collected in Table I for b =2. The estimate
k~ ——0.49+0.01 found for d=2 is in good agreement with
the exact value X~ ———,'. It is remarkable that v~~ increases
with d: this is quite unexpected since fluctuations nor-
mally become less important as d increases leading to a
decrease of v~ towards its mean-field value. However, we
find that v~

——1/A. ~ exhibits highly singular behavior as
e=(3—d)~0. An excellent fit to the data in Table I for
2 & d & 2.975 is provided by the divergent form

with deviation vii=a '~'[
—,
' ln(B/e)+Ca]'~', (6.33)

1.0 —2.95~
2 90
2.80-i

0.5-

—0.5-

j
I I I i 1 I I

.95

0

with B=3 and C=3.65 (for rescaling factor b=2). Thus,
as d~3 —,we have "critical exponents for critical ex-
ponents" and, probably, logarithmic factors also. For
d=3, vi

——oo follows by continuity from (6.33). Again, it
should be possible to check the form (6.33) analytically.

D. Long-range perturbations

For d & 3, we can readily study the effect of long-
ranged perturbations at the fixed points. Thus, consider
an initial potential

—1.0—

I I I I I I I

—0.5 0 0.5 0.9

U'"(z) = U*(z)+E'"(z),

which has a power-law tail of the form

E' '(z)=C„~ '/z' as z~~,

(6.34)

(6.35)

FIG. 7. The rescaled and shifted critical fixed-point potentials
for dimensionalities approaching d=3, for which a definite limit-
ing form appears to exist.

with C„' ' small. Then, the recursion relation (4.32) and
the fixed-point relation (6.1) lead to U" '(z)
= U*(z)+Ei'i(z) with
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E("(z)= b 'exp[ U*(z)/b ']
—y —K (y, z)E(0) b g

v'ir
' (6.36)

correct to first order in E', where

IC*(y,z)—:'U*(—b ~z —y)+ —'U*(b ~z +y) . (6.37)

1 d=b 'exp — E' '(x)
~

dx
(6.38)

Using (6.35) and writing E ' (z) in the same form when
z~~ yields

C(1) b d —1 —yrC(0) (6.39)

Thus, power-law tails in the potential represent perturba-
tions with a scaling exponent

k„=d—1 gr =(r r)g— — (6.40)

[where r=2(d —1)/(3 —d) as before]. It is interesting to
note that the same result follows simply by rescaling the
potential E "'(z) according to (4.3) and (4.4) with z cc1.
Now, provided r & ~, so that the power-law tail decays
sufficiently rapidly, the initial potential (6.34) belongs to
the SFL regime in accord with (3.51); these perturbations
are then irrelevant. Thus, for r & ~, one has universal crit-
ical behavior with v~

——1/A, ~
and k

~
determined from the

fixed point U,*.
For r =~, the long-ranged perturbations become mar-

ginal. In this case, nonuniversal behavior is to be expect-
ed as has been shown explicitly for d =2, when
r =r(d =2)=2, by transfer-matrix methods. This be-
havior is presumably governed by a line of nontrivial fixed
points with U*(z) —1/z' for large z but we have not in-
vestigated this point for general d & 3.

Finally, let us consider perturbations of the form

E(0)( ) C(0)/ +C(o)/ (6.41)

with C, and C,' ' both small and positive: compare with
(2.4). Then, the attractive part is governed by the scaling
exponent (6.40) while the repulsive part likewise has scal-
ing index iL, =d —1 —gs =(r—s)g. If r & r&s, the at-
tractive part is relevant and the repulsive part is ir-
relevant: in that case, we obtain

v~ =1/X„, (6.42)

which is just the result (3.50) for the weak-fluctuation re-
gime. On the other hand, if r &s &w, both parts of the
potential are relevant and grow under the RG. This is the
regime governed by mean-field theory and all exponents
are readily found by minimization of the total potential.

Now, we have seen that the tails of the short-ranged
fixed-point potentials decay faster than exponentially and,
indeed, are probably Gaussian for all b as for b ~ 1.
Therefore, the asymptotic behavior of E "(z) for large z
follows from

E(')(z) =b"-' J' "y
e --~'E(')(b'z —y)

VII. DISCUSSION AND OUTLOOK

We have studied the unbinding (or depinning or delo-
calization) of interfaces subject only to thermal fluctua-
tions. A simple picture was presented in Sec. III in which
the direct interaction between the interfaces arising from
molecular forces is compared with steric interactions in-
duced by interfacial fluctuations; see Sec. III C. This pic-
ture clarifies the origin and nature of the various scaling
regimes for critical (and, also, for multicritical) unbinding
or wetting transitions. In addition, it gives quantitatively
correct results for the critical behavior in both the MF
and WFL regimes.

An approximate functional renormalization group,
which acts on the potentials, V(1), of interaction between
interfaces, was introduced in Sec. IV and analyzed for ar-
bitrary rescaling factor b & 1. The corresponding relations
are exact to first order in V. In the infinitesimal rescaling
limit, the functional RG leads to the simple but nonlinear
flow equation (4.14) for the potential V(l). The bounds
derived in Sec. V show that the nonlinearities (which al-
low for infinite or "hard wall" potentials) have relatively
weak effects. Nevertheless, the nonlineari ties lead, as
shown in Sec. VI, to the existence of two nontrivial fixed-
point potentials, Vo (1) (x: Uo (z) and V,*(l) ~ Uo (z), in the
SFL regime when d & d0 ——3. On approach to d = 3 these
fixed points do not coalesce with the standard trivial
Gaussian fixed point in the typical bifurcation scenario;
rather, they mutually annihilate leaving behind a line of
novel "drifting" fixed points; see Fig. 7. The fixed-point
potential Vo (1) describes the completely delocalized phase
of the interfaces. At this fixed point, all perturbations ly-
ing within the SFL regime which, by definition, thus satis-
fy (3.51), are irrelevant. The fixed point V,*(l), on the
other hand, governs the manifold of critical unbinding
transitions: at V,*(1), there is one relevant perturbation
within the SFL regime; see Sec. VI C.

The results obtained from the functional RG have the
following important consequences.

(i) The unusual bifurcation in d =do=3 explains why
standard perturbation schemes analogous to the e expan-
sion for bulk critical phenomena are not directly applic-
able.

(ii) The existence of the fixed point V,*(1) with associat-
ed critical manifold of codimension one, leads to universal
critical behavior within the SFL regime.

(iii) The study of short- and long-range perturbations at
Vo (1) leads to a unified description of all three scaling re-
gimes.

(iv) Reliable estimates for the values of the critical ex-
ponents v~, etc. , in the SFL regime for d &d0 can be ob-
tained by numerically iterating the recursion relations for
V (1).

As an alternative to the numerical techniques presented
in Sec. VI, it would be useful to develop a more analytical
approach. In particular, it seems possible to make some
progress, on the basis of the differential flow equation
(4.14). This equation is nontrivial because of the non-
linearities in combination with the rescaling term
gl(0V/Bl), which represents a singular perturbation near
d=3 (0=0).

A more analytical approach should, in particular, help
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the study of two topics which are difficult to handle by
direct numerical techniques; namely: (i) the critical be-
havior for d =d2(r) as governed by (3.47), i.e., on the
boundary between the WFL and the SFL regimes. Here,
nonuniversal behavior, presumably governed by a line of
nontrivial fixed points, is to be expected as has been found
explicitly ' when d =dq(r =2)=2. In addition, (ii) tri
critical behavior for do ——3 & d & 2, which should be
governed by a new nontrivial fixed point potential, say,
V,*(l), which is expected to exhibit a maximum at large 1

and a minimum at small l.
The renormalization-group approach introduced here

has also been applied to the unbinding of tensionless
membranes. ' In this case, the boundary dimension is
d„=5, which means that universal critical behavior,
governed by a nontrivial fixed point V,*, can be found in
realistic three-dimensional systems subject to long-range
power-law interactions. Finally, the simple picture for

distinguishing scaling regimes has also been used to study
the unbinding of interfaces in the presence of random po-
tentials which arise, e.g. , from quenched impurities. ' It
would be most interesting to generalize the functional RG
described here to such cases so as to study the analogous
strong fluctuation regimes.
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