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We study the pulsations observed in halogen-lamp zone melting of silicon films in terms of a sim-

ple heat-flow model, including the reflectivity difference between solid and liquid. A steady state of
the model exists in which the solid just ahead of the advancing melting front is superheated. This
state can have oscillatory or morphological instabilities, either of which could lead to the observed be-

havior of the melting front. The observed pulsations are due to the morphological instability, and so
are intrinsically a nonlinear effect. The calculation also describes the linear stability of a straight
solidification front for a material whose reflectivity differs in the solid and liquid phases.

I. INTRODUCTION

In a recent experiment on zone melting of a thin poly-
crystalline silicon film, Dutartre noted' that the melting
front advanced in a series of bursts, rather than moving
continuously at the same speed that the halogen lamp,
which was being used as a heat source, was scanned
across the film. He suggested that these melting pulsa-
tions indicate the unexpected presence of superheated
solid ahead of the advancing melting front, and that the
reflectivity difference between liquid and solid silicon
plays a role in their occurrence. In this paper, we report
calculations based on a simple model of the melting pro-
cess, which indicate that the pulsations are related to a
morphological instability of an advancing planar melting
front, which appears when the incident flux drops off
sufficiently slowly ahead of the melting front. Although
the calculation also predicts the possibility of an oscillato-
ry instability of the front, this instability does not occur
for the values of the experimental parameters relevant to
Dutartre's experiments. The reflectivity difference be-
tween liquid and solid silicon —the liquid being more
reflective than the solid —is necessary for the oscillatory
instability to occur, but not for the experimentally
relevant morphological instability; it does, however, have
a pronounced quantitative effect on the latter instability,
and may also be responsible for the fact that the instabili-
ty is obvious to the observer. The calculation also applies
to the problem of the stability of a planar solidification
front.

Unlike directional solidification, directional melting has
received rather little theoretical attention. The stability of
an advancing planar melting front has been considered by
Turland and Peckover in the case in which heat is being
fed into the sample from the boundaries, and by Lacey
and Shillor when a source, such as a moving heat lamp,
is present. In the latter paper it was shown that a mor-
phological instability such as that mentioned above should
occur whenever the heat flow from the solid to the melt-
ing front exceeds that from the liquid. However, since the
model used there did not include surface tension and so
lacked a mechanism for cutting off the short-wavelength

instability, the calculation showed that the problem is ill

posed under these conditions. In particular, it was not
possible to calculate the wave number of the marginal
mode. In addition, the model did not include a
reflectivity difference between phases, nor did it include
interface kinetics. All three of these effects are considered
in the present paper. The relatively more complicated
case of melting of a binary system has been studied by
Woodruff' and by Wollkind and Raissi using linear and
nonlinear stability analysis, respectively.

Earlier experiments by Bosch and Lemons and by
Hawkins and Biegelsen had shown that when a thin film
of silicon is illuminated by a stationary cw laser, the film
can melt partially, breaking up into coexisting liquid and
solid regions with sizes on the order of 10 pm. This pat-
terning is also attributed to the reflectivity difference be-
tween liquid and solid phases. Jackson and Kurtze stud-
ied this problem theoretically, and showed that the liquid
regions are supercooled and the solid superheated, and
that such a state can be thermally stable. Such a situation
occurs when the flux from the laser or heat lamp is not
sufficient to melt the material completely. In this regime,
Biegelsen et al. observed that when the laser was moved,
the solid regions grew by having filaments solidify from
an existing solid region into previously liquid regions.

Grigoropoulos et al. ' have studied the effect of a
reflectivity difference between the two phases on the direc-
tional solidification of silicon films. They derived an ex-
pression for the linear growth rates of sinusoidal perturba-
tions of a steadily advancing, straight-line solidification
front in terms of the temperature gradients on either side
of the front. For fixed solid and liquid reflectivities and
an exponential heat-lamp profile, they then obtained the
growth rate numerically as a function of the wave number
of the perturbation for various values of the (spatial) decay
constant of the heat-lamp profile. To date, however, the
effect of the reflectivity difference on directional melting
has not been studied theoretically.

II. THEORETICAL MODEL

We wish to model the directional melting of a thin film
of a pure substance, of thickness h, on an inert, insulating
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substrate, accomplished by scanning a heat lamp across
its surface at a constant speed V in the x direction. We
work in a frame of reference moving with the lamp, which
then provides an energy flux J(x) to the film. We also as-
sume that the lamp illuminates a broad area, so that J
does not depend on the coordinate y perpendicular to the
scanning direction. By this we actually mean that the
flux does not vary significantly over distances in the y
direction which are of the order of the wavelength of the
morphological instability which will appear in the next
section. In addition, we discount the possibility of a
significant variation in temperature through the thickness
of the film, since for a silicon film of thickness h —1 pm
with an incident flux J-1000 W/m, this temperature
difference is of order 0. 1 K. Under these assumptions,
the temperature T(x,y, t) of the film satisfies the two-
dimensional diffusion equation,

under way to incorporate the existence of a mushy zone
into the model used here.

We allow for nonequilibriurn interface kinetics by tak-
ing the temperature at the melting front to be a general
function of the rate of advance of the front and of its cur-
vature ~:

T (x ) = T"( V, lr) . (2.3)

In general, we expect that T" will be a very slowly in-

creasing function of V, and a decreasing function of ~ if
~ is defined to be positive when the solid bulges into the
liquid. In a more detailed model of a melting polycrystal-
line film, we would also allow a dependence of T on
crystal orientation. If the melting front is in equilibrium,
and the equilibrium melting temperature TM and solid-
liquid surface tension y are independent of crystal orien-
tation, then T is given by

T —T~ 1 K
Lp

(2.4)

+(1—R) — V 6(x —x ),J(x) L b b

ACp C
(2.1)

where D is the thermal diffusion constant of the film, C is
the specific heat and p the density of the material, L is the
latent heat of melting, and R is the reflectivity of the film.
For simplicity, we assume that D, C, and p are the same
for the liquid and solid phases, but allow the reflectivities
of the two phases to differ. We model heat loss, both by
conduction into the substrate (whose temperature is T )

and by radiation into the ambient, by the simple linear

damping term' " —(T —T )/~, where ~ is a phenome-
nological damping rate; this term turns out to have only a
minor effect on the stability. The importance of this heat
loss term is most naturally measured by the dirnensionless
parameter /3, defined by"

/3
' = 1+ (4D / V'7-), (2.2)

which varies from 0 to 1 as the damping rate ~ grows
from 0 to ac.

In modeling the latent-heat release by the 6-function
term in (2.1), we are taking the melting front to be a sin-

gle curve, given by x =x (y, t) and advancing at a local
normal velocity V"(y, t). This is not generally correct for
melting; since solids tend not to support superheating, the
region of a sample in which melting is taking place is usu-

ally a "mushy zone, "' with a complicated structure of
small coexisting areas of solid and liquid. The appearance
of the mushy zone is further complicated for polycrystal-
line materials by the existence of a distribution of melting

temperatures arising from the diff'erent surface energies
and strains in the various crystallites, as well as by the
fact that diff'erently oriented crystallites can have different
reflectivities, diffusion coefficients, etc. Such a zone is
clearly visible in Dutartre's experimental pictures. How-
ever, the idealization of a simple, well-defined front does
serve to illustrate the instability of the melting front, and,
as we discuss below, it is probably not as bad an approxi-
mation for semiconductors as it would be for other sub-
stances which do not have greater reflectivities in the
liquid phase than in the solid. Further work is currently

which is the classical Gibbs-Thomson condition. We will
ultimately find that the curvature dependence of the melt-
ing temperature is crucial for setting the transverse length
scale of morphological instabilities of the melting front,
but that the dependence on growth velocity has no quali-
tatively important effect.

It is easy to find a steady-state solution of Eq. (2.1) with
a straight melting front, x"=xss ——constant. The front
velocity V" in the laboratory frame of reference must be
equal to the scan speed V of the lamp, and the tempera-
ture of the film is given by

Tss(x) = T + TJ(x) VGss(x xss)0 L b

C
(2.5)

where Gss is the steady-state Careen's function for
diffusion in one dimension,

Gss(x)=(/3' /
~

V
~

)exp — (Vx +/3 '~
~

Vx
~

)
1

TJ(x)= Gss(x —x')[I —8 (x')] dx' .
oo J(x')

oo ACp
(2.7)

Note that the latent heat term in Tss produces a discon-
tinuity in temperature gradient of LV/CD at the melting
front.

Equations (2.5)—(2.7) leave the position xss of the melt-
ing front undetermined. We can find it graphically, how-
ever, from the boundary condition (2.3): matching the
value of Tss(xss) obtained from Eq. (2.5) with the value
T"( V, O) coming from this boundary condition gives us an
implicit equation which determines the front position x ss.

As pointed out by Lacey and Shillor, it is possible for
a superheated solid to exist in steady state: from the solu-
tion (2.5) for the temperature field, we see that this occurs
when dTJ/dx is greater than LV(1+/3' )/2CD, for-
then dTss!dx is positive on the solid side at the melting

(2.6)

and TJ is the contribution of the heat source to the tem-
perature field,
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front. This is rather surprising, especially when viewed in
the laboratory frame of reference. A positive gradient of
Tss near the front means that a piece of solid material
first becomes superheated before the melting front ap-
proaches it, then cools as heat diffuses from it toward the
front to provide latent heat for melting, and then finally
melts when it has cooled to the melting temperature (or
the nonequilibrium melting temperature appropriate for a
melting front advancing at the speed V). This effect is, of
course, a consequence of the assumption that there is a
single melting front. One would normally expect that if
the model predicts the existence of superheated solid, then
the region of hot solid ahead of the melting front will ac-
tually break up into a mushy zone, in which small solid
and liquid regions coexist at the melting temperature.
However, the fact that the reflectivity of a semiconductor
rises upon melting impedes the formation of such a re-
gion: under illumination by a stationary heat lamp, sil-
icon films form relatively large (10 pm) superheated solid
and supercooled liquid regions in stable coexistence, rath-
er than mushy zones. Thus superheating can occur more
easily than usual for such materials when the film is heat-
ed optically.

In fact the contribution TJ of the lamp to the tempera-
ture field can itself have a positive gradient at the melting
front. For example, if we consider the case of exponential
fiux, Jccexp( —x//), we find that in the limit /~&c (J
constant) the derivative dTJ/dx at the melting front is a
positive multiple of (Rl. —Rs), and so is positive for semi-
conductors. This is because the dominant contribution to
TJ(x) comes from the region within a few diffusion
lengths of x; a point just ahead of the melting front sees
more solid in this region than a point at the front does, so
the heat input to the former point is larger, tending to
make its temperature higher. This effect can be coun-
teracted by a sufficiently sharp decrease in J(x) with in-
creasing x near the front. This is made evident by the
fact that as the decay length l decreases, the slope de/dx
at the front also decreases, passing through zero at a
definite value of / which dePends on Rs, Rt, and P.
Thus, dTJ!dx provides a measure of the general trend of
J(x ) with x. In the stability analysis to follow, this
derivative arises naturally in the dimensionless parameter

about that solution. To this end we write

xss+e expb b i)V/ V

2D 2D
(3.1a)

T(x,y, t) = Tss(x)+ T(x)(x —xss) ~ (3.1b)

where q and cu are the dimensionless wave number and
linear growth rate of the perturbation. We insert this per-
turbation into the diffusion equation (2.1) and boundary
condition (2.3), linearize in e, and solve the resulting
equations to obtain a relation between ~ and q which
must be satisfied in order for the form (3.1) of the pertur-
bation to be consistent. This relation involves the param-
eters p, b„and G introduced above and two further di-
mensionless parameters characterizing the sensitivity of
the temperature of the front to its velocity and curvature,

and

a=(C
[

V
[
/LP' )t)T /t)V (3.2)

where the square root must be chosen to have a positive
real part.

The regions of stability and instability of the steady
state obtained from this equation are plotted in Fig. 1 for

STA BLE

d = —(C
~

V
~

/2DL/3 )t)T /t)

If the melting front is in equilibrium, then a will be zero
and do, in view of Eq. (2.4), will equal
C

~

V
~
ATM /2DL pP, which is approximately equal"

to V/(10 cm/s) for silicon. Thus we expect both a and
dp to be small and positive. In terms of these parameters,
the stability relation is

a~ + b, + 1 = ( 1 —G —ace —do/3q ) ( 1+/3q + 2/3' )
'

(3.4)

G = —(2DC!L
~

V
~

p' )dTJ/dx . (2.&)

The solid will be superheated for G & 1+/3 '~ . The
reflectivity difference between the liquid and solid phases
occurs in the dimensionless parameter

b =2D (RL Rs)J (xss )/pLh —V (2.9)

which will be positive for semiconductors, which are more
reflective when liquid than solid. For the case of uniform
illumination, we have G = —6; and so we will use G+6
instead of G itself to present our results; positive 6+6
generally means that the fiux J(x) is decreasing at the
steady-state melting front x —x ss.

III. STABILITY ANALYSIS

In order to investigate the stability of the steady state
(2.5), we consider the fate of an infinitesimal perturbation

-1$ 0 $1 2
(i+ a-g) xg

FIG. 1. Stability plot for the steady state given by Eq. (2.5).
The 6 axis to the left of b =(1+a—/3)//3 and the dashed curve,
which is given by Eqs. (3.5) and (3.6), form the stability bound-
ary for a one-dimensional system, with the instability at the
dashed curve being oscillatory. The axis to the left of
6= —1+2do and the solid curve, which is given by Eq. (3.8),
form the stability boundary for a two-dimensional system, with a
morphological instability setting in at the solid curve.
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A=(2aP +P aP —P)/P—,

3 + G =P (P —1)(2aP + 1+a)/P,
(3.5)

(3.6)

with P) 1. On this curve, the real part of co vanishes and
the imaginary part is given by

Im(co) =P(P —1)' /P . (3.7)

Note that this oscillatory instability occurs only for posi-
tive 6, i.e. , only when the liquid is more rejective than
the solid.

For nonzero wave number q, the picture changes sorne-
what. Oscillatory instabilities with nonzero q occur only
within the region in which the q =0 oscillatory mode is
already unstable. However, morphological instabilities
with real growth rates do occur at values of 6 and G for
which the one-dimensional modes are stable. It is easy to
show from (3.4) that these instabilities occur below and to
the right of the curve

6+G =1+6+d, —=,
' [2do(1+ 5)']' ', (3 ~ 8)

for 5) —1+2do. Along this curve, a mode whose wave
number is given by

Pq =[(1+6)/2do]' ' —1 (3.9)

is marginally unstable. In analyzing the case 6=0
without surface tension or heat loss, Lacey and Shillor
found that the steady state would be unstable for G & 1,
meaning that heat transport to the melting front from the
solid is faster than from the liquid. Here their result is
modified by surface tension: for 6=0, the instability sets

fixed values of P, a, and do as functions of b„which mea-
sures the reAectivity difference between liquid and solid,
and 6+G, which measures the rate at which the illurnina-
tion falls off as one moves into the solid from the melting
front. By setting q =0, we obtain the stability relation for
a one-dimensional system. The resulting equation has a
solution ~=0 for 6+G =0. As stated above, this value
of 6+G occurs for constant illumination, in which case
this mode is a Goldstone mode, coming about because
there is no variation in J(x) to define an origin. For
b. +G &0, there is a solution of (3.4) having positive co, so
that the steady state is unstable if the illumination in-
creases ahead of the melting front. This is to be expected,
since under these conditions, if the melting front should
move slightly ahead of its steady-state position, then even
more energy becomes available to provide latent heat to
melt the material. The front would then presumably rush
ahead, pass the point of maximum light intensity, and
finally reach another steady state on the forward side of
the illuminated region with the illumination falling off
ahead of the front, for which the relevant value of 6+G
would be positive.

By taking the square root in Eq. (3.4) to be the basic
variable, one can show that there are solutions of (3.4)
with q =0 having a complex growth rate co for appropri-
ate values of G and A. The growth rate co has positive
real part, indicating an oscillatory instability, for points
below and to the right of the curve given parametrically
by

in when G is equal to 1 —3(do/4)' +do, which can be
significantly lower than 1 even if do is quite small. The
curves marking the onset of morphological instability and
of q =0 oscillatory instability do cross provided a is less
than 27Pdo, but only at a value of 6, which is of the or-
der of do . Thus, for reasonable values of the parame-
ters, morphological instabilities with real growth rates al-
ways exist whenever an oscillatory instability does.

IV. DISCUSSION

Clearly, an oscillatory instability of the steady state
could produce the pulsating advance of the melting front
observed by Dutartre. On the other hand, it is also possi-
ble for a morphological instability to lead to melting pul-
sations. To see this, suppose the melting front is prepared
as a straight line. If the steady state is morphologically
unstable, then protruberances of liquid form and start to
grow rapidly into the solid region. Their growth is sus-
tained mainly by heat transport from the superheated
solid, and as they grow ahead of the straight-line melting
front they encounter solid at higher and higher ternpera-
tures. This is as far as the linear stability analysis can
probe. However, as the protruberances grow, they absorb
heat from the solid and also eventually reach regions in
which the solid is becoming cooler. As a result, they
must eventually slow down, leaving a solid region next to
them which is cooler than it would be in steady state.
This surviving solid then waits for the advancing heat
source to raise its temperature again so that it can melt.

Although it is tempting to associate the oscillatory in-
stability with the melting pulsations observed by Dutartre,
it is in fact the morphological instability which is mani-
festing itself there. The experimental pictures' appear to
show a wavy melting front with a transverse wavelength
of 300—400 pm. Using the data of Ref. 10 for the proper-
ties of silicon, Dutartre's values' h =0.5 pm and V=0.01
cm/s, and the fact' that the 150 W halogen lamp is
focussed onto an ellipse of dimensions 1&(1.5 cm-' leads
to a value of 6 in the range 10 —10 . From (3.8) we then
find that the morphological instability occurs for
G-0.80—0.95, corresponding to dTJ/dx ) —20 K/cm (a
range which includes 0!). Finally, from (3.9) we find that
the morphological instability first occurs with a wave-
length of about 400—800 pm. On the other hand, the os-
cillatory instability does not occur until G is reduced to
about —15, and then has a period of about 150 s, much
longer than the observed times of order 1 s. Thus it ap-
pears that, although oscillations do occur within the linear
stability analysis of this process, the observed periodic
melting bursts are actually an intrinsically nonlinear re-
sult of an instability which initially is not oscillatory.

The model used in this paper to study the directional
melting of materials which undergo a reAectivity change
on melting could equally well be used to describe the
directional solidification of such materials. In fact, it is
probably a better model for solidification than for melting,
since it is easier to produce supercooled liquids than su-
perheated solids, so that the idealization of a single, con-
nected transition front is more realistic. To analyze
solidification, we would simply make the scanning veloci-
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ty V negative in the diffusion equation (2.1). The calcula-
tion would continue as in Secs. II and III, with the same
dimensionless parameters b„G, 13, a, and do arising from
the stability analysis. The definitions of these quantities
appearing in the earlier sections were given in forms valid
for V positive or negative, in order for the results to be
applicable both to melting and solidification. We then
find that the stability relation (3A) holds for both prob-
lems, and so Fig. 1 doubles as a stability plot for
solidification of these materials. Our results then general-
ize those of Grigoropoulos et al. ,

' which were obtained
only for a specific (exponential) form of the lamp flux
J(x). The major difference between the stability proper-

ties of the two processes is that we would expect the pa-
rameter G, given by (2.8), to be considerably smaller for
solidification than for melting; this is because the lamp's
contribution to the temperature field does not fall off as
rapidly on the trailing side of the lamp, where
solidification is taking place, as it does on the leading side,
where melting occurs.
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