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Ground state of solid hydrogen at high pressures
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Quantum Monte Carlo calculations of the properties of bulk hydrogen at zero temperature have
been performed. The only approximations involved in these calculations are the restriction to finite
systems (64 to 432 atoms), the use of the fixed-node approximation to treat Fermi statistics, and the
finite length of the Monte Carlo runs. The Born-Oppenheimer approximation was avoided by solving
the quantum many-body problem simultaneously both for the electron and proton degrees of free-
dom. Using different trial functions and several different crystal structures the transition between the
explored molecular and atomic phases was determined to occur at 3.0+0.4 Mbar. The transition to a
rotationally ordered molecular phase occurred at about 1.0 Mbar. A lower bound to the static
dielectric constant, given in terms of the static structure factor, was found to lie close to experimental
values and became large for pressures greater than 500 kbar.

I. INTRODUCTION

The properties of bulk hydrogen have yet to be calculat-
ed from first principles, even though it is the simplest of
the elements. There is a long tradition of calculations of
the structure and properties of hydrogen dating back at
least to the pioneering work of Wigner and Huntington'
in 1935. They predicted that hydrogen will undergo a
molecular to atomic transition as the density is increased
and estimated that this transition occurs above a pressure
of 0.25 Mbar. While the sophistication and accuracy of
the calculations of the atomic phase have increased over
the years, the knowledge of the equation of state of the
molecular phase still comes primarily from experiment.
Recent diamond-an vil measurements ' have increased
this knowledge to pressures close to 1 Mbar, and there are
good prospects for experiments to still higher pressures.
In addition, shock-wave experiments have determined
some properties of hydrogen at Mbar pressures, but at
much higher temperatures (10 K). To date, there has
been no reproducible observation of the transition of hy-
drogen into the atomic phase. One of the goals of this pa-
per is to calculate from first principles this transition den-
sity and pressure.

For pressure of less than 100 kbar, the molecules of hy-
drogen in the molecular crystal are relatively undistorted
from their state in the vacuum. Consequently, up to
these pressures the angular momentum of a single mole-
cule is almost a good quantum number and the molecules
are almost freely rotating at zero temperature so that the
rotation of nearby molecules are mutually independent.
However, at higher pressures it becomes energetically
favorable for the molecular axes to align relative to each
other. This transition has been observed to occur in deu-
terium at a pressure of 280 kbar but it has not yet been
observed in hydrogen. Because this transition involves a
small energy change, it is possible to calculate the transi-
tion density only crudely.

Other possible transitions in hydrogen at zero tempera-
ture have been proposed. It is possible, through a mecha-
nism known as band crossing, for molecular hydrogen to

become metallic before the transition to an atomic metal.
Such a transition occurs in iodine. Calculations based on
density-functional theory have predicted that such band
crossing will occur in hydrogen at 9-fold compression
(r, =1.48). In these calculations, the distortions of the
molecules due to pressure have not been included, so their
reliability is unclear. Although the present method avoids
these approximations, the investigation of this particular
transition is postponed to a future publication.

Another transition that has been proposed is that of
melting of the atomic solid to an atomic liquid. Such a
transition is inevitable at enormously high pressures, but
it has been argued that it could occur at relatively low
pressures due to electron screening of the proton-proton
interaction. In support of this mechanism, band-structure
calculations of metallic hydrogen at relatively low densi-
ties (which, however, neglect the zero-point motion of the
protons) find a highly distorted, low-symmetry lattice as
giving the minimum-energy structure. However, these
distorted lattices have higher energy when the proton
zero-point energy is added.

To resolve these questions an accurate computational
method is required, that can determine the properties and
energy of hydrogen in these various phases. The quantum
Monte Carlo method is such a promising technique and
has been successfully employed to determine the proper-
ties of such diverse systems as liquid and solid helium, '

small chemical molecules, " and the electron gas, ' includ-
ing the melting of the latter. The simulation by Monte
Carlo calculations of hydrogen is a natural extension of
these studies. In fact, hydrogen is simulated simply as a
two-component system of charged particles with unequal
masses. Such a simulation in the experimentally accessi-
ble regime allows an unambiguous comparison of experi-
ment with theory, perhaps for the first time on a many-
body system. Previous comparisons of such simulation
results with experiments have involved empirically deter-
mined interatomic potentials or other simplified Hamil-
tonians.

One advantage of the Monte Carlo method is that the
zero-point motion of the protons can be treated exactly in
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both the molecular and atomic phases. Another is that
the accuracy of the results can be determined by statistical
means within the calculation itself. To make the error
bars small requires a great deal of computer time. How-
ever, the human time needed to set up the calculation is
probably less than for the other types of methods; particu-
larly since the same program works for all phases and, in
principle, for any combination of elements. In practice,
the method as so far developed is only practical for low-Z
elements. These simulations became only practical when
computers of the speed of the Cray Research Cray-I com-
puter were available. The amount of computer time need-
ed (a few hours of central-processing unit time for each
density) will not be as large in the near future, particular-
ly as cheap and fast parallel processors become
widespread. It will be possible to do much more refined
calculations than presented here as computers and the
methodology improve.

The main difFiculties and limitations of the quantum
Monte Carlo method are its restriction to a small number
of atoms (less than a few hundred), the difficulty of deter-
mining the most stable crystal structure at a fixed density,
the slow motion of the protons relative to the electrons,
the upper-bound aspect of the fixed-node approximation,
and the transient nature of the release-node method for
fermions.

In Sec. II the Monte Carlo methods used in this paper
will be briefly discussed. Section III presents the crucial
choice of the trial function used in the various phases of
hydrogen. Section IV contains the results of the simula-
tions in the molecular phase, Sec. V in the metallic phase,
Sec. VI introduces the conductivity, and Sec. VII presents
a summary.

Throughout this paper energies are in units of
Rydbergs/hydrogen atom and densities are in r, units,
where 4~a /3=v and r, =a/ao, where ao is the Bohr ra-
dius and v is the volume of an hydrogen atom, that is
r, =1.338v, where v is in units of cm /mole Hq.

II. NUMERICAL METHOD

Since the quantum Monte Carlo methods used here
have been already discussed in detail elsewhere, we will
simply define the three types of methods used on this
problem, namely the following.

(i) Variational Monte Carlo (VMC): Let %(R) be a
known trial function, where A refers to the full 3X set of
particle coordinates and N is the total number of particles.
Then VMC uses the Metropolis algorithm' ' to sample

and thus any expectation value with respect to this
trial function can be computed, the most important of
which is the variational energy of the trial function. The
VMC method is used to select a good trial function, by
minimizing the variational energy with respect to parame-
ters in the trial function, and to initialize the ensemble for
methods (ii) and (iii). VMC has the advantage in that it is
considerably faster than the other two methods, a factor
of 10 is typical, and there are no difficulties with fermions.
However, it only yields an upper bound, not the true
ground-state energy.

(ii) Fixed node diffusion Monte C-arlo (DMC). The

—(0 'H'II Er—)f,

where E~ is the trial energy. The DMC algorithm"' in-
terprets f(R, t)=+(R)P(R, t) as a probability distribution
in configuration space. The function P(R, t) tends at large
"time" t to the ground-state wave function. An initial en-
semble of several hundred points with densityf (R,O)='P(R), is evolved forward in "time. '* The three
terms on the right-hand side then correspond to diffusion
(with a diffusion constant equal to A' /2m~), a drift de-
rived from the trial function, and branching. For fer-
mions, to interpret f as a probability, one also assumes
that the nodes of the ground-state wave function are iden-
tical to the nodes of the trial function, so that their prod-
uct, f, is always positive. This converts the fermion sys-
tem to a distinguishable particle system. With this restric-
tion, it can be shown' that the calculated energy is an
upper bound to the exact ground-state energy.

In DMC, an additional approximation is made in
"solving" Eq. (1). It is assumed that the drift and the lo-
cal energy are constant in the region about the current po-
sition. This is only valid if the time step is small enough,
so in practice, simulations for several different time steps
need to be performed to test the accuracy of the simula-
tions. More details of this algorithm are given in Ref. 11.

After convergence in time is reached, that is t is large
enough so that the steady-state solution of Eq. (1) is ob-
tained, the probability distribution of points in the ensem-
ble is P(R)iII(R). This is called the mixed distribution
since it contains information about both the exact ground
state, P(R) (with the fixed-node restriction) and the trial
function. The ground-state energy is the average value of
H%/+, averaged over this mixed distribution, and has the
zero variance property of quantum Monte Carlo; since as
V(R ) approaches an exact eigenfunction, the variance of
the MC estimate of the energy approaches zero. Thus,
energies in QMC can be calculated more accurately than
for classical systems since the accuracy depends only on
the accuracy of the trial function.

If the radial distribution function, g (r), or any other
average over the wave function other than the total energy
is calculated using the mixed distribution, the result is
somewhere between the variational g(r) and the exact
g(r). In fact, if the trial function is sufficiently accurate
the mixed pair correlation function should be halfway in
between. Linear extrapolation' is the simplest way of
calculating averaged quantities other than the energy, that
is:

g (r) =2g;.(r) —g„,(«) . (2)

(iii) Green's function Monte Ca-rlo (GFMC). This com-
bined with the release-node method for treating Fermi
statistics is an exact procedure; that is it completely re-
moves the two approximations discussed above. ' '" The
method is practically only convergent, however, for sys-

Schrodinger equation in imaginary time, and transformed
by the trial function is

N g2
V&(V,f fV—', In+ )

j= 1 J
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tems where the Fermi energy is sufficiently close to the
Bose energy and the trial function has reasonably accurate
nodes. Both of these assumptions are satisfied for hydro-
gen up to quite high densities (a few Mbarj as checked
here by Monte Carlo calculations. Because the GFMC
method is the slowest of the three methods, it was not
possible to use it for all of the calculations, but only to
benchmark the DMC runs.

There are additional complications to be considered in
these calculations which will be mentioned here and dis-
cussed later. First, the results for finite systems must be
extrapolated to the bulk limit. To minimize the finite-size
effects, the calculations are always performed using
periodic boundary conditions. Because the Coulomb in-
teraction as well as the many particle correlations in the
trial function are long ranged, the Ewald image potential
summation' must be used. Nevertheless, whenever the
electrons are delocalized, there still remains an apprecia-
ble dependence of the properties on the size of the system,
which can be traced to the discontinuity in the momen-
tum distribution at the Fermi surface. This dependence is
removed by an extrapolation based on Fermi-liquid
theory.

Secondly, because the proton is 1836 times more rnas-
sive than the electron, its diffusion with the DMC or
GFMC algorithm (but not VMC) is that much slower,
and its root-mean-square displacement per step is hence
42 times smaller than that of the electron. While the elec-
tronic distribution converges rapidly to its ground state, it
is easy to find situations where the protonic distribution
does not equilibrate in a reasonable amount of computer
time. In principle, the simulations for the electron-proton
system should be thousands of times longer than for a
one-component system, and that is not practical. It is
only possible with present computers to make one order
of magnitude longer runs than that for the electrons
alone. Several things can be done to improve the rate of
convergence and establish a test for it, short of finding a
general procedure to remove the disparate time scale
problem. The initial ensemble should be thoroughly
equilibrated by VMC so that for accurate trial functions
the proton distribution will, in fact, be close to its final
equilibrium value. In crystal phases the motion of the
protons is severely limited in any case, so that the relevant
time for equilibration is much shorter, namely the inverse
of the Debye temperature. Some care has been taken to
make the proton trial function accurate. For example, at
low density an accurate approximation to the exact
proton-proton molecular wave function has been used.
To test for convergence, very long runs have been made
on small systems of eight atoms.

Convergence to the state of lowest energy is also inhib-
ited by the initial conditions, that is, for example, by the
assumed crystal structure and by the nature of the trial
function. Both of these conspire to keep the points of the
random walk in the region of phase space appropriate to
the initially selected phase. Although a constant pressure
ensemble instead of the constant volume ensemble used
here could, in principle, partially overcome this difficulty,
it is not yet clear whether that method can in reasonable
computer time make the transition to the most favorable

phase. For the constant volume ensemble each crystal
structure must be tested separately. The ground state at a
given density is then the one with the lowest energy. By
this procedure it is certainly possible that a relevant
phase, particularly of crystalline molecular hydrogen at
high pressure, has been missed. Furthermore, phase tran-
sitions often involve very small energy differences. Since
even with long runs the error bars on our calculations are
roughly 0.001 Ry/atom, phase transitions driven by ener-
gies less than this are not capable of being resolved by this
direct quantum Monte Carlo method. The development
of differential Monte Carlo could circumvent this
difficulty.

III. THE TRIAL FUNCTION

A trial function is selected to be as good an approxima-
tion as possible to the ground state, however, the function
must be quick to evaluate on the computer as well, since
at each step of the random walk the trial function and its
first and second derivatives must be evaluated. Since the
protons are not in a periodic array because of their zero-
point motion, conventional band functions are not ap-
propriate. Pair-product or Slater-Jastrow trial functions
are employed because they have been found to be quite
accurate in studies of the electron gas, ' helium', and
chemical molecules. "

%(R)= exp g u;, (r;, ) QD
l (J o

(3)

where u;~(r) is the "pseudopotential" acting between parti-
cles i and j a distance r apart and D is the Slater deter-
minant of a group of particles o.. Therefore,

D =det(Pg(r, ))

and bq(r) is the kth orbital function. In principle, there
should be four determinants in Eq. (3); two for electrons
and two for protons, each with up or down spin. Howev-
er, for the phase of hydrogen considered in this paper, the
protons are always localized and hence distinguishable to
a high degree of accuracy, so their antisymmetric ex-
change can be ignored.

The trial function of Eq. (3) contains three pseudopo-
tentials, that acting between two electrons, between two
protons, and between an electron and a proton. In addi-
tion, there are orbitals for both the electrons and for the
protons. It is impractical to parametrize these functions
and then find by brute force the optimal such trial func-
tion, as the dimensionality of the search for all the param-
eters of the pseudopotentials and orbitals is too high. For
simpler problems, such as the electron gas and liquid heli-
um, the optimal pseudopotential has been determined
within the hypernetted chain approximation. ' However,
the simple integral equations are not sufficiently accurate
for hydrogen and they would be much more complicated
to solve numerically for a mixture of electrons and pro-
tons in a crystalline phase.

For the electron gas it was found' that pseudopoten-
tials derived from the random-phase approximation
(RPA) gave quite reasonable trial functions, and these
RPA pseudopotentials are also found to be acceptable for
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hydrogen, as will be demonstrated. The RPA pseudopo-
tentials are derived from an expression for the variation-
al energy in momentum space in which all terms involv-
ing three wave vectors are dropped (the RPA approxima-
tion). The structure function is related to the Hartree-
Fock structure function by perturbation theory and then
the energy is minimized with respect to the pseudopoten-
tials. These RPA functions have the exact limiting behav-
ior both when any two particles approach each other, the
cusp condition, and when they are far apart. The RPA
functions contain no adjustable parameters. A derivation
will be published elsewhere.

The electron and proton orbitals that go into the Slater
determinants define the phase of the system. Electron or-
bitals in crystals can either be described as delocalized
band functions or by Wannier functions and these two
descriptions are equivalent. However, there may be
significant numerical advantages to one description or the
other. In the atomic crystal the electrons are delocalized
with a nearly spherical Fermi surface. Under these cir-
cumstances the s-wave scattering of the electrons by the
protons can be accounted for by a pseudopotential so that
the orbitals will be very close to that of the homogeneous
electron gas, namely plane waves. The equivalent Wan-
nier functions are less appropriate since these functions
decay slowly in real space, as r, and are difficult to
construct for finite systems because of boundary effects.
Qn the other hand, in the molecular phase, Wannier func-
tions are a much more compact representation of the
wave function but a plane-wave expansion of a molecular
wave function would involve many plane waves. It has
been shown in one-electron theory that Wannier func-
tions for systems with band gaps are exponentially local-
ized. However, an even simpler compact form has been
found" to describe the electronic hydrogen wave function
well, namely a single Ciaussian centered at the middle of
the bond. Gaussians were hence used for the molecular
phase.

be well approximated by

P(r) = exp I
—[b ~ l(bq + r)] ' b—4r I /rb3

(6)

u(r)=[b(l(b2+r)] '
(7a)

with the values of the parameters b ~, bq, b3, and b4 equal,
respectively, to 8.046, 3.0, 4.456, and 14.56 and the units
of r and the b's are in bohr radii. The first term in the ex-
ponent corresponds to the repulsion of the protons and
the second to the covalent binding. This simple function
gives about 95% of the proton correlation energy in an
isolated molecule. The variational energy of an isolated
molecule, using Eq. (6) for the proton orbital and Eq. (5)
for the electron orbital, is —1. 157 a.u. ; the exact value is—1. 164 a.u.

When a molecule is incorporated into a solid, some
changes have to be made. First of all, a repulsion acts be-
tween protons of different molecules. The first term in
the exponent of Eq. (6) is used for that. Furthermore,
since two protons are bound, via Eq. (5), onto one lattice
site, a term is added to the pseudopotential to cancel out
this extra proton-proton binding. This is achieved by
writing the wave function for the two protons in a mole-
cule in relative and center-of-mass coordinates. The pseu-
dopotential depends only on the relative coordinates,
while fixing of the molecule to the lattice site only de-
pends on center of mass coordinates. Finally, a term is
added to the trial function which orients the molecule in a
crystal direction. The simplest function with the ap-
propriate symmetry is cos (0), where 0 is the angle be-
tween the molecular axis and a crystal direction. For the
fcc lattice these crystal axes are body diagonals
(+1,+1,+1). There are four possible choices for these
directions and when each of those possibilities is assigned
to one of the four lattice sites in the cubic unit cell one ar-
rives at the Pa3 structure. The pseudopotential between
any two protons is

Pk(r) = exp[ —C, (r —Zg ) ], (5)
while two protons on the same molecule have the addi-
tional term:

where the lattice sites, Z~, were chosen appropriate to
several crystal structures. These orbitals are not orthogo-
nal, orthogonality is not essential with the Monte Carlo
approach. The variational parameter C, was chosen by
minimizing the energy in a variational calculation.

For the proton orbitals, Gaussians were also used with
one proton per lattice site in the atomic phase and two
protons per lattice site in the molecular phase. The pro-
tons were treated as distinguishable particles, so the as-
signment to lattice sites was fixed at the beginning of the
calculation. The electrons are of course free to exchange
between different molecules. As for the pseudopotential
between protons it was found in the molecular phase that
the RPA approximation between protons within the same
molecule did not work very well. The correlation energy
represented by the proton-proton pseudopotential is quite
small (about 0.01 Ry) but it is highly desirable to start
with a quite accurate proton trial function so that the ran-
dom walk will converge quickly. A better approximation
is the Born-Oppenheimer wave function for an isolated
hydrogen molecule, the proton-proton part of which can

u (r) = ln(r)+b4r —C~r +G cos (0) . (7b)

If the logarithm of the trial function (the pseudopotential)
is expanded in a linear basis, 1n(%) =g&upfg(R), where
up are unknown parameters and f~(R) are known func-
tions, then at the maximum of 0 with respect to variations
in up the following equation holds:

This condition requires that for the radial part of the
pseudopotential between pairs i and j to be optimal, the
radial distribution functions, as computed by VMC and

The various variational parameters have been deter-
mined using two different criterion: namely, minimum
variational energy and maximum overlap with the exact
ground state as generated with DMC. Since this second
criterion is less well known it will be briefly described.
The overlap between P and + is defined as

I /2
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TABLE I. Trial function parameters as used in Eqs. 5—7 in units of the Wigner-Seitz radius a in both
the atomic and molecular phase. The other parameter, b3, was always equal to 4.456. The G parameter
which controls orientation with the crystal axis was zero for the isotropic fcc phase, but has the tabulated
values in the oriented phase.

Density
rs

1.13
1.31
1.45
1.61
1.77
2.00
2.20
3.0

Atomic
Cp

5.0
5.0
5.0
5.5
4.0

0.48
0.55
0.50
0.60
0.85
0.75
1.00

Cp

51
40
42
25
13
14
15

bl

6.14
5.55
5.00
4.55
4.02
3.66
2.68

Molecular
b2

2.25
2.06
1.86
1.69
1 ~ 5

1 ~ 36
1.00

19.0
10.0
23.5
25.8
29.1

32.0
43.7

—0.33
—0.40
—0.38

DMC, be equal at all r. Similarly, if the squared displace-
ment of particles from their lattice sites is equal in the
VMC and DMC calculation then the C parameters have
been correctly chosen. Finally, if the expectation value of
cos (8) is identical in DMC and VMC, then the orienta-
tional parameter G is correctly chosen. Maximum over-

lap is in some respects an easier criterion to apply than
that of minimum variational energy since one knows after
doing a VMC and DMC run, which specific parameters
need adjusting and in which direction. In the case of
orientated molecular hydrogen one can use this criterion
to help determine what oriented phase is stable. For ex-
ample, if the only solution to the equation
( cos (8) )„„=( cos (8)),„ is G =0, it seems unlikely
that the oriented phase, in fact, exists at that density. The
disadvantage of the maximum overlap method is that it
requires a well converged DMC run for each iteration of
the variational parameters. The best parameters obtained

for the various phases of hydrogen are given in Table I.
It should be emphasized that converged DMC results are
independent of the value of these parameters, it is only the
error bar's for a given amount of computer time which de-
pends on the trial function.

IV. MOLECULAR PHASE

Using the trial wave function described in Sec. III,
VMC, DMC, and GFMC simulations have been per-
formed for four different crystal structures in the molecu-
lar phase at densities ranging from 20 cc/mol to 2
cc/mol. The results are summarized in Table II.

A. Crystal structure

The four different crystal structures examined were
among those from the high-pressure phases of nitrogen.

(i) fcc isotropic phase. The trial function parameter G

TABLE II. Results of Monte Carlo calculation in the molecular phase. I, 0, B, and G refer to the
four crystal structures studied [see Sec. IV under (i), (ii), (iii), and (iv), respectively] and the number
thereafter to the number of atoms. T is the length of the run (time step times the total number of steps).
The energies are in Ry/atom with number in parenthesis being the error in the last digit. The bond
length is in bohrs.

rs

3.0
2.2
2.0
1.77
1.61-

1.61
1.61
1.61
1.61
1.61
1.45
1.45
1.45
1.45
1.31
1.31
1.31
1.31
1.31

Method

GFMC
DMC
DMC
DMC

GFMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC
DMC

Crystal

I64
I64
I64
I64
I64
I216
I64
B54
B128
B250
I64
064
0216
G108
I64
064
0216
G108
G256

T (X10-')

8.4
2.7
6.4
3.5
4.3

1.8
1.0

3.4
3.8

2.7
1.3
1.3

0.7

Evar

1.125(1)
1.114(1)
1.117(1)
1.080(1)
1.056(1)
1.058(1)
1.058(1)
1.071(1)
1.034(1)
1.037(1)
1.002(2)
1.005(,1)
1.013(1)
0.996(1)
0.890(2)
0.935(1)
0.942(1)
0.942(2)
0.942(1)

ÃEmix

1.162(1)
1.160(1)
1.156(1)
1.134(1)
1.085(1)

1.089(1)
1.099(3)

1.032(1)
1.035(1)

1.028(1)
0.939(1)
0.960(2)

0.962(1)

P (Mbar)

0.004
0.10
0.25
0.66

1.4

2.3
2.3

2.2
4.9
4.9

5.0

Bond
length

1.42

1.40

1.26

1.24
1.23

1.47
1.59

1.57

1.13

1.16
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P (MBar)

2 1 0.5
I

0.2 0.1

I

DE
(Ry/
atom)

0.006—
0.004—
0.002—

-0.002—
-0.004—

1.2 1.4 1.6
I

1.8
I

2.0
I

2.2

FIG. 1. The difference in energy between the isotropic fcc
phase and the oriented Pa3 structure as a function of density.
The pressure scale is indicated at the top.

is set to zero which results in the molecule being almost
freely rotating about an fcc site. This is the experimental-
ly observed low-pressure phase for hydrogen.

(ii) fcc-oriented phase. The G parameter is nonzero and
this means the molecules are oriented relative to a crystal
axis in the way described in the preceding section. This is
the Pa 3 (Tq ) or a-nitrogen structure.

(iii) bccp phase. This is a cubic structure with the mol-
ecules aligned along the [111] direction. This arrange-
ment has an energy 0.024 Ry/atom higher than the fcc-
oriented structure at r, = l.61.

(iv) y -nitrogen phase. This structure is constructed by
putting each molecule on a bcc lattice site and orienting
the bond directions of the molecules in one of the simple-
cubic sublattices in the [110] direction and the other mol-
ecules in the [110] direction. It has an energy 0.015
Ry/atom higher than the fcc structure at r, =1.45 and
only 0.003 Ry/atom higher at r, =1.3-1 but at the latter
density the atomic phase has an even lower energy than
any of the molecular structures examined.

The results indicate that the oriented Pa3 phase is pre-
ferred at r, =1.45, although the energy difference between
that and the isotropic phase is small. At higher density
the oriented phase has lowest energy. This orientational
ordering transition can be placed near 1 Mbar as shown
in Fig. 1. It should be noted that the finite time step er-
ror, the fixed-node, and the size-dependent effects will
tend to cancel in determining the energy difference be-
tween these phases so that these limitations should have
very little systematic effects. Among the large set of other
possible crystal structures only two other phases were ex-
amined, the bccp and the y-nitrogen phase both have
definitely higher energies until the atomic phase becomes
more stable at r, = 1.39.

B. Approximations

The size effects have been studied only at the variation-
al level because of constraints on computer time but it is
expected that these pair-product trial functions will have
roughly the same size dependence as would the exact
wave functions. At the density of r, =1.61 there were no
observable size effects in the ground-state fcc structure but
larger ones in the bccp phase. Both at 2.3 Mbar
(r, = 1.45) and at 4.9 Mbars (r, = 1.31) the difference be-
tween the 64 and 216 atom systems was 0.008 Ry. The
effects in the metallic phase are much greater. In an insu-
lating phase one expects size effects to be smaller because
the electrons are localized and at low pressure the mole-
cules interact with each other essentially by weak dipolar
forces.

The integration time step used in these calculations
varied from 0.01 to 0.02 Ry '. With these time steps the
acceptance rate for moves was greater than 99%%uo. Based
on calculations for an isolated hydrogen molecule" the
finite time-step correction for the ground-state energy will
be on the order of 0.001 Ry/atom. To verify this estimate
GFMC calculations have been performed at two densities.
At the equilibrium density of 20.2 cc/mol (r, =3), near
zero pressure, an energy of —1.162+0.001 Ry/atom was
obtained compared with the experimental energy of
—1.1645 Ry/atom. At the higher density r, = 1.61
(v =3.12 cc/mol) GFMC gives an energy of
—1.085+0.001 Ry/atom compared to DMC of
—1.089+0.001 Ry/atom. It is not clear whether this
large difference is to be ascribed to time-step error, un-
derestimation of the error bars, statistical fluctuation or
the way the fixed-node approximation is treated in
CjrFMC.

The error of the variational wave function ranges from
0.02 to 0.04 Ry and seems to be roughly independent of
density. The optimization of the parameters was not car-
ried out uniformly for all runs, so some variation in the
quality of the trial function can be expected. The lengths
of the computer runs are given in the table in terms of T
defined as the time step times the total number of moves.
The error of the ground-state energy agrees roughly
(within a factor of 2) with the estimate
[2(E„, E;„)/T]' . —Improvements in the wave func-
tion will reduce the statistical error.

C. Ground-state energy

The ground-state energies given in Table II for the
molecular phases considered and values of r, between 2.0
and 1.31 were corrected for finite-size effects by adding to
them the difference in energy between the 216 and 64 par-
ticle variational energy. The results were then fitted by a
cubic polynomial in r, . The fitting coe%cients in increas-
ing powers of r, are equal to 1.1200, —2.9017, 1.2208,
and —0. 1695. The corrected Monte Carlo points are
shown in Fig. 2 and compared with the experimental
equation and its empirical extrapolation. The extrapola-
tion is in near agreement with a lattice dynamics calcula-
tion with an empirical intermolecular potential derived
from shock wave data. The agreement is quite good
where experiment is available but in the region r, —1.6
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FIG. 2. The energy in the molecule phase (in Ry/atom) vs

density (in r, units). The circles are the Monte Carlo results.
The solid line is the diamond-anvil results for pressures less than
400 kbar. The dashed lines are the results (Ref. 6) of lattice dy-
namics calculation (Ref. 26) with the pair potential fitted to
shock-wave data at about 1 Mbar. The pressure scale at the top
is based on this pair potential. The dashed line also agrees with
an extrapolation of the experimental diamond-anvil measure-
ments (Ref. 6).

(1.2 Mbar) the MC results are 0.010 Ry higher. Tests
that have been performed suggest that the MC energies in
the molecular phase are accurate to better than 0.005
Ry/atom. Thus, a discrepancy exists at intermediate
pressures.

The curve of energy versus density is suggestive of a
phase transition at a pressure between 1 and 2 Mbar. Of

FIG. 4. The bond lengths in bohr radii with the arrows indi-
cating the oriented phase.

course there are not nearly enough calculations at
different densities to even roughly establish that a transi-
tion occurs. The energies involved in the orientational or-
dering transition are too small to explain the "bump" as
can be seen from Fig. 1. Given that the crystal phase is
constrained by the trial wave function and the boundary
conditions, the only other likely transition would involve
a change in the bond length distribution, a contraction of
the molecules, possibly coupled with the orientational
transition. Some evidence for this is presented in Sec.
IVD below. However, since the Monte Carlo run at the
density r, =1.61 is not particularly long, it is possible it
has not fully converged to the ground state; the proton
degrees of freedom are the slowest to converge and in ad-
dition if there is a phase transition there will be a slowing
down of the rate of convergence.

The pressure can be computed either by differentiating
the energy fit, i.e., P =11.71 MbarRy ' r, dE(r, )/dr,
or by use of the virial theorem. The virial pressure is
shown in Table II and a comparison of the two in Fig. 3.

0
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L~ ~i~L

IO~
3 4
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0 9

-1.0—CC
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FIG. 3. The pressure vs volume. The open circles are the
MC results from the virial theorem in the atomic phase, the
lower dashed curve is the derivative of the fit to the atomic ener-
gies [Eq. il li]. Similarly, the open squares and upper dashed
curves are for the molecular phase. The solid line shows the
transition. The solid curve is the measured (Ref. 2) EOS and its
extrapolation (dashed-dotted curve) (Refs. 2 and 26).
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FIG. 5. The Born-Oppenheimer energy as a function of bond
length for an H2 molecule in vacuum (P =0) and at a density of
r, =1.45 (P =2.5 Mbar).
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I

TABLE III. Monte Carlo results in the atomic phase. N is the number of atoms, T is the total length of the run [(time step)X (en-
semble size)&&(number of steps)]. F. ;„ is the fixed-node energy for the finite system, F. ";„ is extrapolated to the bulk limit using Eq.
(10). P is the virial pressure. Lindemann's ratio is the rms value of the proton displacement from the lattice site divided by the
nearest-neighbor distance.

1.0
1.13
1.13
1.13
1.30
1.31
1.31
1.45
1.45
1.61
1.77
2.00

Crystal

fcc
fcc
bcc
bcc
fcc
bcc
fcc
bcc
fcc
fcc
fcc
fcc

108
108
54

128
108
128
256

54
108
108
108
108

T (X10--')

1.0
1.6
1.2
1.6
2.0
1.2
0.8
3.4
1.5
2.8

3.2
4.0

Static lattice
0.635(2)
0.816{1)
0.949(2)
0.835(2)
0.935(1)
0.957(1)
0.957(1)
1.065( 1)
0.982(1)
0.999(1)
0.998(1)
0.980(1)

,V
Emix

of protons
0.670(1)
0.849(1)
0.983(3)
0.876(3)
0.970(2)
0.988(1)
0.992(1)
1.094(1)
1.011(1)
1.033(1)
1.033(1)
1.021(1)

Enltx

0.727
0.893
0.891
0.897
1.002
1.002
1.002
1.035
1.039
1.052
1.048
1.033

P {Mbar)

19.5
8.4
8.5
8.3
2.7
2.6
2.6
0.88
0.85
0.07

—0.18
—0.29

Lindemann's ratio

1.13
1.31
1.31
1.45
1.45
1.61
1.77

bcc
sc
fcc
bcc
fcc
bcc
fcc

54
64

108
54

108
54

108

0.6
5.0
0.8
2.3
1.2
1.2
0.8

Dynamic
0.782(1)
0.967(1)
0.913(1)
1.050(1)
0.960(1)
1.057(1)
0.985{1)

lattice of protons
0.813(1)
0.985(1)
0.942(1)
1.071(l)
0.990(1)
1.081(1)
1.019(1)

0.856
0.962
0.973
1.012
1.016
1.032
1.035

9.13
2.84
3.05
1.17
1.18
0.25

—0.03

0.15
0.16
0.13
0.16
0.15
0.15
0.16

changes when one goes from a finite system in periodic
boundary conditions to an infinite system. For a finite
system the allowed values of momentum lie on a lattice
reciprocal to that of the simulation cell and the ground
state is obtained by filling successive "shells" of these lat-
tice points. (A shell consists of all lattice points related to
each other by symmetry. ) As long as the shells are filled
in a symmetric fashion then the only Fermi-liquid param-
eter that comes in should be the effective mass. This im-
plies that the size corrections of the interacting system
should be simply proportional to the size correction of the
noninteracting system, at least for large enough systems.
The difference in energy per particle between an infinite
and a finite ideal Fermi gas of N particles in periodic
boundary conditions is of order 1/N with a coefficient'
which varies between +1 as X changes.

For charged systems, in addition to this number depen-
dent effect on the kinetic energy, there is also an effect in
the potential energy, ' since the potential is long ranged.
In simulations with periodic boundary conditions, the
coulomb interaction is replaced by the Ewald image po-
tential for finite systems. To have charge neutrality a par-
ticle must interact with its own image. Thus, in calculat-
ing the potential energy one term out of N is appropriate
to a perfect lattice, not to a Fermi liquid, as it should be.
This intuitive result is supported by both Hartree-Fock
calculations, valid at small r„and harmonic lattice calcu-
lations, valid at large r„which show that the size depen-
dence of the potential energy of the homogeneous electron
gas is proportional to 1/N.

Adding together these kinetic and potential-energy size
corrections, implies that the energy per particle for a finite
system is related to the bulk energy per particle by

E+ —E +ci (r, )( T~ —T„)Ir, +c2(r, )l(Nr, ), (10)

where ci and c2 are functions of the density to be deter-
mined from the simulations and T~ is the kinetic energy
of the ideal gas, at r, =1. We have multiplied c~ and cq
by r, and r„respectively, so that c~ and c2 will be rough-
ly independent of r, in the high-density limit.

VMC calculations have been performed with many
diff'erent values of N to test the accuracy of Eq. (10) and
to determine the unknown parameters E, c~, and c2.
VMC was used rather than DMC since it is much less
time consuming, particularly for large systems. Because
the pair product trial function has the correct long-
wavelength properties it should give the same size depen-
dence as an exact calculation. One can observe by exam-
ining Table III that the size dependence is the same for
the VMC and DMC calculation to within the statistical
error of 0.002 Ry/atom even though the variational ener-
gy changes by 0.101 Ry/atom in going from 54 to 108
atoms. The size-dependence correction is itself very large.
Table IV contains the results of variational calculations
for N ranging from 32 to 432, for r, =1.31 and Fig. 7(a)
illustrates the correlation between the variational kinetic
energy versus that kinetic energy of an ideal Fermi gas
with the same number of particles. Figure 7(b) shows the
strong correlation between the variational potential energy
and I /N. In fact, Eq. (10) fits the total variational ener-
gies better than the variational and potential energy sepa-
rately. For r, =1.31 the fitted values of c~ and c2 are
1.118 and —1.146. The corrected infinite system energies
are also displayed in Table IV. It is seen that the max-
imum variation not including that of the sc phase is only
0.0033 Ry. Thus the uncertainty due to the finite system
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TABLE IV. Results of variational calculations in the atomic phase at r, =1.31 for seven different

sizes of systems. Columns labeled with ao show the extrapolation to the bulk limit. T& is the ideal-gas

kinetic energy.

Crystal

fcc
bcc
sc
fcc
bcc
bcc
fcc
bcc

32
54
64

108
128
250
256
432

N+var

0.9442(3)
1.0209(3)
0.9664(7)
0.9199(4)
0.9368(5)
0.9390(5)
0.9406(9)
0.9477(11)

X
~var

2.446(1)
2.451(1)
2.437(4)
2.431(2)
2.432(2)
2.430(2)
2.430(3)
2.429(4)

1.318
1.239
1.280
1.323
1.307
1.299
1.300
1.292

0.9501
0.9506
0.9435
0.9511
0.9516
0.9483
0.9513
0.9509

2.430
2.430

2.431
2.430
2.429
2.429
2.428

—P„"„

2.76
2.75

2.75
2.74
2.77
2.74
2.74

size has been reduced by a factor of 30!
The reason the total energies are fit better by Eq. (10)

than are the variational and kinetic energies separately is
that some of the potential-energy correction gets mixed
into the kinetic energy and vice versa. For a system of
charges, the kinetic energy is related to the total energy by

1 ~ 52

1.50

1.48

T= —d(r, E)ldr, . Thus the size dependence of the ki-
netic energy also follows Eq. (10) with e, =c

&

—r, c
&

and
c2 ——r, c2. Since the size dependence of the potential and
kinetic energies are needed to find the pressure with the
virial theorem, it is necessary to fit separately the kinetic
and potential energies to Eq. (10), giving new coefficients
c and c . The potential-energy corrections at r, =1.31
are c = (0. 165, —0.890). Variational calculations have
also been carried out at a higher density r, = 1.13, obtain-
ing for the fitting coefficients c = (1.104, —1.153) and
c =(0.050, —0.80) showing the assumed r, dependence
of c~ and c2 is approximately correct. This method pro-
vides a simple way of calculating the Fermi liquid param-
eters since c& should be equal to the effective mass, which
is near unity in metallic hydrogen.

1.46 B. Lattice type

1.44

1.42
1.23

—2.42

—2.43

-2.44

1 ~ 25 1.27

N

1.29 1.31 1.33

All calculations have used either fcc, bcc, or sc lattices.
The simple cubic lattice has higher energy at r, =1.31 (by
about 0.010 Ry/atom) but the size effects and the error
bars are too large to determine whether fcc or bcc is more
stable. Adding a term dependent on the lattice type to
Eq. (10) does not appreciably improve the fit to the ener-
gies. Thus the energies of the two lattices are the same to
the accuracy of about 0.002 Ry/atom at the density
r, =1.31. For comparison, by perturbation theory the
static fcc lattice was found to be more stable in the range
1 & r, & 1.6 by 0.0012 Ry. Perturbation calculations
which ignore proton zero-point motion, have found
unusual planar structures that are more stable than either
fcc or bcc, however, isotropic structures are favored once
the protons are allowed to move. A density-functional
calculation found the simple cubic structure most stable
at r, =1.31 by 0.003 Ry/atom. Thus, this theory cannot
reliably determine even crystal structures for hydrogen.

C. Ground-state energy

0.0 0.01 0.02

1/N

0.03

FIG. 7. (a) The variational kinetic energy of metallic hydro-
gen as computed with a pair product trial function vs the kinetic
energy of an ideal Fermi gas with the same number of electrons
at the density of r, =1.31. The line has a slope of unity. (b) The
variational potential energy vs 1/N, where N is the number of
hydrogen atoms at the density of r, = 1.31.

Table III contains the ground-state energies corrected
for finite system size, assuming c ~

——1.10 and c2 ———1.15
are independent of r, ~ The energies for densities in the
range 1.0 & r, & 2.0 are fit to the expression:

E(r, )=2.21r, —2.70722r, '+d~+d2r, +d31,

where the first two terms give the exact behavior for a
static lattice in the high-density limit. The values of
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d~ ———0.2166, dq ——0.0566, and d3 ———0.0301 were ob-
tained for the dynamic hydrogen lattice.

The fitted energies are shown in Fig. 8 and compared to
other theoretical predictions. The results in closest agree-
ment with the MC energies are those of perturbation
theory which are quite accurate in the range
1.4& r, & 1.6 and are high by about 0.015 Ry at r, =1.1.
Variational correlated basis calculations ' are too low by
0.02 Ry. Approximations have significantly compromised
the variational principle since the variational energy with
this type of trial function should be 0.03 Ry above the ex-
act energy. Local-density-functional results lie even fur-
ther below the exact energies, by 0.03 Ry/atom and the
error is density dependent, getting much worse as r, gets
larger than 1, and even give the wrong crystal structure.
The atomic equation of state (EOS) is shown in Fig. 3.

0.038

0.030—

E

0.020—
LIJ

0.010—

p pp4 l l ( I & I 1 I 1 l l l l l

1 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2

v (cm / mol)

D. KfFect of proton motion

The difference in energy between calculations on a stat-
ic lattice and for the real lattice defines the proton zero-
point energy and is shown in Fig. 9. The results are
larger than the estimate of this energy difference using ei-
ther the Debye model or the self-consistent harmonic ap-
proximation. Also given in Table III is the
Lindemann's ratio, that is the rms displacement from the
lattice divided by the nearest-neighbor distance. For hy-
drogen this value is about 0.15, considerably less than
that of helium at melting, where the ratio is 0.26.

E. EKect of finite time step and fixed-node approximation

Simulations with different but small time steps were
used to correct the energy for the timestep error. A
GFMC test run at one density showed no observable

0.7—

0.8—
E
Q

CC
~ 09—

LLJ

1.0—

FIG. 9. The zero-point vibrational energy of atomic hydrogen
(Ry/atom) as a function of density. The open squares are the
MC results, the open circles the results of a Debye model (Ref.
32), and the open triangles of a lattice dynamics calculation (Ref.
30).

effect of timestep errors or fixed-node errors. This con-
forms to a similar nodal-release calculation for the elec-
tron gas, where the energy as lowered by about 0.001

12

Ry/atom. The error in the fixed-node approximation
should be less important in hydrogen than in the electron
gas since the protons partially localize the electrons. The
final accuracy in the ground-state energy is estimated to
be 0.003 Ry/atom, at least twice as small as the error in
the molecular phase. The calculations are more accurate
in the atomic phase because the motion of the protons is
much more restricted.

The amount of energy missed by the RPA pseudopo-
tential is about 0.035 Ry/atom, 35%%u~ of the total
electron-correlation energy. Thus the electronic part of
the trial wave function is equally accurate in the atomic
and molecular phase. However for the electron gas the
RPA pseudopotential picks up 95% of the correlation en-
ergy at this density. ' This much larger variational ener-
gy for hydrogen probably comes from electron-proton
correlations. The simple pair-product trial function used
here has an inadequate treatment of the band structure
which raises the variational energy by about 0.03
Ry/atom.

F. Atomic-molecular transition

l

1.0
l

1 ~ 2
l

1.4
rs

I

1.8
l

2.0

FIG. 8. The energy of metallic hydrogen in the atomic phase
as a function of density. The upper line is a fit to the MC results
for the finite mass proton lattice of hydrogen while the lower line
is for a static lattice (protons of infinite mass) either fcc or bcc.
Open triangles represent results of perturbation theory (Ref. 28);
open circles the variational correlated theory (Ref. 31); open
squares the density-functional theory (Ref. 29).

Using the fits to the molecular and atomic energies, it
can be determined that hydrogen changes from an fcc
molecular phase to a cubic atomic crystal at a pressure of
3.0 Mbar. The atomic phase is stable for r, & 1.30 (1.65
cc/mol) and the assumed molecular phase is stable for
r, & 1.39 (2.01 cc/mole). Thus, the relative volume
change is 20%%uo. There have been many previous estimates
of this transition density some of which are similar to the
present one. It is difticult to give good error bounds to
this estimate of the transition density. The errors coming
solely from statistical fluctuations of the Monte Carlo
runs are quite small (on the order of 0.002 Ry/atom) but
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TABLE V. The energy needed to add or subtract a zero-rnomenturn electron for N/2 molecules of
H& and the resulting energy gap at k =0. The protons were held rigid in the Pa3 structure with the
given bond length (rHH ).

3.0
3.0
1.45

8
64
64

0

rHH

1.4
1.4
1.3

F.
- —E (eV)

—3.0
1.2

—1.0

Z+ —E (eV)

12.6
13.6

1.9

9.6+2.0
14.8+1.0
0.9+1.0

systematic effects can be quite a bit larger, the largest ones
are (i) poor convergence of the proton degrees of freedom
in the molecular phase, (ii) uncertainty about the crystal
structure of the molecular phase, (iii) finite-size effects, (iv)
incomplete treatment of antisymmetry (Fermi statistics),
and (v) inadequate fit to the calculated energies. Attribut-
ing an uncertainty of no more than 0.004 Ry/atom to
each phase, and assuming that this error is roughly in-
dependent of density in the 3-Mbar region, these factors
could change the transition pressure by 15%, the molecu-
lar critical volume by 8%, and the atomic critical volume
by 5%.

G. Pair correlation function

The pair correlation function in the atomic sc phase is
shown in Fig. 10 at the lowest stable atomic density,
r, =1.31. The electron-electron function. is similar to that
of an electron gas at the same density.

VI. DIELECTRIC RESPONSE OF HYDROGEN

It has been suggested that molecular hydrogen could
become a metal at high pressures before undergoing a
transition to an atomic phase since as the density in-
creases, its bands broaden, closing an indirect gap and the

system would undergo a transition to a metallic state.
Such a phenomenon has been observed in iodine at high
pressures.

For a system of rigid molecules in the Pa3 structure,
the energy change in adding and in removing an electron
was calculated with DMC as shown in Table V. Both the
electron and hole were assumed for simplicity to be in a
zero-momentum state, thus the sum of the energy changes
is the band gap at k =0. For a system of 64 molecules at
zero pressure (r, =3) the band gap was found to be 15+1
eV while at 2.4 Mbar ( r, = 1.45 ) the band gap was 1+ 1

eV. It is difficult both to assess the reliability of this cal-
culation and to compare with experiment. The restriction
to zero-momentum particle and hole states increases the
gap at r, =3 by 1.5 eV in a band-structure calculation
and 3.5 eV in a Hartree-Fock calculation, the band gaps
in these two methods are also very different. Band struc-
ture predicts a minimum gap of 9.2 eV while Hartree-
Fock predicts a gap of 15 eV, possibly because neither of
these methods can calculate reliable electron affinities of
molecules. It is also difficult to determine the band gap
from either the energy-loss experiments, which show an
edge at 10.9 eV plus other features at 15 eV or from ab-
sorption in the optical spectrum which has features at
10, 12, 15, and 17 eV. At the higher pressure of 2.4
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FIG. 10. The pair correlation function in the atomic sc phase at the density r, =1.31. Each of the three functions is sphericalized
and normalized to be unity at large r.
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Mbar the gap at k =0 is almost closed in our calculation.
In density-functional theory the gap is predicted to be
about 6 eV, but an indirect gap has almost closed.

Not withstanding the approximations employed in this

gap calculation (small systems, rigid molecules, zero-
momentum excitations, and the fixed-node approximation)
the results indicate that this direct subtraction method
could be useful. The most worrisome problem is the re-
striction to small systems as can be seen from Table V.
The short run of 8 atoms shows that one must clearly go
to larger systems. It would be highly desirable to explore
the finite-size effects by doing the calculations on larger
systems because such effects are much larger for charged
systems. The present method however cannot be practi-
cally used for very large systems since the statistical error
for a given amount of computer time, t, can be shown to
be proportional to (N /t)'~; thus computer time require-
ments become excessive. A direct calculation of the ener-

gy necessary to promote an electron into the conduction
band would solve both the problem of charge neutrality
and the restriction to small system size and appears feasi-
ble. In addition, information about the entire band struc-
ture could be obtained by varying the momentum of the
hole and electron.

Alternatively, the behavior of the dielectric constant
can be used to indicate the onset of metallic conductivity.
An inequality between the structure factor, which can
easily be found with Monte Carlo calculations, and the
static dielectric function restricts the range when the fcc
molecular system is predicted to conduct at zero tempera-
ture.

The dielectric function, e(k, cp), for any system with
translational invariance (valid here since the protons are
free to move) can be related to the dynamical structure
factor, S(k, cp), by

1 — = lim [4rrl(k tt)]
e(k, cp) s-p

&& f d c'pS( k, cp)[(~' +cp+i 6)

1.0
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Since from Eq. (13), S(k,cp) is non-negative, the following
inequality holds for any value of b:

dh) S k, co c0 —bc' )0 (15)

Choosing the value of b which minimizes the integral,
that is, b =S(k)/St(k), and using Eqs. (12) and (13) and
the observation that S(k, cp) is zero for cp (0 leads to the
following inequality for any translationally invariant sys-
tem of charges at zero temperature:

1 ) 8~[S(k)] /[k uS, (k)]=—1 (k)
e(k, 0

(16)

The static structure factor thus provides a rigorous lower

1.0
i

FIG. 11. The low wave-number (ka) behavior of the charged
structure factor I"(k) [defined in Eq. (16)] for the atomic metal at
r, = 1.31 for two dift'erent sized systems.

+ (cp' —cp —i6) '] (12)

The static dielectric function (i.e., when co =0) is then pro-
portional to the cp

' moment of S(k, cp); the singularity at
cp'=0 is treated as given by the limit in Eq. (12). The dy-
namic structure factor can be expanded in terms of the
full set of eigenvalues and eigenfunctions:
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0.6

S(k,cp)= g 6(rp E„+Ep) ) (n
~

p—g 0)
~

', (13) 0.5
1 ~ 61

where pk =pe; exp(ik. r;)/&N is the fourier transform
1

of the charge density, % is the number of atoms, and e; is
the charge of the ith particle. The first two moments of
S(k, cp) satisfy the two sum rules
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S(k)= f dcpS(k, cp)= (pkp & )

S~(k)= f drpcpS(k, rp)= gtrt k e; /2m;N .
(14)

FIG. 12. The low wave-number (ka) behavior of the charged
structure factor 1 (k) [defined in Eq. (16)] for molecular Hq for
four values of density (r, =3.0, 2.2, 2.0, and 1.61). The lines are
fitted to the points.
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13 a comparison of the computed lower bound to the in-
dex of refraction with experiment is shown. Higher cal-
culated index of refraction values than experiment around
100 kbar could be accounted for either by statistical Auc-
tuations or more likely by extrapolation errors. Also it
has been assumed that the structure factor is isotropic at
small k. The index of refraction levels out above 500 kbar
at about 2.7 ~ A sharp transition to a metallic state is not
expected to be obtained since a finite system contains so
few points in reciprocal-lattice space near the Fermi sur-
face. However, this method based on the charged struc-
ture factor gives a rough indication of the onset of the me-
tallic state.

VII. CONCLUSION

FIG. 13. The index of refraction, n, vs density for hydrogen
in the molecular phase. The solid line represents experiment
(Ref. 34). The open circles are the MC lower bond obtained
from Eq. (16) by extrapolating as in Fig. 10. The pressure scale
is the same as used in Fig. 2.

bound to the dielectric function. If at particular wave-
length S(k, co) is sharply peaked at a single frequency then
it is easy to show from Eq. (15) that the inequality be-
comes an equality. Such is the case in a metal where
plasmons are the only long-wavelength excitations. An il-
lustration of that is given in Fig. 11 for 1 (k) in the atomic
phase at a density of r, =1.31. Linear extrapolation of
I (k) to zero wave number gives 1.05, which is consistent
within the errors and the extrapolation to a value of I of
1, that is an infinite dielectric constant or, in other words,
a metallic state.

Shown in Fig. 12 is 1 (k) in the molecular phase for
four densities, r, =3.0, 2.2, 2.0, and 1.61. Most of the
simulations have been performed with 64 atoms, which
corresponds to a minimum value of k of 0.97, and hence a
relatively far extrapolation to k =0. At zero pressure
(r, =3) the extrapolated 1 (0) values of 0.47 yields a lower
bound to the index of refraction of 1.14. This value is to
be compared with the experimental value of 1.12. In Fig.

This work represents an attempt to calculate the prop-
erties of a real material from first principles with quantum
Monte Carlo. Much more work needs to be done to im-
prove the trial functions, to improve the methods for deal-
ing with fermions, to improve the problem faced by the
separation of proton and electron time scales and to simu-
late much larger systems. However, the feasibility of a
realistic calculation of the atomic and molecular phases
and the transition between them in hydrogen without us-
ing experimental information has been demonstrated.
Similar calculations can be done for other low Z elements
and are now in progress for lithium. It is straightforward
to simulate also mixtures of hydrogen, helium and lithi-
um. It has been shown that this method scales as Z
thus making it impractical for large Z elements unless el-
imination of the inner electrons by the use of pseudopo-
tentials is employed. Finite-temperature extensions of
these techniques are well developed for boson systems and
could be extended as well to charged fermion systems.
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