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Hubbard model for a cubic cluster
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The ground-state and thermodynamic properties of a simple Hubbard Hamiltonian are studied for
an eight-site cubic cluster as functions of the number of electrons and the strength of the electron in-
teraction. The ground-state energy and spin are determined, and the excitation spectrum is comput-
ed. Thermodynamic properties including the specific heat, the magnetic susceptibility, and spin
correlation functions are calculated. Computations are performed both by explicit diagonalization of
the Hamiltonian and by Monte Carlo simulation.

I. INTRODUCTION

This paper reports calculations of the ground-state and
thermodynamic properties of the Hubbard model defined
on a simple cubic cluster. The Hamiltonian contains only
hopping between nearest-neighbor sites on which a single
orbital is defined and an interaction U between two elec-
trons on the same site.

H=t+C; C; +Urn;, n;, .

Here, t is the transfer integral, o. denotes spin, i and j are
nearest neighbors, and U is the repulsion parameter (only
the case of a repulsive interaction, U ~0 is considered
here). Our calculations determine the ground state and
several thermodynamic functions: the spin susceptibility,
the specific heat, and spin-correlation functions; as func-
tions of the parameters of the Hamiltonian, the number of
electrons, n, in the system, and temperature.

Even though the model has been the subject of intense
study for more than 20 years, there are few exact results
for three-dimensional systems. A question which has
been quite controversial is whether the system can have a
ferromagnetic ground state under any circumstances. '

Our point of view is that in view of the difficulty of ob-
taining definitive results for infinite systems, it is useful
and informative to study the Hubbard Hamiltonian on a
finite cluster. Then, exact diagonalization is possible and
thermodynamic functions can also be computed exactly.
In previous work, we have reported results for clusters of
four, five, and six sites with various geometries. ' Refer-
ence 3 also contains discussion of previous calculations of
this type. In the present work, the system under con-
sideration is a cube (eight sites). The importance of this
geometry in solid-state physics need no explanation.

A major difficulty in cluster calculations with this
Hamiltonian is that the size of the matrices to be diago-
nalized increases very rapidly with the size of the cluster
and the number of particles in the system. We think that
this is the reason why there is only one calculation in the
literature (of which we are aware) for a cube. Kawabata
determined the ground state for a cube containing from
two through eight electrons. He found that in certain
cases (n =4 and n =7), the ground state has the max-
imum possible spin for sufficiently large U; while for

II. METHOD

The Hamiltonian (1) is studied on a basis of states
~

n; ) which are diagonal in all the occupation numbers.
On this basis, the interaction U occurs only on the diago-
nal and t on the oA-diagonal terms. Then the energy of
any state may be expressed alternatively as

E = Ue(t/u), (2a)

n = 5, the intermediate spin state ("unsaturated fer-
romagnetism") is the lowest for all U &0. For other oc-
cupancies (n =2, 3, 6), the ground state is either a singlet
(even n ) or a doublet (odd n ).

Another approach to the problem of studying the prop-
erties of the Hubbard Hamiltonian has attracted much at-
tention recently. This is the Monte Carlo simulation ap-
proach. ' It is based on a discrete formulation of the
functional integral approach, and involves a summation
over Ising-like random spin variables. We have found it
interesting to compare the results of calculations involving
explicit diagonalization with those employing Monte Car-
lo simulation.

In some respects the methods are complementary. The
explicit dragon alization approach is restricted to fairly
small systems because the size of the Hamiltonian in-
creases extremely rapidly as the number of particles and
sites increases. The procedure of Refs. 5 and 6 can be ap-
plied to larger systems, but becomes difficult for low tem-
peratures or for large values of U. For systems of the
same size, one expects agreement between the diagonaliza-
tion and Monte Carlo methods. However, in the present
work thermodynamic functions are computed, in the diag-
onalization approach, using a canonical ensemble while
the Monte Carlo simulation employs a grand-canonical
ensemble. Some difT'erences may arise from this, for the
canonical ensembles requires a fixed number of particles
in the cluster, while in the grand canonical ensemble, only
the average number is fixed, and fluctuations in the num-
ber occur. Comparison of the results of the two methods
indicates the eff'ect of charge fluctuations.

In the next section, our calculational procedures are
outlined. The results are described in Sec. III. A brief
summary (Sec. IV) concludes the paper.
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E =to'( Uit), (2b)

where (2a) is convenient if U ~ t, and (2b) is convenient if
t & U. In the case of a simple cube,

Therefore it is su%cient to calculate the properties of the
system for t &0 and n (N. We will first discuss calcula-
tions based on explicit diagonalization of the Hamiltonian
and second, the Monte Carlo calculations.

Our computer program diagonalizes the Hamiltonian
within subspaces of fixed S, (or n, —n, ). For a system
with eight sites, these matrices can become very large.
For example, for n =8 and S, =O, the dimension of the
Hamiltonian is 4900X4900. Therefore, it was necessary
to form symmetrized combinations of basis states which
enable us to restrict the numerical diagonalization to
much smaller submatrices. This factorization will be dis-
cussed in detail elsewhere.

All the eigenvalues and eigenvectors were obtained.
Thermodynamic properties were then calculated in a
canonical ensemble. The functions studied included the
spin susceptibility,

X= — pe 'm2 1 —pF.

ll ZT J
J

The index j denotes an eigenstate and mJ is given by

m~ = —,'(n, n, ), ,—

(4a)

(4b)

so that mJ represents S, in units of A for the jth eigen-
state. The quantity Z is the partition function,

Z= e
—PE.

and P= llkT, k being Boltzmann's constant and T, the
temperature.

The specific heat is given by
2

g E2 t3E) 1 ~ E ~E&

kT2Z J Z
J J

(6)

Spin-correlation functions are defined here as follows:

L& (j)=—,'(j
~
(n» n~, )(n„——n, ) ~j ),

in which p and v denote sites. Then we form the thermal
average

Let n be the number of electrons in the system, N the
number of sites (eight in this case) and n

' =2N —n

Electron-hole symmetry yields

E„=E„+(N n—)U .

onalization of the Hamiltonian, we have performed Monte
Carlo simulations using the method of Hirsch. Our cal-
culations were made for a 2 & 2 & 2 system, i.e., the same
cube as considered in the diagonalization method. The
specific procedures are essentially the same as those of
Ref. 5, and will not be described in detail here. Because
the size of the system considered in the two sets of calcu-
lations is the same, substantial agreement is expected.
Differences in results illustrated of the effect of fluctua-
tions in the number of particles on the thermodynamic
properties. Recently, Hirsch has reported Monte Carlo
simulations for much larger systems (up to 6X 6&&6), but
only for the half-filled band case.

III. RESULTS

A. Ground-state spin

E-, t [cos(k„a)+cos(k~a)+cos(k, a)] . (9)

It will be observed, first, that the energies in Table II cor-
respond to those obtained from Eq. (9) at the symmetry
points of the Brillouin zone (R, M, X, and I ); second,
that these degeneracies are the same as the number of ine-
quivalent points; and third that the energies are also the
energies at which Van Hove singularities occur in the den-

TABLE I. Ground-state spin for occupancies 2 ( n ( 8 as
functions of z =t/U.

Our results for the spin of the ground state are summa-
rized in Table I. They are in agreement with those of
Kawabata. A magnetic state, in the sense that S & —,', is
found for occupancies n =4 ("quarter-filled band") and
n =7 if U/t is suSciently large, and for n =5 for all posi-
tive values of U. The results for the cube are different
from those for some other systems we have studied in that
in the present case, the spin changes abruptly from
minimum to maximum value when there is a jurnp, rather
than passing through intermediate spin values (unsaturat-
ed ferromagnetism), as was found to be the case for the
octahedron, for example. In addition, we consider the
value of U/t for which the transition occurs to be quite
large. The "band width, " W =6t, so that in the case
n =4, we must have U/W & 37 to get a magnetic state.

Many aspects of these results (but not all) can be quali-
tatively explained in terms of occupancy of single particle
levels. The energies and degeneracies of the single particle
levels for the cube are listed in Table II. First, it is in-
teresting to compare these energies with those for an
(infinite) simple cubic lattice with nearest-neighbor in-
teractions of strength t /2. This gives

In the cube, there are only four different correlation
functions, depending on whether p and v are the same, or
first, second, or third neighbors. We denote these func-
tions as Lo, L &, I 2, and L3, respectively. Lo is the "local
moment. "

In addition to these calculations involving explicit diag-

0 =2
n =3
n=4

n=5
n=6
n =7

n=8

S=0,
S=—',
S=2,
S =0„
S=-
S=0,
S=-
S= —',
S=0,

all z
all z

z (0.00448
z )0.00448
all z

all z
z (0.0253
z )0.0253
all z
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TABLE II. Energies of the dift'erent single-particle states (di-
vided by t) for a cube. The number in parenthesis is the degen-
eracy.

—3(l) —l(3) l(3) 3(l)

sity of states. The single particle energies in the cubic
cluster can therefore be regarded as roughly representative
of a simple s band in a perfect crystal.

If the system contains two electrons, it is clear that less
energy is required to form a singlet state, since 2

~

t
~

is
required to promote an electron into the second state of
Table II. Hence for small values of U/t, a singlet ground
state would be expected to occur. However, one might
suppose that if U»

~

t ~, it would be energetically favor-
able to form a triplet state, since in this simplest form of
the Hubbard model, the interaction does not affect the en-
ergy of a fully spin aligned state but it may increase the
energy of a singlet state. In fact in the case of n =2 this
does not happen. A correlated singlet state is formed
whose energy is independent of U in the large-U limit, im-
plying that it is possible for the particles to avoid each
other's site completely. The energy of this singlet state is
—2&71 in the large-U limit, which is always lower than
that of the triplet state ( —4t)

Similar behavior occurs for n =3. It is obvious from
Table II that the doublet must have lower energy than the
quartet for small U. Again at large U, the lowest doublet
has an energy independent of U which is lower than that
of the quartet. In fact for all values of n & 8, it is possible
to form one or more correlated singlets (even n) or dou-
blets (odd n) whose energy is independent of U for large
U. It is not obvious, however, whether the energy of this
state will be lower than that of a state of higher spin.

When there are four particles ("quarter-filled band") we
do find that for very large U, the "ferromagnetic" state
(maximum alignment) is lowest. Since the first excited
single particle state is triply degenerate, one might expect
that a particularly stable situation would arise when these
states are filled. This is an example of Hund's rule ap-
plied to the cluster, treated as a single atom. It is then
not surprising that for n =5, a particularly stable situa-
tion would occur when there are two particles in the
lowest single particle state, and the remaining three occu-
py the first excited state with parallel spin. The point
which is not obvious is that this quartet state is the
ground state for all U ~0; however what happens is that
the lowest doublet state of the five-particle system requires
the same occupancy of single-particle states; but the lower
spin configuration experiences a greater repulsive interac-
tion even when U is small.

Increasing n to 6 produces a case in which a substantial

promotion energy is required to produce a magnetic state.
In this case the singlet remains the ground state for all U.
At n =7, we again have a Hund's rule situation in which
both degenerate single particle states can be full for 5 = —,';
this state is the ground state for large U, in spite of the
substantial difference in single-particle energy required by
this occupancy. The occurrence of the high spin ground
state in this case is consistent with Nagaoka's result that
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FICr. 1. Ground-state spin-correlation functions as function of
z =t/U for n =7. Local moment (Lo solid line), left-hand scale;
other functions (Ll, solid line; L2, dots; L3, dashes), right-hand
scale.

for a simple cubic lattice (and some others) ferromagne-
tism is possible for a system with one particle less than
that required for a half-filled band when U is su%ciently
large. Finally, when n =8, the half-filled band seems al-
ways to favor a low-spin ground state.

One feature of the n =6 system deserves note. There is
a change in the degeneracy and therefore of the spatial
symmetry of the ground state at z =0.0162. For smaller
z (large Ult), the ground state is a singlet; for higher z,
the state is a doublet. The effect of this transition on
spin-correlation functions will be discussed below.

The simple-cubic lattice with nearest-neighbor interac-
tions only is not a particularly favorable system for the
occurrence of band ferromagnetisrn. The density of states
has a high, flat portion in the middle of the band, in con-
trast to the face-centered-cubic structure, for example,
where there is a sharp spike at either the top or the bot-
tom, depending on the sign of t. Likewise the conditions
for the occurrence of a maximum spin state in the cluster
are more stringent (in terms of values of U/t required)
than for the tetrahedral and octahedral clusters we have
studied previously. The difference between the cluster
types in this respect appears to be due to the different pat-
tern of degeneracies of the single particle levels.

B. Ground-state correlation functions
Ground-state spin-correlation functions generally de-

crease as U/t varies between localized and itinerant lirn-
its. This unsurprising statement requires some elabora-
tion and qualification, the most important being that in
cases where there is a change in the spin of the ground
state, or a change in the spatial symmetry; there is a
dramatic change in these functions except that the change
in the local moment is small. These remarks are illustrat-
ed in Figs. 1 and 2.

Spin-correlation functions for n =7 are shown in Fig.
1. For small values of z (z &0.0253), the system is in the
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FIG. 2. Ground-state spin-correlation functions as functions

of z for n =6. Curves are drawn as in Fig. 1.

FIG. 4. Energy spectra for z =0. 1 for n =8 (left) and n =7
(right). States are classified by spin. Spatial degeneracies are not
shown.

"ferromagnetic" state. In this case, the spin correlation
functions are independent of U. The local moment is —,',

(each site has a probability —„' of being occupied). The
first-, second-, and third-neighbor correlation functions
are positive and equal to each other. This situation de-
scribes uniform magnetization. When z increases beyond
0.0253, the ground state has S = —,'. There is only a small

change in the local moment, but a dramatic change in the
other functions: L~ and Lq become negative, while Lq is
weakly positive. This arrangement is characteristic of an-
tiferromagnetic order. The subsequent dependence of
these functions on U is not monotonic, but for values of z
beyond the limited range shown, the functions decrease to
zero.
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FIG. 5. Reciprocal magnetic susceptibility as a function of
temperature in units of U for the half-filled band in the case
z =0.2. Solid curve, results for explicit diagonalization; dots, re-

sults of Monte Carlo calculations.
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FIG. 3. Ground-state spin-correlation functions for the half-

filled band as functions of z. Curves are drawn as in Fig. 1.
FIG. 6. Specific heat for the half-filled band case with z =0. 1

as a function of the ratio of temperature to interaction strength.
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FIG. 11. Temperature dependence of the magnetic suscepti-
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FIG. 8. First-, second-, and third-neighbor correlation func-
tions (L ~, L2, and L3 ) as functions of temperature for the half-
filled band and z =0.2. Dots are the result of Monte Carlo cal-
culations.
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FIG. 12. First-neighbor (L ~, solid lines), second-neighbor
(L2, dotted line), and third-neighbor (L3, dashed line) spin-
correlation functions for n =7 and U/t =4. Large dots are the
results of Monte Carlo calculations.
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In the case n =6, the ground state is a singlet for all z.
However there is a change from a nonspatially degenerate
ground state (smaller z) to a doubly degenerate state
(larger z) at z =0.0162. When this occurs, the pattern of
spin correlation changes (Fig. 2). Again, the local mo-
ment is only weakly aff'ected (as is L i); but Lq changes
from positive to negative with an increase in magnitude,
and L3 increases form a larger negative value to a value
close to zero, becoming positive as z increases further.

The half-filled band case (n =8) is less dramatic. The
zero-temperature local moment and spin-correlations
functions are shown in Fig. 3. It will be observed that the
third-neighbor correlation function L3 is not monotonic
as a function of z, but increases in magnitude with z for
small z. The sign pattern of the correlations: first and
third neighbors, negative; second neighbors, positive, is
consistent with antiferromagnetism. Note also that as U
increases from zero, correlations remain weak until,
roughly, U is in the range of 3t —St. The correlations are
fully developed when U is about 20t, and there is little
further change for values of U greater than this.

C. Excitation spectrum

A diagram showing the energy spectrum for E ( U is
shown for the cases n =7 and 8 for z =0. 1 in Fig. 4.
Consider the case n =8 first. There is a relatively sparse
group of low-lying levels (E &0) which are separate from
a much more dense group of higher levels by a gap of
about 0.4U. These low-lying levels correspond to the pos-
sible ways in which I "up" spins and 8 —l "down" spins
(l &8) can be distributed on eight sites without having
two on any site. It it within this manifold that an
effective Heisenberg Hamiltonian would be valid. The
higher energy group has one site doubly occupied, and is
correspondingly more numerous. The separation between
the groups is the Hubbard gap, which becomes equal to U
only in the limit z =0. If the corresponding diagram is
drawn for z =0.2, no gap is visible.

In the case n =7 the lower group of states is both more
numerous and spread more widely in energy. This occurs
because for n =7, there is always one vacant site (in the
basis set). For a given vacancy, there exists a set of spin
rearrangement states in which seven spins are assigned
without any two being on the same site. However, when
the Hamiltonian is diagonalized the vacancy is spread
over different sites, e.g. , the hole is mobile; and the energy
of a state depends not only on the spin pattern, but also
on the k vector of the "mobile hole. " For the value of z
chosen for the figure, the gap has almost disappeared, but
for larger U/t; the separation of the states into those
without and with a double occupancy becomes quite clear.

D. Thermodynamic properties

We consider here the temperature dependencies of the
magnetic susceptibility, the spin correlation functions, and
the specific heat. We shall proceed by discussing the
half-filled band (n =8) first, and smaller values of n sub-
sequently. The results that will be specifically discussed
here are a relatively small sample of those obtained. We
have chosen parameter values for the illustrations which,

we believe, illustrate the most important physics.
The susceptibility is shown in Fig. 5 for t/U =0.2 and

n =8. The curve resembles what would be expected for
an antiferromagnet except that as T~O, 7 ' approaches
infinity instead of going to a finite limit. This behavior is
characteristic of a finite system with a singlet ground state
for which the susceptibility has to vanish at T =0. The
dots are results from the Monte Carlo calculation. The
agreement is reasonably good everywhere, excellent at low
temperatures, but with small differences at higher temper-
atures. We think that the differences are due to the fact
that the Monte Carlo calculation employs a grand canoni-
cal ensemble which makes some allowance for charge
fluctuations, which are more important at higher tempera-
tures. The dashed line indicates the extrapolation of a
linear least-squares fit to the high temperature portion of
the curve. It is evident that the susceptibility obeys a
Curie-Weiss law of the form

Y '=C (T —0) .

where 0 is a paramagnetic Curie temperature. Note that
8 is positive (as would be expected if the ground state
were ferromagnetic) even though the ground state is a
singlet with fairly strong antiferromagnetic correlations at
low temperatures (as will be discussed below). The value
of 0 obtained by a least-squares fit to the high-
temperature points is approximately 0.16U.

The specific heat for the case of n = 8, z =0. 1 is shown
in Fig. 6. Here we see the characteristic two-peak struc-
ture found in numerical calculations for smaller systems,
going back to the calculations of Shiba and Pincus. ' The
low-temperature peak is associated with the lowest set of
spin rearrangernent levels in Fig. 3, and it is in this tem-
perature region that strong spin correlations develop be-
tween different sites.

The local moment and neighboring atom spin correla-
tion functions are shown for n =8 and z =0.2 in Figs. 7
and 8. Again we compare results of quantum Monte Car-
lo calculations with those obtained from explicit diagonal-
ization. It is seen that there is generally good agreement
between the two sets of calculations for the first-, second, -

and third-neighbor spin-correlation functions but that the
Monte Carlo calculations give a smaller local moment ex-
cept at the lowest temperature studied. This we attribute
to the effect of charge fluctuations which become small at
low temperatures. The value of U/t for the case shown
(5), is not particularly large, and was chosen in order to il-
lustrate the effect of fluctuations on the moment.

Next we consider the case of n =7 ~ In this case, the
ground state has the maximum spin for z &0.0253. One
expects and finds quite different temperature dependences
of the magnetic susceptibility at low temperatures depend-
ing on the nature of the ground state. Figure 9 shows the
susceptibility for the case z =0.0222 (U/t =45). This
case was not accessible to our Monte Carlo calculations.
At high temperature (T of the order of U or greater) a
Curie Weiss law is accurately obeyed, which extrapolates
to a paramagnetic Curie temperature determined by a
least-squares fit to be T, =0.19U). For lower tempera-
ture, there the departures from this behavior, and as
T~O, the susceptibility obeys a Curie law rather than a
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Curie-Weiss law. This is a result of the finite size of the
system.

The specific heat for the same values of the parameters
is shown in Fig. 10. In this case, there are three peaks in
the low-temperature specific heat. The lowest peak is due
to a set of four closely spaced levels, some of which are
triply degenerate, beginning at an energy of about 0.001U
above the ground state. These levels are essentially just
spin rearrangements. In the present case, the ground
state can be regarded has having a single hole in a (spin-
aligned) band. The energy required to promote this hole
to its first excited translational state is 0.044U in the ex-
ample shown, and it is probable that states involving
translational motion of the hole are involved in the second
peak.

In contrast, Fig. 11 shows the susceptibility as a func-
tion of temperature for the case of U/t =4, for which the
ground state has S = —,'. In this case we also have Monte
Carlo results down to fairly low temperatures. Again,
there is rather good agreement between the Monte Carlo
and explicit diagonalization calculations although there
are relatively small differences at high temperatures that
can be attributed to implicit inclusion of charge fiuctua-
tions in the Monte Carlo results. At low temperature we
see that 7 ' starts to increase, then turns over and fol-
lows a Curie law to T =0. This behavior was also found
for the octahedral cluster discussed in Ref. 3. An increase
in g ' at low temperature is characteristic of antifer-
romagnets; a bulk metallic antiferromagnet would have

' finite at T =0. We argue that the increase in 7
can be regarded as the cluster equivalent of the onset of
antiferromagnetism but the fact that the cluster is finite
with an odd number off electrons forces a Curie law at the
lowest temperatures. First-, second, - and third-neighbor
spin-correlation functions are shown for these parameters
in Fig. 12. Here there is also good agreement between
Monte Carlo and explicit diagonalization calculations al-
though there is noticeable statistical noise in the Monte
Carlo results. The sign pattern of the correlation func-
tions is the same as for the half-filled band and is that ex-
pected for antiferromagnetism. Generally, all of the
correlation functions are smaller in magnitude than in the

half-filled band case. The first-neighbor function decays
rather slowly with increasing temperative, while the
second-, and third-neighbor functions change rapidly in
the range of temperature of the order 0.2t to 0.4t, which
corresponds (according to Fig. 11) to the temperature
range in which 7 ' is increasing. These results support
our discussion of this cluster in terms of antiferromagne-
tism.

We shall discuss our results for smaller occupancies
(n =6, 5, and 4) more briefiy. The magnetic susceptibility
is shown for n =6 in Fig. 12. Again, there is rather good
agreement between explicit diagonalization and Monte
Carlo calculations with small differences at high tempera-
tures. In the case of n =6 (Fig. 13), the ground state is a
singlet for all U, and the case illustrated shows behavior
characteristic of antiferromagnetism. At temperatures
just above the minimum, there is a region in which
Curie-Weiss behavior with negative intercept (paramagnet-
ic Neel temperature) is found, but at much higher temper-
atures, we find a positive intercept as discussed previously
for n =8.

Spin-correlation functions are shown for n = 5 and
U/T =4 in Fig. 14. The ground state for n =5 has S = —,

'

(unsaturated ferromagnetism) for all U. In the case illus-
trated the spin-correlation functions are quite small in
magnitude (we regard this as indicative of a highly
itinerant situation). There are significant discrepancies be-
tween Monte Carlo and explicit diagonalization results in-
dicating important charge fluctuations. It is particularly
interesting in this case that the first neighbor spin correla-
tion function is always negative. This result is actually in-
dependent of U. The second-neighbor function changes
sign near T =0.2t. We see from this that it may be
difficult to draw qualitative inferences concerning magnet-
ic alignment in the ground state from measurements of
spin-correlation functions at high temperature.

This observation is reinforced by the behavior of the
spin-correlation functions for n =4 and U/t, sufficiently
large for the system to be ferromagnetic. All correlation
functions are positive although small at low temperatures,
but both the first- and second-neighbor functions change
sign at higher temperatures.
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FIG. 13. Temperature dependence of the magnetic suscepti-
bility for n =6 and U/t =4. Dots are the results of Monte Car-
lo calculations.
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FIG. 14. Temperature dependence of spin-correlation func-
tions for n =5 and U/t =4. Curves are drawn as in Fig. 12.
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IV. SUMMARY

When the simplest form of Hubbard model with a sin-
gle nondegenerate orbital and nearest-neighbor interac-
tions only is considered on a simple-cubic cluster of eight
sites, the calculated ground-state and thermodynamic
functions describe several types of magnetic behavior, de-
pending on the number of particles in the system and the
ratio U/t. For n =7 or n =4 we find a maximum spin
ground state when U/t is sufficiently large, but for n =5,
an unsaturated ferromagnetic ground state is obtained for
all positive values of U. Antiferromagnetic spin correla-
tions are found in other cases. Then the temperature
dependent magnetic susceptibility resembles that for a
bulk antiferromagnet except at very low temperatures,
where finite-size effects dominate. A Curie-Weiss law
with a negative paramagnetic Curie (Neel) temperature
holds in a restricted temperature range. When the ground
state has other than the minimum spin, a Curie-Weiss law
with a positive Curie temperature applies. In all cases we
have examined, the susceptibility at temperatures large
compared to the band width obeys a Curie-Weiss law
with positive T, .

The specific heat typically has a two-peak structure, but
in one case, we have found three. The local moment de-
cays quite gradually with temperature at low temperature
while the first-, second-, and third-neighbor spin-
correlation functions decrease much more rapidly. There

is no obvious way in which the nature of the ground state
can be readily inferred from the spin-correlation functions
at high temperature. Comparison of calculations per-
formed by explicit diagonalization and utilizing the
canonical ensemble with Monte Carlo simulations em-
ploying the grand-canonical ensemble indicate that the
most important effect of charge fluctuations is to reduce
the local moment at high temperatures; otherwise there is
rather good agreement between results of the two ap-
proaches.

Finally, we note that overall qualitative similarities be-
tween the results of the present calculation for a cube and
previous calculations by ourselves and others for smaller
systems. The similarity resides in the fact that the same
type of magnetic properties occur: for example, Curie-
Weiss behavior of the susceptibility and the occurrence of
two peaks in the specific heat. The existence of these
characteristics is substantially independent of the
geometry and the number of particles, but the specifics,
such as the kind of order which occurs for a given interac-
tion strength, the numerical value of the paramagnetic
Curie temperature, etc. do depend strongly on the details
of the system.
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