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Finite-temperature properties of the infinite-U Anderson model for rare-earth alloys are calculated

within a unified approach. The impurity-electron density of states and magnetic moment spectrum

provide a natural framework for describing both static and dynamic properties. The density of states

and moment spectrum exhibit low-energy "Kondo resonances" with approximate single-parameter

scaling, which persists for impurity valences in the range 1.0—0.7. The position of the resonance in

the zero-temperature density of states, To, sets the scale for all low-temperature properties. Results

are reported for the impurity valence, resistivity, thermopower, thermal conductivity, magnetic sus-

ceptibility, specific heat, photoemission and inverse-photoemission spectra, and neutron scattering

linewidth. The effect of spin-orbit interactions is incorporated in the theory. The calculation is a di-

agrammatic approximation motivated by the simplifying concept of large angular momentum degen-

eracy (N). The approximate solution is thermodynamically consistent and satisfies all pertinent sum

rules. Static properties (magnetic susceptibility and specific heat) are in good agreement with exact

results of the Bethe ansatz. Experimental results on both dilute and concentrated Ce alloys are de-

scribed quantitatively with use of a one-parameter (To) theory.

I. INTRODUCTION

The richly varied properties of electrons in metals
reflect the presence of an enormous number of interacting
degrees of freedom. Despite this complexity, only a small
number of qualitatively different electronic ground states
are realized in nature. Principal among these are the nor-
mal Fermi-liquid, magnetically ordered, and supercon-
ducting states. A key to the understanding of new ma-
terials is the experimental determination of the ground
state and the development of a model which accounts for
it. In this regard, magnetic alloys, i.e., metals containing
a random or ordered array of magnetic ions, have present-
ed a particularly subtle and challenging problem.

Ions which exhibit a well-defined magnetic moment in
isolation might be expected to produce magnetic ground
states when embedded in a metal. Specifically, the Curie
law susceptibility [X(T) = C /T, with C a constant) of iso-
lated paramagnetic ions might be expected to persist in
the metallic state. In general, this is not the case. A large
class of dilute transition metal and lanthanide alloys, in-
cluding CuFe, CuMn, L,aCe, and AuYb exhibit Pauli law
susceptibilities [X(T)= const] at low temperature, indicat-
ing a nonmagnetic Fermi liquid ground state. ' [This
identification does not depend on susceptibility measure-
ments alone, but is confirmed by other static (specific
heat) and dynamic properties. ] The formation of such a
ground state is commonly referred to as the Kondo effect,
in honor of one of the first theorists to contribute to its
understanding; by extension, the Kondo effect refers to
any anomalous property resulting from the nonmagnetic
ground state. The understanding of this effect has occu-
pied a large number of condensed matter theorists over a
period of more than twenty years.

A source of exceptional current interest is the recent
discovery of anomalous nonmagnetic ground states in

concentrated systems as well. A criterion due to Hill
states that when the separation of neighboriny lanthanide
ions in a compound is larger than 3.25 —3.50 A, a magnet-
ically ordered ground state results. In this limit, the 4f
electrons responsible for magnetism remain localized. A
number of concentrated alloys, including CeA13 and
CeCu6, satisfy the Hill criterion but nevertheless possess
Fermi liquid ground states. Furthermore, a related series
of compounds, including CeCu2Si2, exhibit superconduct-
ing rather than magnetic ground states. These com-
pounds are jointly known as "heavy electron" metals.
The eff'ective electronic mass derived from the low-
temperature specific heat and susceptibility in these sys-
tems is hundreds of times larger than the free-electron
mass.

While a detailed understanding of such concentrated
systems is not yet available, a quantitative picture of the
properties of dilute magnetic alloys has begun to emerge
in recent years. A number of theoretical techniques have
contributed to this progress. The numerical renormaliza-
tion group ' and Bethe-ansatz diagonalization ' methods
have provided essentially exact solutions for all equilibri-
um properties. In this paper, we present results based on
a third approach, the "self-consistent large-degeneracy ex-
pansion. " ' [The method's name refers to the level de-

generacy of the electrons responsible for magnetism in iso-
lated ions (the 4f electrons in the lanthanide series). ]
Equilibrium properties calculated within this approxima-
tion are in excellent agreement with results of the preced-
ing "exact" methods. In addition, the large-degeneracy
expansion provides results for dynamic properties which
cannot be computed by the renormalization group or
Bethe ansatz. In this sense, the large-degeneracy expan-
sion provides a more unified quantitative description of
magnetic alloy physics than any previous approach.

The remainder of the paper is organized as follows: in
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Sec. II, we attempt to place the present work in context
by briefly reviewing previous approaches to the Kondo
effect and discussing the basis for the large-degeneracy ex-
pansion. In Sec. III, we present an overview of our re-
sults, stressing the simplifying features of the physics.
Calculational details are discussed at length in Secs. IV
and V. In Sec. VI, we compare our results for various
properties with the available experiments. Finally, we dis-
cuss future directions for this work and summarize our
findings in Sec. VII.
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II. REVIEW

Interest in dilute magnetic alloys may be traced back to
the earliest days of metals physics, when a low-
temperature resistivity minimum was observed in noble
metal samples containing small amounts of transition
metal impurities' (see Fig. 1). Such a resistivity
minimum cannot be understood in terms of conventional
phonon and nonmagnetic impurity scattering. Experi-
mental interest in transition-metal alloys increased in the
late 1950s and early 1960s, but no successful theory was
advanced to account for their anomalous behavior. In
1964, Kondo demonstrated that the source of the resistivi-
ty minimum was magnetic impurity scattering. While
the phonon contribution to the resistivity decreases with
temperature, the magnetic contribution increases. In
Kondo's perturbative calculation, the resistivity actually
diverges logarithmically for T~O.

Kondo investigated the so-called antiferromagnetic s-d
exchange Hamiltonian,

H= g Eknk —2JS.s(0) .
k, o

(2.1)

Here, J is a negative exchange constant, S is the impurity
spin and s(0) is the conduction-electron spin density at
the impurity. This Hamiltonian is now conventionally
known as the "Kondo Hamiltonian. "

An alternate model for magnetic alloys was developed
in 1961 by Anderson. " The simplest version of the An-
derson Hamiltonian may be written

~A ~band +Himp +IImix

Hband = g ek n ka
k, o

H; p
——Eden +U„„ (2.2)

H;„=Vg(ct d +H. c. ) .
k, o.

The three components of the Hamiltonian describe con-
duction electrons, impurity electrons and a hybridization,
or mixing interaction, between the two. Creation opera-
tors are denoted c|, (conduction) and d (impurity), with
n k ——c k ck and n =d d . The key features of the
model are (a) strong Coulomb correlation between the lo-
calized electrons (U) 0) and (b) hybridization between lo-
calized and delocalized electrons (V). A measure of the
strength of hybirdization is the "hybridization width"
I =m.N(0) V, with N (0) the single-spin density of con-
duction states. Note that the only degeneracy in the im-
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FIG. I. Resistivity minimum in a noble metal (Au) with re-
sidual transition metal impurities, reproduced from the work of
W. J. de Haas and G. J. van den Berg, Physica 3, 440 (1936).
The curve shows the resistance of a Au wire, normalized by the
value at O' C. This represents one of the earliest observations of
anomalous low-temperature effects in a dilute magnetic alloy. A
number of excellent review articles discuss experiments on mag-
netic alloys from the 1930s through recent years (Ref. 1).

T0 —D 1/2N(0)
~

J
i (2.3)

with D and J the band half-width at half maximum and
magnetic exchange constant, and N (0) the single-spin
density of states at the Fermi surface. (We hesitate to call
T~ the "Kondo temperature, " since this phrase has spe-
cial connotations in modern usage. See, e.g., Ref. 4.) For
example, the low-temperature resistivity in Suhl-Nagaoka
theory' takes the form

p( T) = —,'p(0) 1— ln{T/T~ )

[ln (T/Tg)+7r S(S 1+)]'. (2.4)

purity Hamiltonian is due to spin. More elaborate ver-
sions of the model incorporate an additional orbital index
(appropriate for describing 3d and 4d transition metals) or
a total angular momentum index (appropriate for systems
with strong spin-orbit coupling, like the lanthanides). The
Anderson model is more fundamental than the Kondo
model, which may be derived from it by a canonical trans-
formation' in the limit cd ~—oo, V~ ao, U~ oo,
v2/c. d =J.

The discovery of unexpected divergences in perturba-
tion theory for the Kondo and Anderson models led to
greatly increased theoretical interest in magnetic alloys. '

During the 1960s, interest centered on the general scatter-
ing properties of magnetic impurities. Suhl s dispersion
theory' provided the first resistivity calculation satisfying
unitarity bounds. An essentially equivalent approach is
the Careen's function decoupling scheme developed by
Nagaoka' and first solved by Hamann and Bloomfield
this method yields excellent results at high temperature,
but breaks down below a characteristic scale
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with p(0) the s-wave unitarity bound resistivity. The non-
analytic saturation for T~O is an unphysical consequence
of the approximation scheme. The specific heat C also
has unphysical features' within the Suhl-Nagaoka
scheme: C tends to zero for T~O as ln (T/Tg), a.nd
the high-temperature entropy is

S(T~ ao ) —S(0)= (2S +2)ln(2S +2)+2Sln(2S)

I 0 ~ I 1 I 1 1 ~ 1

0.8—

C) 06—

04-
—2(2S+ 1)ln(2S + 1) . (2.5a)

This contradicts a general theorem of Mattis, ' which
(correctly) predicts

0.2—

S(T~~ ) —S(0)=ln(2S+ 1)—ln(2S) . (2.5b)
0 ~ ~ 1 a ~ ssaf s 1 ~ s 1 ~ af

O.OI O. l I

1 1 1 aal 1 1 ~ 1 a ~ aal

IO IOO

(2.6)

vanishes for T~O, and that the moment obeys a simple
scaling relation

su, ff( T) =F( T /Tg ), (2.7)

with F a universal function. The Kondo temperature T~

Finally, results for the susceptibility within the Suhl-
Nagaoka scheme are inconclusive: depending on the ap-
proximation adopted, the method yields complete, incom-
plete or overcomplete screening of a spin- —,

' impurity mo-
ment. '

Other early approaches to the Kondo Hamiltonian lead
to different descriptions of the ground state. In particular,
Yosida and his collaborators developed a variational
theory based on a singlet bound state of the conduction
electrons and the impurity spin. A Gor'kov-type mean-
field theory with many of the same features was employed
by Takano and Ogawa. ' (The theory of Takano and
Ogawa is similar to more recent mean-field treatments of
magnetic alloys and heavy-electron metals. ) These
methods correctly predicted a nonmagnetic ground state
for the Kondo Hamiltonian, with a Pauli-type susceptibili-
ty at low temperature.

The nature of the ground state was not convincingly es-
tablished until the early 1970s. Renormalization group
approaches to the magnetic alloy problem were intro-
duced by Anderson, Yuval, and Hamann and by Wil-
son. The scaling approach by the first authors showed
that for an arbitrarily weak antiferromagnetic exchange
coupling J, the system's ground state is a nonmagnetic
singlet. Moreover, on arbitrary energy and temperature
scales, the system may be described by an effective ex-
change constant J,~. For T~O, J,~ diverges, and the sys-
tem behaves as though the impurity were coupled rigidly
to the conduction electrons from the start; at high temper-
atures, the effective exchange constant tends to its "bare"
value J, and the system may be described by perturbation
theory (with its characteristic lnT corrections). The re-
normalization group concepts introduced by Anderson,
Yuval, and Hamann were fully developed by Wilson.
Wilson's combined numerical and analytical approach led
to the first quantitatively accurate calculation of a Kondo
model property, the magnetic susceptibility X(T) (see Fig.
2). Wilson rigorously established that the temperature-
dependent effective moment

FIG. 2. Results of Wilson's numerical renormalization group
for the Kondo model susceptibility. Note the temperature scale
is logarithmic. At high temperatures, the susceptibility is Curie-
like; as T decreases below a characteristic scale T~, the nonmag-
netic ground state of the model begins to strongly influence P
(and other properties). The susceptibility saturates to a finite
value inversely proportional to TK.

is defined using the high-temperature series expansion for
p ff in powers of ln '

( T / T~ ): Tx is chosen such that the
coefftcient of ln (T/T~) in this series is identically zero.
For a Oat band density of states, it may be shown that

Tx = exp( —'+C)[2N(0)
~

J
~

]' e
2~ 4 (2.8)

with Euler's constant C=0.577 216. Note the similarity
to the temperature scale in Suhl-Nagaoka theory. The
crossover from Curie law magnetism with perturbative
corrections at high temperatures to Pauli magnetism at
low temperatures is graphically illustrated (see Fig. 3) by
plotting the effective moment. The vanishing, or
"quenching, " of this moment at low temperatures signals
a nonmagnetic ground state. (The specific heat of the
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FIG. 3. Results of Wilson's renormalization group for the

effective moment in the Kondo model. The effective magnetic
moment p„&=3T+(T)is scaled by its ionic value p,',„=—'(gp&) .
At high temperatures, p,~ approaches the free-ion value with log-
arithmic corrections; for T~0, the moment is "quenched
away, " finally vanishing in the nonmagnetic ground state.
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Kondo model was later computed using Wilson's ap-
proach. This calculation represents the only application
of renormalization-group methods to a magnetic alloy
property other than the susceptibility. )

Wilson's renormalization-group approach was later em-
ployed in the first quantitative study of the susceptibility
of the Anderson model [Eq. (2.2)]. This study estab-
lished the existence of three distinct parameter regimes
(Fig. 4) for systems with large Coulomb repulsion
(U»

~
Ed ~, I ): (a) the empty impurity regime Ed &&I;

(b) the mixed valent regime (
~

Ed
~

( I ); and (c) the Kon-
do regime ( —Ed » I ). In the Kondo regime, the Ander-
son model susceptibility maps smoothly onto the Kondo
model susceptibility with an effective Kondo temperature
TK

Renormalization-group methods provided the most
powerful approach to the magnetic alloy problem before
1980. In this year, a new approach to magnetic impurity
models was discovered independently by Andrei and
Wiegmann. Using the Bethe-Yang ansatz, these authors
succeeded in exactly diagonalizing the Kondo Hamiltoni-
an (with a linear band dispersion). Solutions were subse-
quently found for variations of the Anderson model.
The finite-temperature thermodynamics of these models
may be formulated in terms of the solutions to infinite
hierarchies of integral equations. These equations have
been solved numerically, and the thermodynamics of
the Kondo and Anderson models are now well estab-

EF =O

lished. For properties studied using both the renormaliza-
tion group and Bethe ansatz (e.g. , the finite-temperature
susceptibility and specific heat of the Kondo model), the
agreement between the two methods is excellent.

The principal weakness of the "exact" methods dis-
cussed above is their inability to treat dynamic proper-
ties, such as the resistivity, thermopower and dynamic
susceptibility. (The resistivity at zero temperature may
be computed within the Bethe ansatz by a phase shift
analysis; this approach cannot be generalized to finite
temperatures. ) In the absence of exact methods, a
"high-order" approximation scheme is required. Simple
perturbation theory and Green's-function decoupling
methods fail at low temperatures, as discussed previous-
ly. An alternative approach, based on large magnetic
degeneracy, has been suggested by Anderson and
Ramakrishnan. Certain problems in quantum mechan-
ics, quantum field theory and statistical mechanics which
involve X degrees of freedom (colors, spin components,
etc.) are known to simplify in the limit N~ ao, in some
cases, systematic expansions in 1/Ã have been derived.
In the magnetic impurity problem, the analogous de-
grees of freedom are the angular momentum channels of
the impurity electron. For example, in the absence of
spin-orbit and crystalline electric field (CEF) effects, the
4f ' configuration of Ce is fourteenfold degenerate; if
spin-orbit coupling is taken into account, the ground
configuration remains sixfold degenerate. In this case,
the inverse degeneracy 1/X is an intuitively reasonable
expansion parameter.

In this paper, we consider a particular large-degeneracy
approximation for the orbitally degenerate Anderson
model

(b) EF=O Hband +Hf +Hmix r

Hband = g ~k nkm
k, m

(2.9)

(c) E'F =0

FIG. 4. Parameter regions for the Anderson model with

strong local correlations (U» ed, I ). The shaded rectangle
represents the Fermi sea of conduction electrons filled to energy
eF ——0. The adjacent line represents the impurity orbital. (a)

Empty impurity regime. In this regime, the impurity orbital lies
far above the Fermi level (ed »1 ). The impurity valence is near
zero, and the system's behavior is nonmagnetic at all tempera-
tures. (b) Mixed valent regime. In this regime, the impurity or-
bital lies close to the Fermi level: many-particle states with ernp-
ty and singly occupied impurity configurations are nearly degen-
erate. The impurity valence is intermediate between zero and
one. The high-temperature efI'ective moment reflects an admix-
ture of impurity configurations, and the charge susceptibility is
large (hence, the valence may be changed substantially by apply-
ing pressure or by alloying). (c) Kondo regime. In this regime,
the impurity orbital lies far below the Fermi level. The impurity
valence is close to unity. At high temperatures, the erat'ective mo-
ment approaches that of a noninteracting ion, at low tempera-
tures, the magnetic moment is quenched to zero, and the
system's properties take on a universal form with scaling temper-
ature T~.

Hf=Ef gn +U g n n
m (m )m')

H;„=V+(ck f +H c. ) .
k, m

It is assumed that conduction-impurity mixing takes place
in a single angular momentum sector (1j); conduction
states which couple to the impurity are labeled by wave
vector k =

~

k
~

and magnetic quantum number m, =m.
The band- and impurity-electron creation operators are
ckm and f (with nk~ =ck~ckm and n~ =f f ). This is
the appropriate generalization of the Anderson Hamiltoni-
an for systems with strong spin-orbit coupling. In partic-
ular, this is a reasonable model for Ce impurities in a met-
al. For Ce, l =3, j =—', , and the magnetic degeneracy
X =6.

Since the Coulomb energy is typically greater than 5 eV
in Ce compounds, and the hybridization width
I =mX(0) V is on the order of 0.1 eV, it is natural to at-
tempt to incorporate the localized correlation effects ex-
actly and to treat the hybridization term perturbatively.
For "soft" measurements (low-energy and temperature),
the exact value of U should be unimportant. The analysis
of Hq is simplified by assuming that U~ oo,' this assump-
tion removes from the problem all states in which the f
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occupancy is greater than unity. Within the system's re-
duced Hilbert space, the Hamiltonian may be rewritten
using f-orbital projection operators:

II U = oo H +~ U = oo +~ U= op

Hf ="=Ef+N (2. 10)

HU,=„"= Vy(e,' F.+H. c.),
km

with

N, = ~0)&0~,

N = /m)(m
/

(2.1 1)

and

III. OVERVIEW OF RESULTS

Before discussing the details of our calculations, we
present an overview of the results. This section may be of
greatest interest to the casual reader. In general, the be-
havior of both static and dynamic properties may be un-
derstood in terms of two temperature-dependent dynami-
cal spectra of the electronic system. These spectra are
pf ( ~ ), the many-body spectral density for adding (or re-
moving) an f electron of energy co, and o.f(co), the spec-
trum for f moment fiuctuations of energy co. For simpli-
city, these spectra are referred to as the f density of states
and the f moment spectrum throughout the remainder of
this paper. Both spectra are in principle experimentally
measurable: pf may be obtained from f photoemission
and inverse photoemission, and O.f from neutron scatter-
ing.

F = io)(m
/

Here
~

m ) represents the 4f ' configuration with magnetic
quantum number m, and 10) represents the 4f
configuration.

The Hamiltonian (2.10) as written contains no factor of
1/N with which to organize an expansion. As in other
large-N expansions in quantum field theory and statistical
mechanics, it is necessary to rescale parameters at the
outset. In the present case, the quantity N V must be
treated as a constant of 0 (1), rather than 0 (N).
(Equivalently, the hybridization matrix element may be
rescaled by V~ V/&N before proceding. ') The approx-
imation employed below is an infinite-order summation in
1/N perturbation theory. Specifically, this approximation
sums all processes of 0 (1) and 0 (1/N), as well as a large
class of processes of all higher orders; the lowest-order
processes omitted are O(1/N ). This approximation may
be shown to be thermodynamically self-consistent, in the
sense of Baym's analysis of the interacting electron gas,
and we shall hereafter refer to it as the "self-consistent
large degeneracy expansion. " The method is known by a
number of other names, including the "noncrossing ap-
proximation" (NCA). The source of this name is dis-
cussed in Sec. IV. The results of this approximation are
discussed in the following section; the details of the calcu-
lation are postponed to Sec. IV.

Formally, the two spectra are the Fourier transforms of
time-dependent correlation functions:

p (~) 1m dt i(co+io )tG (t)
1 i i +

f7T oc

af(cu) = ——Im f dt e'I"+' "Mf(t),

with

Gf(t)= —ie(t)( IF (t),F (0) I ),
Mf (t) — le(t) ( [M(t),M(0)] )

M=—gp~ g mN

(3.1)

The correlation function Gf(t) is just the amplitude for
propagating an f electron (or hole) for time t; the function
Mf(t) measures the self-correlation of the local moment
over time t. The first correlation function has Fermi char-
acter, and the second Bose character. It is easy to show
(see Appendix 8) that the spectral densities for these
correlation functions satisfy sum rules:

where f and b are the Fermi and Bose distribution func-
tions

f(co) = 1

et'"+1 '

b(co) = 1

et'" —1

(3.3a)

nf(T) (1 is the mean occupancy of the f orbital at tem-
perature T; and

P,'=j (j +1)(gyes)' . (3.3b)

These sum rules specify the overall normalization for vari-
ous processes: the total weight for removing an f electron
with quantum number m from the system is just the m-
orbital occupancy; the total weight for moment Auctua-
tions of arbitrary energy is a sum of the moments
(mgp~) for each orbital, weighted by the occupancy of
that orbital.

Both the f density of states and moment spectrum may
be computed within the self-consistent large-degeneracy
expansion; the sum rules above are satisfied within this
approximation (see Appendix B). Plots of pf and o.f for a
typical choice of parameters in the Kondo regime are
shown in Figs. S and 6. For both plots, the temperature
of the system is far below the characteristic Kondo scale.
The f density of states shows a two-peaked structure.
The weight at negative energies corresponds to electron
removal and the weight at positive energies to electron ad-
dition. The lower peak appears near the energy of the
magnetic f' multiplet in the noninteracting system. The
peak at positive energy To is a purely many-body eft'ect
and has no interpretation based on the noninteracting sys-
tem. This nonperturbative feature in the density of states

dc' co Pf co = Nm nf T
oc N f

(3.2)
2

f dcu b(~)ctf(~)=(gpss)'g m (N ) = ' nf(T),
oo 3
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is commonly called the Abrikosov-Suhl, or Kondo, reso-
nance. ' For brevity, we refer to it hereafter as the Kon-
do resonance. The two peaks shown are not the only
features in the physical f density of states for a finite
correlation energy U. Additional peaks must appear near
Ef + U, cy +2 U, and so forth. These peaks measure the
weight for adding an electron to the system when the f
occupancy is already one or more, i.e., they measure the
weight for exciting the system into an f" configuration
with n )2. When U is assumed to be infinite, the weight
in these processes is pushed out to infinite energy and re-
moved from the calculation. The computed density of
states then measures only the weight for removing an
electron from the f ' configuration (negative energies) and
for adding an electron to the f configuration (positive en-
ergies). For U extremely large, but finite, the ground state
contains negligible admixtures of f", n &2, and the only
feature missing from the computed spectrum at zero tem-
perature is the peak near E~+ U for exciting the f '~f

T/D = 2 & IO

/D = -0.67f
I /D =0.075

50'
T/D = 2 BIO

g /0= —0.67f
25 r/D = 0075

—25—

-50'
—IO

I

—0.5 I.O
I

0
GO/D

FIG. 6. f moment spectrum ot in the low-temperature limit.
The parameters are the same as those in Fig. 5. The moment
spectrum is odd in frequency. Its principal features are pro-
nounced peaks at energies of —+1.4To, where To is the low-
energy scale deduced from the f density of states. The positive-
energy portion of the moment spectrum may be measured direct-
ly by quasielastic neutron scattering (the positive portion corre-
sponds to neutron energy loss, and the negative portion to neu-
tron energy gain).

0'
—I.O

i

-0.5 0.5 1.0

transition.
The Kondo resonance has a simple physical origin: at

zero temperature, the f density of states for co & 0 may be
formally decomposed as

pI(co)= g )
(X jF

) Po) )
|i(co+ED Etv), co&0—,

N

(3.4)

FIG. 5. f density of states pt in the low-temperature limit.
The conduction electron density of states has been assumed to
have a Lorentzian profile with half-width D; in most Ce alloys, a
reasonable value for D is 3 eV. In units of D, the values chosen
for the f-orbital energy e~ and hybridization width I are —0.67
and 0.075. The orbital degeneracy N is 6, the appropriate value
for the spin-orbit ground state of the Ce ion (with negligible crys-
talline electric fields). The temperature is (2)&10 )D. The den-
sity of states has a characteristic two-peaked structure: the lower
peak measures the probability for exciting an f'~f transition
within a single magnetic channel. The total weight for this pro-
cess is 0.155, close to the value 1/N =

6 expected in the absence
of hybridization. The lower peak is nearly Lorentzian, with
half-width -Nl and height —(1/mN)(NI ) ', it is centered at
gf ( e&. The upper peak, or Kondo resonance, is a unique
feature of magnetic alloys, with no analog in nonmagnetic sys-
tems. It measures the probability for exciting an f ~f ' transi-
tion. The position of this peak for T~O, To, is by definition our
low-temperature scale. The Kondo resonance has half-width of
order m.To/N and height of order (m. l") '; hence, its total weight
is -AT /NI .

w=p(E)[1 —f(E)]b&
c

(3.5)

with f the Fermi function. This relationship breaks down

with
~
Po) the exact ground state of an JV-particle system

and
~

X ) a complete set of energy eigenstates of an
(iV+ 1)-particle system. The Kondo resonance indicates
the presence of a narrow cluster of (A'+1)-particle states
at energy To above the ground state: since the ground
state is a singlet with only a small admixture off weight,
these are magnetic states which resemble the ground state
of an (iV+1)-particle system in the absence of hybridiza-
tion. By allowing the presence of the f admixture, the
system gains energy To from hybridization.

Note that the Kondo resonance is superficially similar
to resonances in one-body models. The resemblance of
the two phenomena should not be stretched too far, how-
ever. In one-body problems, the weight for exciting states
in an energy range AE is just the product of a
temperature-independent density of states and a thermal
occupancy factor, i.e., the weight for particle addition at
energy c. in range hc, w, is
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in interacting systems: a simple Landa p'dau icture based on
weakly interacting quasiparticles

'

p
~ 42 is ossible only at low

temperatures; ur er,; f ther even in this limit, the occupancy o
a single quasipar ic et 1 level is dependent on the occupancy

elof all other levels. While it may be possible to mode
~ ~

s stem in terms of an
effective one-body density of states, the resulting function
in general corresponds neither to the spectrum of Landau
quasipartic es nor o1 r to the temperature-dependent many-
body spectrum discussed above. Furthe, h ffh r the effective
one-body density of states must in general vary depending

th roperty which is to be described. This is clear
since a single choice of p,gE) always yields a Sommerfe ld
ratio of l.

Th f oment spectrum of the interacting system,
atcrf co), also exhibits nonperturbative resonant structure a

low energies. o e aN t that the moment spectrum is an o d
o- at co=+1.4TO.function of energy. Peaks appear in o.f at ~=

The exact relationship between the zero-temperature peak
positions in e mth oment spectrum and the density o
states depends on the magnetic degeneracy.

By the Auctuation-dissipation theorem, the moment
spectrum is simply related to the absorptive part of the
dynamic magnetic susceptibility, i.e.,

ImX(co+i0+) =~of(co) . (3.6)

Hence, pea s in e mk th oment spectrum occur in regions
within which the system may readily exchange energy
with a time-dependent magnetic field. The resonances at
+ 1.4 TO indicate the possibility for magnetic transitions
between the singlet ground state and low-lying magnetic
levels.

are stron lyAs noted previously, both pf and o.f are strong y
temperature- epen en .d d t This dependence is illustrated in
Fi s. 7 and 8. The resonances diminish in height andFigs. 7 an . e
broaden with increasing temperature. .urt. .erFurthermore, the
resonances are not, in general, well described by simple
one-body models. Figure 9 compares the Kondo reso-
nance in pf wi a'th Lorentzian fit. (A temperature-
independent Lorentzian density of states follows rom
one-body hybridization models. ) The compute reso-
nance lies well above the Lorentzian on the high-energy
side. Figure 10 compares the computed quantity of wit
a quasielastic "Lorentzian" spectrum; the computed
curves are normalized so that each has peak position an
hei ht unity. As in Fig. 9, the Lorentzian fit is quite poor
at low temperatures: this is natural since two closely
spaced inelastic peaks appear in o.f,/co rather than one
broad quasielastic peak. Only at high temperatures does
the Lorentzian fit become adequate. In this re ime, theg
inelastic peaks are smeared into a single feature. This re-

1 h important consequences for the ana ysis of
neutron scattering in dilute (and concentrated) on o
systems.

To this point, results have been presented or a sing e
choice of the Kondo scale. If it were necessary to recom-
pute spectra (and other properties) for each new choice of
this scale, the picture presented would be quite complicat-

ad the s ectraed. Fortunately, this is not the case. Instea e sp
obey approximate single-parameter sca glin laws which
hold to high accuracy at low energies and temperatures.

T/Tp

O.040
0-8 O. &25

O.40

1.25

To/D 4.8x )0

f/D ~ O.05

ng ~ O.97

0.63

o.~

4.O

0.2

0.0
—10 0

M/To

500

250

3
b

0

-250

500

FICr. 8. Temperature dependence of the f moment spectrum.
The moment spectrum also diminishes in height as the tempera-
ture is raised through Tp.

FIG. 7. Temperature dependence of the f density of states.
The density of states is normalized by vrI. [This normalization
is convenonvenient since the resonance height or T~O approaches
(vrI ) '.) The Kondo scale is in this case 2000 times sma er
than the band half-width and 100 times smaller than the hybridi-
zation width; as in Fig. 5, ef /D = —0.67. The resonance dimin-
ishes in height and broadens as the temperature is raised through
To, but remains visible for T/To & 10. Physically, the resonance
melts away as low-lying many-particle states with magnetic char-
acter become thermally populated: the unique signature o
f ~f' transitions from the ground state is smeared out by the
presence of "continuum-to-continuum" transitions.
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ex ansion below and postpone detai e1 dlarge-degeneracy p
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lence n ( T) is derived rom ep
of states pf y ab direct generalization o t e re a

'

noninteracting system, i.e.,

(3.8)nf(T)=N f
deaf(e)pf(E)

.

ce are lotted in Fig. 13. The param-po
are those in Table I. e v

ure-de endent, provi ed'
are widely separate inconfigurations are y

d-state singlet con-

I

F h o, (T)
ratu 1 -lying excited states

1 close to unity. ur erm
with increasing. temperaturature as ow- yin
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is to be expected in system s with a single

in of the singlet grounP g
magnetic configuration. pn. S ecifical y,
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T= T/Tp,
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d b s approximate scaling.temperature Kondo effect and o eys ap
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be scaling over this
d12 P 1
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d in Table I. For o spare summarize in
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40/ T()

FIG. 11. Scaling of the f density of states for T~O Parame-.
ter choices are summarized in Table I. The low-energy scale
varies by a factor of more than two-hundred for the curves
shown above. A dimensionless density of states is obtained by
scaling with ~I . The four curves exhibit significant deviations
from scaling only for co & 2'.

1 0

with predominantly f ' character become thermally popu-
lated. This population of excited states has characteristic
energy Tp,' hence, the temperature-dependent part of the
valence is expected to obey an approximate scaling rela-
tion with reduced temperature T /Tp. Approximate scal-
ing is expected to persist until thermal occupation of
high-lying states with significant f weights sets in. In the
ultra-high-temperature limit, the valence must just ap-

proach N /(N + 1 ), the fraction of local configurations
with f ' character.

The scaling properties of the low-temperature valence
may be exhibited explicitly by subtracting off the value of
nf for temperatures high in comparison with Tp, but lou
in comparison with

~
ef ~, the scale for high-energy f

charge excitations. The low-temperature valence may be
written

nf(T): nf —An—y(T), (3.9)

with nf the intermediate-temperature limit. To estimate
nf, we assume that the total decrease in valence due to
the Kondo effect is

b,nf (0)= 1+ NI
7TTp

(3.10)

0..5 ~ ~ ~ I I ~ 11 I I ~ ~ 1111 I I ~ I 1111 ~ 111~ ~ I

Qoi 0 i I ~0 t00
w jw,

FIG. 13. Temperature variation of the f valence nf Par.ame-
ters are summarized in Table I. The zero-temperature valence
varies from 0.97 to 0.7 1 .

Q4

0.2

[Compare the lowest-order estimate for this quantity in
Eq. (4.17c).] As indicated in Fig. 14, the quantity
b nf(T)/Anf(0) scales quite well with T/To, and becomes
vanishingly small for temperatures of order 10Tp.

l .Ql

3 0

—0.2
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I
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~r ~.
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Q4
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86

FIG. 12. Scaling of the f moment spectrum for T~O Pa-.
rameters are summarized in Table I. The spectrum is normal-
ized by +( T =0). For cu & 2 TO, the moment spectrum shows no
significant deviations from scaling.

0.0 I Q I tQ IQQ

FIG. 14. Scaling of the temperature-dependent contribution
to the low-temperature f valence, Any( T)/Anf(0).
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TABLE I. Parameters for normal-state calculations. The parameters used in calculating normal-state
properties for a model magnetic alloy are listed below. The magnetic ion has an f ' ground state with de-

generacy N =6 and an f excited state: E(f') E—(f")=ef&0. (This choice is appropriate for the
spin-orbit ground state of the Ce ion. ) Energies are measured from the Fermi level for the system with
an f" configuration. The conduction band is centered on the Fermi level and has a Lorentzian profile
with half-width D. (A half-width of 3 eV is reasonable for most Ce alloys. ) The hybridization width for
impurity-conduction electron mixing is I . An excited spin-orbit multiplet with degeneracy 8 is included
in parameter sets 6 and 7; 6,

„
is the spin-orbit splitting. Parameter sets 8 and 9 do not represent Ce al-

loys: set 8 is a repetition of a study by Zhang and Lee (Ref. 44), and set 9 tests the eftect of increasing
degeneracy. The Kondo scale T&& is defined to be the position of the Fermi surface resonance in the f
density of states for T~O. For the cases studied, Tp may be estimated within a factor of order unity by
the expression

- s/6

T D 1 /6 —1 /eg
0

D
~, „+TU g=

~[sf [

The enhancement factor in the first equation. is only present for the spin-orbit parameter sets (6 and 7).

Parameter set

6
6
6
6
6

6+ 8

6+ 8

6
18

eg /D

—0.67
—0.67
—0.67
—0.67
—0.67
—0.67
—0.67
—0.15
—0.67

r/D

0.05
0.06
0.075
0.10
0.20
0.035
0.05
0.016
0.025

6, , /D

0.07
0.07

TU /D

4.8 X 10-4
1.6 && 10
5.3X10-
1.8 x 10-'
1.1&& 10-'
8.7 x 10-4
1 ~ 5 ~ 10-'
2.8~10-'
7.3 x 10--'

nf(0)

0.97

0.92
0.87
0.71
0.96
0.86
0.85

The f density of states is also directly related to trans-
port properties in the impurity system. This is because
conduction electrons scatter by hopping in and out of the
f impurity orbitals. The probability for such a process
(i.e., the scattering rate) is directly proportional to the
weight for transitions between the f and f '

configurations. The latter quantity is just the f density of
states. Formally, the scattering rate per unit impurity
concentration C is

1.2

1.0

0.8

s (T)/c (o)

0.97
0.92 —-—

0.86
0.71

N(0)r '(ro)/C =Nl pf(co) . (3.1 1)

This rate is energy and temperature dependent; the Kon-
do e6'ect leads to a strong scattering resonance near the
Fermi surface. The resistivity p, thermopower S, and
thermal conductivity ~ may be expressed as averages of
the conduction electron lifetime (see Sec. V C); since the
scattering rate assumes an approximate scaling form at
low energies and temperatures, these transport properties
are also universal functions of the scaled temperature
T/To in limited temperature ranges. Results are plotted
in Figs. 15—18 for the parameter sets of Table I. All
transport properties exhibit scaling at temperatures T & To
in the valence range studied. Deviations from scaling are
evident in the thermopower and thermal conductivity at
higher temperatures. The source of these deviations may
be simply understood: S and ~ measure averages of the
conduction electron lifetime weighted by a power of the
electronic excitation energy. These properties are conse-
quently more sensitive than the resistivity to nonuniversal

0 4

0.2 N = 6

0 0 kLLLLLLI ~ k ~ 4 Lkl ~ ) a a a anal
'~

0.01 0.1 1

T/Tp

10 100

FIG. 15. Temperature variation of the scaled resistivity
p/p(0). Parameters are summarized in Table I. The resistivity
is roughly logarithmic in temperature for T- Tp, but the loga-
rithmic region extends for no more than a decade. For the
lowest temperature studied (T/Tp —0.05), the resistivity shows a
quadratic saturation, p(T)/p(0) —1 —u(T/Tp), with o. —5 for
N =6; a quadratic saturation is expected on the basis of general
Fermi-liquid arguments. (The self-consistent large-degeneracy
expansion is inadequate for describing the extreme Fermi-liquid
regime T~O: see Appendix C.)
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FIG. 16. Temperature variation of the thermopower S. For
X =6, the therrnopower shows a giant peak value of —105

pV/K at T/To ——0.9. In comparison, the thermopower in a typ-
ical metal is of order 1 pV/K. Significant deviations from scal-

ing appear for T/To —1.

features of the f density of states far from zero energy,
and deviations from scaling show up at relatively low
temperatures.

The valence and transport properties are rigorously re-
lated to the f density of states. Two additional properties,
the specific heat C ( T) and magnetic susceptibility 7( T)
are simply related to the density of states in a non-
interacting system. This relationship breaks down in the
presence of interactions. Both C(T) and g(T) are ther-
modynamic properties which probe the full many-body

20-

O

iO-

I I ~ I ~ I ~ II I ~ T IIIIII I I ~ I I III1 I I I T IIII

0)
0.97—
0.92
0.7 I

0 ~ I I ~ III ~ I ~ ~ ~ ~ ~ Il ~ ~ I I ~ IIl ~ I ~ ~ I ~ II

Q.O I O. I I 10 IOO

T/ Tp

FIG. 17. Temperature variation of the linear coefficient of the
thermal conductivity ~/T. At temperatures T && To, the
thermal conductivity is linear in T, as expected in a Fermi liquid.
Both the electrical and thermal conductivities are limited by the
presence of the Kondo resonance, which strongly scatters con-
duction electrons near the Fermi surface; as the resonance di-

rninishes with increasing temperature, the thermal conductivity
coefficient ~/T increases rapidly. As in the case of the thermo-

power, deviations from scaling appear for T- To.

density of states; this full density is not simply related to
pj. As stated previously, a Fermi 1iquid picture based on
weakly interacting quasiparticles holds only for T~O; the
quasiparticle density of states is also distinct from pf.

The static susceptibility instead follows directly from
knowledge of the f moment spectrum:

X(T)=P I dE (3.12)

where P denotes a principal value. When scaled by its
value for T~O, the susceptibility has the form shown in

Fig. 19. At high temperatures, 7 exhibits Curie law be-
havior, i.e., it falls off as 1/T. (This fact is obscured in
the logarithmic plot. ) The singlet ground state begins to
strongly inhuence the susceptibility when the temperature
reaches the characteristic scale To. Below this tempera-
ture, the susceptibility crosses over to a Pauli-type form.
An effective temperature-dependent moment may be
defined by

p', g T) =3TX(T); (3.13)

as T~O, the effective moment is quenched away (see Fig.
20). Note that the susceptibility exhibits a maximum at
finite temperature. This is a characteristic of systems with
large magnetic degeneracy. No such maximum occurs for
degeneracies N =2 and 3.

The final property considered within the present treat-
ment is the specific heat. The specific heat may not be ex-
pressed in terms of a single-particle density of states and
is not directly related to p~ or o.y. The specific heat may
instead be computed directly as a thermodynamic deriva-
tive of the system's partition function. The result is plot-
ted in Fig. 2I for the parameter sets of Table I. In the in-

tegral valent limit, the net entropy associated with this
anomaly

S(T)= j dTC(T)/T (3.14j

0 I I J I I ~ III ~ I III ~ I I ~ I ~ ~ J I ~

O.Ol O. l I lQ IOQ

T/Tp

FIG. 18. Lorenz ratio, L =~p/T, scaled by the Sommerfeld
value Lo=m/3. The Lorenz ratio compares the values of the
thermal conductivity coefficient and the electrical conductivity:
the expected ratio in any system with Fermi excitations is ~-'/3

at sufficiently low temperatures. In the present case, L /Lo has a
minimum at T/To-0. 4 and rapidly increases for T/To & 1.
Deviations from scaling appear for T/To-0. 5.
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FIG. 19. Temperature variation of the magnetic susceptibility.

Parameters are summarized in Table I. The curves for f valence
0.97—0.71 are results of the large-degeneracy expansion. The
curve for integral valence is a Bethe-ansatz result, shown for
comparison. A value of To for the Bethe-ansatz curve was ob-
tained by matching the high-temperature susceptibility for
nf =0.97. The same value of To was used in the comparison of
specific-heat results (Fig. 21). The susceptibility saturates for
T~O at a value inversely proportional to the low-energy scale
To, in comparison, the susceptibility of a free moment diverges
for T~0. The susceptibility exhibits a weak maximum at
T/To-0. 5.

0.0 1 0. 1

T/Tp

10 100

FIG. 21. Temperature variation of the impurity specific heat
C. The specific heat for the parameter sets of Table I is corn-
pared with the Bethe-ansatz result for nf ——1; the value of To for
the Bethe-ansatz curve is the same as that used in Fig. 19. The
results of the large-degeneracy expansion are in good agreement
with the Bethe-ansatz result. The entropy associated with this
specific heat anomaly (-ln6) counts the impurity degrees of
freedom "frozen out" in the nonmagnetic ground state.

approaches k~lnN (where N =6) within calculational ac-
curacy. This is the entropy liberated when the f orbital
degrees of freedom are "unfrozen, " and magnetic states
are highly populated. Note that in the ultra-high-
temperature limit the entropy must saturate to
k~ln(N + 1); the extra degree of freedom corresponds to
high-lying states in the f configuration.

The dependence of the properties discussed above on pf
and o.f is summarized in Table II. The spectra provide a
unifying framework, since each is, in principle, directly
measurable, and essentially all other properties are de-
rived from them. The method for calculating these spec-
tra and the partition function is presented in the next sec-
tion.

I ~ I ~ I I lli I I I I ~ I ~ I) I I I I III) I I I I ~ 11 IV. MODEL AND CALCULATIONAL SCHEME

0.8—
The degenerate Anderson Hamiltonian introduced in

Sec. II has the form

0.6—
X

N

0.4-

0.2—

where

Hband = g Ek +kali

k, m

Hf ——ef QN

0band +IIf +H mix

(4.1a)

0 a I I aaaaal ~ ~ I ~ a ~ ~ ~ I a aaaall I I I 1

O.Oi O. ) ) iO iOO

7/ To

FIG. 20. Temperature variation of the eAective moment

p,Q T) =3T+( T), scaled by its ionic value j (j + 1)(gpss ) . The
scaled moment approaches one at high temperature, but is rapid-
ly quenched toward zero as T decreases. This reflects the dimin-
ishing importance of low-lying magnetic states and the emer-
gence of the nonmagnetic ground state at low temperatures. The
curves for f valence 0.97 and 0.92 exhibit approximate scaling
over more then three decades.

H;„=V g(ck F +H. c. ),
k, m

where

N =Im&&ml .

F = IO)(mI .
(4. lb)

(The zero of energy is set by the noninteracting Fermi sea
and the empty f orbital. ) A perturbation expansion for
this Hamiltonian may be developed using a general tech-



2048 N. E. BICKERS, D. L. COX, AND J. W. WILKINS 36

TABLE II. Dependence of properties on the dynamic spectra

pf and o.f. The f density of states and moment spectrum pro-
vide a unifying framework for understanding static and dynamic
properties of the Anderson model. The dependence of various
properties on these spectra is summarized below.

(l) f density of states pf(e)

tion state normalization: plane-wave conduction states of
spin o. are created by operator ck, with

I ct, c t ~

I
= (2rr) 6( k —k')6

and

f valence

nf= f def(e)pg(e)
g ~ g f 1k~ + 1V(0) f dE .

V
(2n. )

(4.2)

Transport properties

L„(T)= 2[N(0)] kF

3m'C
1

resistivity p =
e'L p

e"[N(0)r '(e)/C]
BE

Conduction-electron scattering rate per unit concentration

N(0)~ '(e)/C =NI pf(e)

Here V is the system volume and N {0) the single-spin
density of states per unit energy. Spherical-wave states
with angular momentum (l,j,mj ——m) are created by
operator cl, (l and j suppressed), with

Ic(,~,ck ~ j =,5(k —k')6(2')
4~k

(4.3)

1
thermopower S=—

eT Lp
(e= Ie ) g —+g f 3dk~+1V(0) f de.(2')

1
thermal conductivity ~=-

T
Lp-

Lp

(2) f moment spectrum o/(e)
Dynamic susceptibility

Img(e+i0+) =~uf(e)

Plane- and spherical-wave states are related by

c~ =&4vr g &cr
I

m ) f Y( (k)ck
7T

&o Im &=&!—,
' m —o o

I
jm) .

(4.4)

Static susceptibility
O.f (e)

X=I' de
oc E

nique for treating systems with strong local correlations.
The presence of the projection operators F precludes the
combination of particle and hole diagrams using the
Feynman propagator; traditional Feynman techniques
may be applied using the "pseudo-Hamiltonian, " or "aux-
iliary boson, " approach. '" ' The pseudo-Hamiltonian
approach is complicated by the need for a projection
scheme to remove contributions to operator averages from
unphysical states. The present approach is considerably
more direct, involves no unphysical states, and has a
simpler set of diagrammatic rules.

Before introducing the rules for diagrammatic perturba-
tion theory, we summarize our conventions for conduc-

We discuss first the evaluation of the Anderson parti-
tion function. The partition function may be written as

Z =Trf Trban (4.5)

dz p, 1Z = e 'Trf Trbandr 2mi z —H (4.6a)

where the contour l encircles all singularities of the in-
tegr and in a counterclockwise fashion; the operator
(z H) ' may be—decomposed formally as

Ie&&eI
z —Eq,

(4.6b)

where the states N are eigenstates of the full Anderson
Hamiltonian. Thus, writing out the traces in Eq. (4.6) ex-
plicitly gives

where the traces are over the set of noninteracting band
states and noninteracting f orbital states. Introducing a
contour integral representation gives

z = f" dee (' g I
&0;N'"'I@& I'+&

I
&m;N'"'I@& I' &« —E~) .

~ ~band m
(4.7)

(4.8)

This is a physically appealing decomposition of Z: the sum over states, weighted by the delta function, is just the
temperature-independent density of many-particle levels with energy c.. This expression is not convenient for perturba-
tion theory, however. It is useful to separate out the Boltzmann weight of the conduction states by shifting the variables
of integration z and c by energy E~'" in each element of the sum. Thus,

Z= f" d« ~' & e
I
&oN""'I+& I'+XI &m N""'I+& I' &(E+Ex'"'—&e) .

~~ band
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The sum over states may no longer be interpreted as a physical density of many-particle levels; however, a great deal is
gained by this shift of variables. Dividing Eq. (4.6) by Zb, „d,the partition function of the noninteracting conduction
band, gives

pE hand
1Vdz —pz e

Zf =—Z/Zb, „d= e 'Trf
t- 2m h.nd Z bandBn

N band Nband

z+E (4.9)

The sum over conduction states is now written as a thermal average; the result of the sum is an operator acting within
the space of f-orbital states. Remarkably, this f operator may be written in the form

pE hand

(Nd d

N Zband
+ ~ z ~ m

m

(4.10)

with

1
Gp(z)—:

z — 0 z

G (z)—: 1

z —ef —X (z)

the functions Xo and X may be interpreted as "self-
energies" for the empty and occupied states; we shall fre-
quently refer to Go and 6 as empty- and occupied-state
propagators. The introduction of these propagators is
useful since Xo and X have simple diagrammatic repre-
sentations (see Fig. 22).

The equation analogous to (4.9) which follows from
separating out conduction degrees of freedom in this way
1s

Zf= doe '
po c + p,„c

with

the other hand, in the absence of hybridization, it may be
checked that

Po(E) =6(E),

p (e) =5(E—Ef ),
giving

Zf =1+Ne 'f

(4.12)

It is important to note that these quantities are not
spectral densities for dynamic correlation functions, and
hence are not physically measurable. Nevertheless, they
allow an intuitive picture of Anderson model thermo-
dynamics based on effective f configurations with conduc-
tion electron degrees of freedom "averaged out. " Rules
for evaluating the self-energies Xo and X are summa-
rized in Table III. As an example, consider the contribu-
tion to the empty-state self-energy in Fig. 23. Applying
the rules in Table III gives

po(e) = ——ImGp(c, +iO+ ),

p (e) = ——ItnG (8+iO+ ) .
'iT

(4.11)

The functions po and p may be interpreted as effective
densities of states, or distribution functions, for the empty
and occupied f-orbital configurations. In the presence of
hybridization, po and p are temperature-dependent; on

(dd) kP ) NV

(b) P )V

(c) )NY

NV

NV

FIG. 22. Components of diagrammatic perturbation theory
for the infinite- U Anderson model. (a) Vertex. Each hybridiza-
tion event is represented by a solid dot, with an accompanying
factor of V. (b) Occupied f-orbital line. The N singly occupied
f-orbital states are represented by dashed lines. (c) Empty f-
orbital line. The empty orbital is represented by a wavy line. (d}
Conduction electron line. Conduction electrons are represented
by solid lines.

FICJ. 23. Contributions to the f configuration self-energies.
(a) Lowest-order contribution to the empty-state self-energy.
The f and conduction electron lines may have N diff'erent mag-
netic labels, so the diagram is O(NV )=O(1). (b) Lowest-order
contribution to the occupied-state self-energy. The conduction
electron is restricted to a single magnetic channel by angular
momentum conservation; hence, this diagram is 0 ( V )

=O(1/N}. (c} n-fold repetition of the diagram in (a). A factor
of N accompanies each of the occupied-state —conduction-
electron loops.
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TABLE III. Diagrammatic rules for evaluating configurational self-energies in the infinite-U Ander-
son model. We list below rules for evaluating the empty- and occupied-state self-energies in the infinite-
U Anderson model.

To compute a general contribution to the empty-state (occupied-state) self-energy at O(V "), n & 1:

(a) Set down 2n vertices in a vertical line. Beginning at the bottom with a dashed (wavy) line,
connect the vertices with alternate dashed and wavy lines (all ascending). (A total of 2n —1 lines
now appear. )

(b) Always working to the right of the vertical line, connect the vertices with full lines in all possi-
ble ways which maintain the direction of the dashed lines at each vertex. Disregard diagrams
which may be disconnected by cutting a single local configuration line —they do not contribute to
the irreducible self-energy.

(c) Assign quantum numbers km (m) to solid lines (dashed lines), conserving angular momentum at
each vertex.

(d) Assign to ascending conduction lines a factor 1 fq and —to descending conduction lines a fac-
tor fq, with f the Fermi function. Draw a perpendicular to each local configuration line, and as-
sign to it an energy denominator (z —E ) ', where E is found by adding the energies of ascend-
ing lines intersected by the perpendicular and subtracting the energies of descending lines intersect-
ed.

(e) Multiply the product of energy denominators and Fermi factors by V "(—)', where c is the
number of conduction line crossings. Sum on all internal variables.

fy —Z
=NV ln

D
(4.13)

for a Bat density of conduction states with halfwidth D.
The simplest perturbation theory based on the tech-

nique outlined above treats the hybridization V as a small
parameter. Infinite order summations in the hybridiza-
tion are necessary to develop a reasonable picture of the
system s behavior. Instead of perturbing in V, it is useful
to develop an expansion based on a second parameter of
the model, the magnetic degeneracy N. Such expansions
have previously been employed for a number of problems
in statistical mechanics and field theory. Even low-
order approximations in the small parameter 1/N contain
the dominant features of the Kondo effect. The expansion
may be motivated by considering the corrections to the
propagators Go and G at lowest order in the hybridiza-
tion V (Fig. 23). Note that N distinct loops may be insert-
ed in the empty-state propagator at O(V ): this simply
reflects the magnetic degeneracy of the f ' configuration.
In contrast, only a single empty-state —conduction-electron
loop may be inserted in the occupied-state propagator at
0 ( V ): by angular momentum conservation, the band
electron propagates in the same spherical wave channel as
the f electron. If the process in Fig. 23(a) is repeated n
times, the resulting diagram [Fig. 23(c)] contains a prefac-
tor (NV )"; in order to have a well-defined limit, the fac-
tor NV (or alternatively NI ) must be treated as O(1).
The process in Fig. 23(b) is then O(1/N). Arbitrary dia-
grams in the propagator expansions may be classified in
powers of 1/N by simply counting vertices and electron
loops.

Xp(rp+iO+)=NV g fgG (rp+ek+iO+),
k

X (rp+iO+)= V g(I —fg)Gp(cp —Ek+iO+) .
k

(4.14)

These equations result immediately from the diagrammat-
ic rules in Table III ~

FICx. 24. Self-consistent f configuration self-energies. The
double-dashed and double-wavy lines represent dressed propaga-
tors containing infinite repetitions of the lowest-order self-energy
in Fig. 23. (a) Empty-state self-energy. (b) Occupied-state self-
energy.

Hence, a systematic expansion of propagators (and
correlation functions) in I/N may be attempted. Such an
expansion is not uniform in frequency, however, and does
not lead to smooth correlation functions. In order to
remedy this shortcoming, it is necessary to perform an
infinite-order summation in 1/N.

The simplest infinite-order summation is based on a
self-consistent approximation for the empty- and
occupied-state propagators, shown diagrammatically in
Fig. 24. This approximation resembles the lowest order
treatment of Fig. 23: the difference is that in this case the
internal f lines are not bare, but are dressed to infinite or-
der. More formally, the approximation requires solving
the following coupled integral equations for the self-
energies Xp and X introduced in (4.10):



36 SELF-CONSISTENT LARGE-N EXPANSION FOR NORMAL-. . . 2051

Xo(co+i0+)= J deG (cu+e+i0+);~ + NE o

7T —D
(4.15a)

replacing 6 with its value in the absence of interactions

This approximation for the impurity pro pogators is
commonly referred to as the noncrossing approximation,
or NCA. The basis for the name is the fact that all dia-
grams included may be drawn with noncrossing conduc-
tion electron lines. We shall refer to the approximation
throughout this paper as the "self-consistent large-
degeneracy expansion. " The lowest-order diagrams omit-
ted within this approximation appear in Fig. 25. Thus,
error in the empty-state propagator is formally O(1/N ),
and error in the occupied-state propagator is O(1/N ).
The error in the partition function Zf is O(1/N ) from
both the empty and occupied states: the latter error arises
since N identical occupied-state contributions appear in
Zf. Details on the numerical solution of Eqs. (1.14) are
summarized in Appendix A. (See also the discussion in
Refs. 49 and 50.)

The temperature dependence of the distribution func-
tions po(E) and p (e) for a typical parameter set is illus-
trated in Figs. 26—28. A Lorentzian density of conduc-
tion states with halfwidth D was employed in all numeri-
cal calculations; a smoothly varying density of states is
convenient, since band edge effects need not be con-
sidered.

Although these distribution functions are not directly
measurable, their prominent features are refIected in the
physical spectral densities, such as the f density of states
and the f moment spectrum. For this reason, it is of in-
terest to examine the self-energies Xo and X more close-
ly (see Fig. 29). An expression for Xo may be derived
analytically at 0 ( 1 ) for a flat density of states. (A
Lorentzian density of states has been employed in numeri-
cal studies, but analytical calculations are simplest for a
Bat profile. Similar results are obtained for any profile
with characteristic energy D.) For a flat density of states,
the empty-state self-energy at zero temperature has the
form

l600

T/To = 0.83

C)
—800 3

E

0
-I 0

4)/0

gives

()) Nr E,f —ct) —l o
Xo (co+i0+)=

7T D
(1)

Resonances are expected in po ~ at points where

co —ReXp"'(co) =0 .

(4.15b)

(4.16)

For parameters in the Kondo regime, this equation has
three solutions: a solution co' ' near zero energy is the
remnant of the pole in the noninteracting system [cf. Eq.

FIG. 26. Gross features of the f distribution functions po and

p for T & To. A Lorentzian conduction band profile with half-
width D has been assumed. The f-orbital energy ef /D
=- —0.67, and the hybridization width I /D =0.05. In the ab-
sence of hybridization, po is a delta function at energy 0; in the
presence of hybridization, this delta function is smeared into a
broad resonance, and a small feature develops below the f-orbital
energy at ——0.69D (shown in detail in Fig. 27). This reso-
nance becomes increasingly sharp with decreasing temperature; it
indicates the presence of a small f component ( —nTO/NI ) in
low-lying many-particle eigenstates. The occupied-state distribu-
tion function p is a sharp resonance (shown in detail in Fig.
28), which lies above the low-energy feature in po by approxi-
mately To.

40

T/ To

0.I7
0.83----

20.00 ——

FIG. 25. Lowest-order self-energy diagrams omitted in the
self-consistent large-degeneracy expansion. (a) Empty-state self-

energy. This diagram contains a single sum on magnetic quan-
tum numbers and six vertices; it is 0(NV )=0(1/N'). Note
that three conduction line crossings appear. (b) Occupied-state
self-energy. This diagram also contains six vertices, but in this
case there is no sum on magnetic quantum numbers; it is

0 ( V ) =0 (1/N'). Again three conduction line crossings ap-
pear.

0—0.692 -0.690 —0.688

FIG. 27. Temperature dependence of the empty-state distri-
bution function po in the vicinity of the ground-state energy. Pa-
rameter choices are the same as those in Fig. 26.
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G.(.I = (0;n 1

z —H

with 0) the unperturbed Fermi sea. Thus,

(4.18a)

ar,")
1—

Bco

NI1+ (4.17c)

ensit of states (such as the Lorentzi-
an), c p assum

(1) iThe residue of the pole at cu is
—1 —1

1
Gp(z) = 0;A

l

1+ OA, T Oil (4.18b)
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' = —2 Im ( 0; II
(
T

(
0;II )

(4.19)

propagator:

G/(ice„)=f dre " [—(7+ (r)F (0))] .
0

(5.2)

where

~

m;eq)=F cq ~0;0) .

(4.20)

The occupied-state distribution function remains a delta
function at 0 (1). If the self-energy is computed to
O(1/N) by inserting the O(1) empty-state propagator in
Eq. (4.14), the primary effect is a spectral broadening.
This broadening may again be understood by a golden
rule calculation: in this case, the state

~
m; 0 ) (which

has one more particle than the state
~
0;Q ) ) may decay at

lowest order into

~OEq)=F cq ~m II) . (4.21)

By energy conservation,
~
m; 0 ) cannot decay into the

ground state (with the same particle number); it may,
however, decay into a continuum state satisfying energy
conservation. In an O(1) treatment, continuum states
near E/ contain f admixtures with relative weight
=~TO" /XI . The density of continuum states remains
N(0), but in this case the square of the coupling matrix
element in the golden rule is

i
(0;E„

i
H;„i;fl)

i
=( T"'/NI )V . (4.22)

Thus, the level width becomes =vrN(0)(~Tt" /NI ) V
=~T'" /X.

In this simplified picture, the many-particle ground
state contains only a small admixture ( —vrTp' /NI ) of
the state

~

II). The remainder of the ground state is
made up of f electron-conduction hole contributions
F cq

~

II). The weight of states of this type within a
single angular momentum channel is O(1/N); however,
the net contribution from all channels is O(1). For this
reason, such admixtures must be considered in an O(1)
calculation of properties which are not restricted to a sin-
gle angular momentum channel.

V. CALCULATION C)F PHYSICAL PROPERTIES

A. f density of states

The f density of states assumes the following form:

p/(cp) = ——ImG/(co+i 0 ),1 +

G ( + 0+) f dr er(co+to+)1

x[—ie(r)([F (r),F (0)])], (5.1)

F —= iO)(m
f

The retarded propagator may be evaluated by analytic
continuation from the corresponding imaginary-time

by the optical theorem. Thus, in lowest-order perturba-
tion theory, the halfwidth, of the state

~

0;0 ) is just

rr g ~
(m;eq

~

H;„~0;II)
~

6(cJ- —eq)=7rN(0)NV

Rules for computing general contributions to G~ are
presented in Table IV. The diagram representing G/(imp„)
in the noninteracting system is shown in Fig. 30(a). This
diagram may be trivially dressed to O(1/N) by replacing
the bare empty-state and occupied-state propagators with
self-consistently dressed propagators [Fig. 30(b)]. The
contributions omitted in this procedure are 0 (1/N )

The first nontrivial vertex correction which cannot be ob-
tained by simply dressing Go and G to higher order is
shown in Fig. 30(c). Since contributions of O(l/N ) are
omitted in computing Go and G, it is consistent to
neglect the additional vertex corrections in Gy.

Thus, within the self-consistent large-degeneracy expan-
sion,

G/(ice„)= 1 dz —pz
. e 'Gp(z)G (z+icp„), (5.3)

Z& r 2~i

where I" encircles all singularities of the integrand in a
counterclockwise fashion. Introducing spectral represen-
tations,

1
G/(icp„)= de e ~'[pp(e)G (e+icp„)

Zf —oo

—Gp(c. —ice„)p (E)] . (5.4)

Thus,

1
p/(co)= (1+e ) f due 'pp(E)p (a+co) .

ZJ oo

(5.5)

This physical density of states is a convolution of the fp

and f distribution functions. This might have been ex-
pected, since p~ measures the weight for transitions be-
tween these two configurations. In principle, a similar
density of states may be derived directly from the Ander-
son Hamiltonian with a large finite Coulomb interaction;
the present approach circumvents the need for perturba-
tion theory with a large U term.

At low temperatures, the f density of states has two
dominant features, a broad resonance near the position of
the f level in the noninteracting system and a narrow
Kondo resonance at the small positive energy Tp. (The
energy To differs from the energy scale To" in the lowest
order treatment by a factor of order unity. ) Physically,
the width of the lower resonance arises from the finite life-
time of an empty f state; it may be understood using a
golden rule calculation. When an f electron is removed
from the system, the local level is rapidly filled by a con-
duction electron. Due to the orbital's magnetic degenera-
cy, the empty state "decays" in X channels. Assuming a
constant density of conduction states, the filling rate

'=2mNN(0)V, and the energy half-width is NI . In
terms of the f and f ' distribution functions, the broad
resonance in p& results from convoluting the feature in po
near zero energy with the sharp resonance in p . The
width of the convolution is almost entirely due to the f
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TABLE IV. Diagrammatic rules for evaluating Gf(im„). We list below rules for evaluating the
normal-state f Careen's function Gf(ice„).

To compute a general contribution to G~(iso„) of 0( V "), n )0:

(a) Set down 2n +2 vertices (solid dots) in a vertical line. Beginning at the bottom with a dashed
line, connect the vertices with alternating dashed and wavy lines (all ascending), finally leaving the
top vertex on a wavy line. (A total of 2n +2 lines now appear. )

(b) Counting from the bottom, convert the first vertex to an open circle (to represent the operator
F, ; convert an even-numbered vertex to an open circle (to represent the operator F ).

(c) Always working to the right of the vertical line, connect the remaining 2n vertices with full
lines in all possible ways which maintain the direction of the dashed line at each vertex.

(d) Working on the left side of the diagram, connect the open circles with a dash-dotted "external
line, " carrying energy i ~, from top to bot tom.

(e) Assign quantum numbers km (m) to solid lines (dashed lines), conserving angular momentum at
each vertex.

(f) Assign to ascending band lines a factor l fq and t—o descending band lines a factor fq, with

f the Fermi function.

(g) Draw a perpendicular to each local configuration line, and assign to it an energy denominator
(z —E ) ', where E is found by adding the energies of ascending lines intersected by the perpen-
dicular and subtracting the energies of descending lines intersected.

(h) Multiply the product of energy denominators and Fermi factors by V "(—)'. Here c is the
number of line crossings on the right side of the diagram. Sum on conduction momenta and inter-
nal angular momenta.

(i) Compute the contour integral

e ~'R (z),
Zg I 2' I

where R is the result of the preceding operations, Zf is the system partition function, and I encir-
cles all singularities of R in a counterclockwise fashion.

distribution.
The narrow resonance at energy Tp results from the

presence of an f admixture in the interacting ground
state. In terms of the f and f' distribution functions,
the resonance is the convolution of the sharp feature in pp
at Ef —Tp and the resonance in p at Ef. Physically, the
small weight of the resonance retlects the fact that the f
admixture is small; the integrated weight of the resonance
is =~Tp/NF, the weight of the feature in pp. As the
temperature increases, the Kondo resonance is smeared
out. Physically, this is because at finite temperatures the
many-particle eigenstates of the system are thermally pop-
ulated; the density of states measures a weighted average
of the one-particle excitations from a continuum of states.
The zero-temperature Kondo resonance measures the
weight for exciting the system from the ground state into
a low-lying state with large f ' weight. When the temper-
ature becomes of order Tp, the weight for exciting
continuum-to-continuum transitions becomes comparable,
and the unique ground state signature disappears. The
eigenstates of the system are, of course, temperature-
independent; the system's behavior changes with increas-
ing temperature as the weight of the ground state in
thermal averages diminishes.

The temperature dependence of the Kondo resonance
has been discussed briefly in Sec. III. The resonance is

1Gf(cu+i0+ ) =
co —Ef —Xf(Co+ l0 )

(5.6)

and to extract a "physical" self-energy {to be dis-
tinguished from the configurational self-energies Xp and
X ). Since the exact self-energy obeys a number of Fermi
liquid relations in the zero-temperature limit, this allows
an additional test of the approximate solution. The recon-
struction is based on the equations

clearly visible even when the temperature becomes of or-
der 10Tp. This high-temperature remnant of Kondo be-
havior is reflected in the logarithmic corrections which ap-
pear in low-order perturbative studies of Anderson model
properties. The resonance effectively reaches its zero-
temperature limit at temperatures of order 0. 1Tp. The
scaling properties of the resonance have also been dis-
cussed in Sec. III. The existence of approximate scaling
may be derived analytically from the equations determin-
ing the f and f' propagators. Physically, scaling is ex-
pected so long as the nonperturbative low-energy scale Tp
is smaller than all other relevant parameters of the sys-
tem, such as the hybridization width, the f-orbital energy,
and the band width.

With knowledge of the f density of states, it is possible
to reconstruct the full f Careen's function
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pf(E)
ReGf (to ) =P I d E

CO —C

77pf (CO )

Re'Gf(cu)+~ pf(cu)

ReGf (cu ) +(~—Ef ) .
Re Gf( tu) +~ pf(ru)

ImXf (co+i 0+ ) =—

ReXf (cu) =—

where P denotes a principal value, and

(5.7)

(5.8)
C5

03

T/TG = 0.042

Re Zg

Results for the real and imaginary parts of the f self-

energy are shown in Fig. 31. Note that near ~=0, the
real part of the self-energy is extremely steep, and the
imaginary part is small.

The exact self-energy satisfies the low-frequency rela-
tions in Table V. ' The first two relations are satisfied
remarkably well (see Fig. 31) in view of the large range
of ImXf. The fifth relation explains the eff'ect of a rapid-
ly varying self-energy at low frequencies: Z ' is a
quasiparticle renormalization constant which becomes
enormous as To~0. The fifth relation has been used to
compute the specific-heat coefFicient y directly from the

f density of states (see Sec. V C).
The fact that the Fermi liquid relations for the f seif-

energy are satisfied only approximately reflects a general
shortcoming of the self-consistent approach in the extreme
low-temperature ( T «To ) limit. Analytical calcula-
tions ' have demonstrated that at T=O, the f density of
states exhibits a small nonanalytic cusp at the Fermi sur-
face, i.e. , at co=0 (see Appendix C for a detailed discus-
sion). Due to the nonanalyticity, the self-consistent ap-

I
I

I
III

/

—0.2
I

-Ol
l

0
M/D

0.2

Z = 1 — Reef
8co ru=o

The imaginary part of the self-energy has a sharp peak near
m=O with ImXf{i0+)/D = —0.037. This is in excellent agree-
ment with the exact value, —0.05. (Coulomb interactions do not
alter the value of ImXf at the Fermi surface, even in the limit
U~ap. ) The peak in ImXf occurs at cu/D =4&10 '&~TO/D.
Another exact result for systems with Coulomb interactions {see
Table V) is that, at zero temperature, the imaginary part of the
self-energy has its smallest magnitude at the Fermi surface; in
view of the large variation in ImXf, the position of the peak is in
excellent agreement with this result.

FIG. 31. Low-temperature f electron self-energy Xf(co+i0+)
near zero frequency. The parameters are the first set in Table I.
The real part of the self-energy is extremely steep near co=0.
The effective density of states measured by the low-temperature
specific heat is not pf (0), but Z 'pf (0), where

(e)

&
(Nv')'

N

TABLE V. Fermi-liquid relations for the degenerate orbital
Anderson model. A number of simple relations connect proper-
ties of the Anderson model evaluated at zero temperature and
energy. These relations may be established by perturbation
theory to all orders in the Coulomb energy U. Analogous rela-
tions are obeyed in any system with Coulomb interactions. In
relation 5, y is the impurity specific-heat coefficient.

FIG. 30. Diagrammatic representation of the f electron
Green's function Gf(ice, ). As in Sec. IV, wavy lines represent
the empty f orbital and dashed lines the occupied orbitals A.
dash-dotted line, or "external line, " carries frequency ice„be-
tween the points where an f electron is destroyed and created.
(a) f Green's function in the absence of interactions. (b) f
Green's function within the self-consistent large-degeneracy ex-
pansion. The bare configuration lines in (a) are replaced by lines
dressed with the self-energies in Fig. 24. (c) An O(1/N ) dia-
gram omitted in the self-consistent treatment. This diagram can-
not be obtained by dressing the empty- and occupied-state lines
in (b) with additional self-energy corrections, such as those in
Fig. 25.

(1) ImXf (iO+ ) = —I
T=0

(2) ImXf (co+i0+ )
rL)= T =0

=0

77nf
(3) pf (0) = sin'

mI
(Friedel-Langreth)

Pg Imp( m)

3 co

2——x.=T=O & T=O
(Korringa-Shiba)

(5) y = NZ 'pf (0), Z = 1 — Reef (co)
7T

/ 8
3 Bco
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IN

+ TO+ &~

EO+ TO+ Q~ —T

EO+ TO

Eo

2
3

N+I

N —
I

N+I
N

'"+yet MIO&+ ~ ~ ~

2 ex, M

p) +3 kM

~ ~ ~ +, f iO& +'''
yI gM

ct lO&

+ gkMPk ' MCkM

proximation violates various Fermi liquid relations, such
as those above. This shortcoming is not severe in the
Kondo regime: anomalous behavior is limited to temper-
atures and energies of order

(,N + 1))/(N —1)
TQ 7T TQ

T, Ct7 (5.9)r
This anomaly scale is small in comparison with the physi-
cally relevant scale for low-temperature properties, TQ.
Results reported in this paper are limited to temperatures
larger than or of order the anomaly scale: the cusp anom-
aly known to occur in the f density of states at zero tem-
perature has not been observed in numerical studies down
to the lowest temperatures for which convergent results
are obtained. Instead, the onset of the zero-temperature
anomaly is indicated indirectly by the violation of the Fer-
mi liquid relations (see also the discussion at the end of
Sec. V F).

B. f density of states for generalizations of the model

The preceding discussion assumes the simplest version
of the degenerate Anderson model and ignores the possi-
bility of fine structure in the f orbital due to spin-orbit
and crystalline electric field (CEF) interactions. Both
effects must in general be included in a physically correct
picture of the f density of states. So long as the infinite-U
approximation is retained, both effects may be included in

f APP I T ION

f REMOVAL

FIG. 32. Schematic level scheme for one f-electron excita-
tions in a system with spin-orbit splitting. Eigenenergies of
H —pN are indicated on the left; particle number and the princi-

pal composition of each many-particle state are indicated on the

right. Eo is the ground-state energy and
I Po) the ground-state

wave function. The ground state is separated by energy To from
a cluster of low-lying (JV+ 1)-particle states

I
N~ ) with predom-

inantly ground-multiplet f ' character. A cluster of (JV+ 1)-
particle states

I
N& ) with predominantly excited-multiplet f '

character lies higher by energy 6,„.Just below
I
Nr ) lie the

(JV—1)-particle states
I
N3): these states resemble the (A' —1)-

particle ground state, but with ground-multiplet electrons re-

placed by excited-multiplet electrons. The splitting T„rejects
the energy gain from hybridization when an f component is

mixed into states with predominantly excited-multiplet f' char-

acter. Finally, the (A —1)-particle states
I
N4) lie above the

ground state by energy —Zf ——ef ,'these states have predom-

inantly f character.

Hf =
a, m

(5.1O)

where now a labels distinct spin-orbit or CEF multiplets
and m indexes degenerate partners within a multiplet. In
an even more general context, cf may be replaced bycf, this generalization is necessary in the presence of a
finite magnetic field. The only new feature in the treat-
ment of these generalized Hamiltonians by the self-
consistent large-degeneracy expansion is the introduction
of two or more f' multiplets, rather than a single multi-
plet with degeneracy N. The coupled integral equations
are the same as before, except that now a separate propa-
gator and self-energy must be associated with each dis-
tinct sublevel.

We briefly consider the features expected in the sim-
plest generalized model with two distinct sublevels. This
model is appropriate, for example, for treating the two
spin-orbit multiplets in Ce under the assumption CEF
splitting is negligible. A typical spectrum is shown for
this case in Figs. 32 and 33. We denote the sublevel de-
generacies Ng and N,„,where cfg &.cf„.For the Ce
model, Ng =6 and N,„=8. The spectra pfg and pf, „

have the following qualitative features: (1) The ground
multiplet exhibits a resonance near the corresponding
single particle energy Efg. This resonance reflects the
large weight of the ground multiplet in the many-body
ground state; the excited multiplet is essentially absent
from the ground state, and negligible weight appears in
its density of states at negative energies. Since an empty
f level may be filled in N =N +xN, „differe tnways, the
resonance in pfs has width NI . (2) Kondo resonances
are expected at positive energy in each spectrum, due to
admixture of f weight in the interacting ground state.
As in the case of a single multiplet, these resonances
reflect the weight for exciting transitions between the
ground state and states near cfs and cf,„with large f '

admixtures. (3) Finally, just as f weight appears in the
singlet ground state below Efg, a significant f
admixture appears in states just below the excited multi-
plet. The removal of a ground-multiplet electron from
the ground state may leave the system in one of these
states near cf„,thus, an additional negative-energy res-
onance appears in pfg.

The temperature dependence of the low-energy features
is illustrated in Fig. 34. Note that the lowest peak is
markedly less temperature-sensitive than the remaining
two. Further, for a fixed hybridization strength, the total
spectral weight at low energies is significantly increased by
the presence of the upper multiplet. This observation may
have important implications for the interpretation of ex-
perimental photoemission and inverse photoemission
data: (a) experiments typically observe low-energy
weight larger than rrTo/NgI . (To may be determined by
fitting other properties, such as the magnetic susceptibili-
ty. ) (b) In addition, the low-energy weight is typically far
less temperature-sensitive than expected on the basis of a

ngle-multiplet Kondo resonance (cf. Fig. 7). The pres-
~ce of additional temperature-insensitive weight in pf
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FIG. 33. T~O f density of states pxps for a system with
spin-orbit splitting. Results are shown for an f-electron system
with two spin-orbit multiplets split by an energy 6, „ /D =0.07.
The ground multiplet, at energy efg /D = —0.67, has degeneracy
6, and the excited multiplet degeneracy 8. By definition,

pxps = 6p fg + 8pf, ex

The hybridization width is I /D =0.035 for both multiplets.
For D =3 eV, this is a reasonable model for a Ce alloy with
negligible crystalline electric field effects. The density of states
for a single magnetic channel of the ground multiplet, pfg, exhib-
its a broad (half-width —14I ) resonance near kg and two nar-
row resonances near the Fermi level. These resonances are la-
beled by the number for the appropriate transition in Fig. 32.
The parameters To and T,„may be estimated analytically using
the poor-man's scaling technique. The estimates for To and Tex
obtained from second-order scaling theory for a flat-band density
of states are

8/6

FIG. 34. Temperature dependence of the f density of states
with spin-orbit splitting. The parameters are the same as those
employed in Fig. 33. The positive-energy resonances are deplet-
ed as the temperature increases through the low-energy scale To.
The negative-energy resonance is not so strongly temperature
dependent: it is depleted with characteristic temperature
6, , » To. This difference in behavior has a simple explanation:
the lower resonance measures the weight for transition 3 in Fig.
32. The JV-particle states just above the ground state have
predominantly ground-multiplet character, just as the ground
state does; hence, the thermal occupation of these states at tem-
peratures of order To does not significantly alter the probability
for f '~f transitions with energies larger than To (such as tran-
sition 3). The situation is completely diff'erent for f ~f' transi-
tions, since low-lying excited states have negligible f" admixture,
while the ground state has an admixture of O(~TO/NI ).

'I7 Cfg
To -D exp

D
6, , +To

6/8

nf(T)= g (N ) = g (F F ) =NGf(r=O ) . (5.1 1)

776'f e„
T,„=Dexp

8I ~. o. —Tex
(T,„((A,„).

The single-channel density of states for the excited multiplet,

pf,„,exhibits only a single prominent resonance at positive ener-

gy. The resonance is labeled by the corresponding number from
Fig. 32. The widths of resonances 1 —4 may be estimated as
m To/6, nT, „/8,vrTO/6, and 14I .

General approximations need not yield consistent results
for the thermodynamic derivative (N ) and the equal-
time limit of the dynamic correlation function Gf. The
self-consistent large-degeneracy expansion does yield con-
sistent results for these two quantities (see Appendix B).
Thus,

nf(T) =N ge " Gf(i—ru„)

from spin-orbit and CEF structure may help resolve both
discrepancies between experiment and the simplest version
of the theory. It is straightforward to calculate the static
and dynamic properties of systems with spin-orbit split-
ting. Results for parameter sets 6 and 7 in Table I have
been reported elsewhere.

=N dc. 8pf c (5.12)

nh= gnh:N nf (5.13)

The valence is related to the f density of states exactly as
in a one-body system.

The number of holes nq (T) in the f orbital is simply

C. Impurity valence

The exact f-orbital occupancy, or valence, is given by

The number of holes cannot be obtained as g (F F ),
since
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g (F F ) =N f" de[1 —f(E)]pf(E)

In general, the impurity specific heat is not simply re-
lated to the f density of states (see the discussion in Sec.
III). However, in the zero-temperature limit, C = y T
may be computed using a Fermi liquid relation for the de-
generate Anderson model:

y = Npf (0)Z
3

Z ' = 1 — Reef (co)

(5.15)

=N dc e P'po c =N 1 —nf
Zf —oo

(5.14)

This expression does not account for the f weight concen-
trated at energies of order U: this weight is removed from
the calculated density of states by the initial assumption
U~ ~. To obtain the correct answer, it must be noted
before imposing the infinite- U limit that nr, ( T)
=1—nf (T); this follows formally from the anticommu-
tation relations of the physical f electrons. The result
(5.13) for ni, (T) is then immediate.

D. Specific heat

results of the large-degeneracy expansion for a Lorentzian
band. The extent of agreement is a measure of the accu-
racy of the large-degeneracy expansion.

Large-degeneracy results for systems with zero-
temperature valence nf ——0.97 are compared in Figs. 35
and 36 with Bethe-ansatz results for systems with

nf ——l. (The Bethe-ansatz curves actually describe the
Coqblin-Schrieft'er model: this model is related by a
rigorous mapping to the infinite-U Anderson model in

the limit cf~—oo, V /cf ——const. The Bethe-ansatz re-

sults for the Coqblin-Schrieffer model and for the An-
derson model ' with zero-temperature valence 0.97 are
essentially indistinguishable over the temperature range
in Figs. 35 and 36.) In order to compare the results, the
low-temperature scales in the two approaches must be
related; the ratio of these scales may in principle be com-
puted analytically by studying high-temperature expan-
sions for the two models. The ratio of high-temperature
scales found by this method must be the same as the ra-
tio of low-temperature scales, by a universality argu-
ment. To date, this analytic matching procedure has
been carried out only in systems with a flat band density
of states. Since we have employed a Lorentzian density
of states in the present numerical study, we treat the ra-
tio of Kondo scales as a fitting parameter in the compar-
ison. This procedure is satisfactory, since results for a
second property, the magnetic susceptibility, may be
compared assuming the same scale ratio (see Sec. V G).

(cf. the discussion in Sec. VA). Values for y obtained in
this way are collected in Table VII, where they are com-
pared with the low-temperature susceptibility (see the dis-
cussion in Sec. V G). At finite temperatures, the impurity
specific heat may be computed directly from the partition
function. Recall that

band f (5.16)

where Z and Zb, „dare the partition functions for the in-
teracting system and the noninteracting conduction band.
Thus, the impurity specific heat

C~~p( T) = C ( T)—Cb,„g(T)

1.0

0.8

C/ke

x(T)/x(o)

0.4

I T T T \ T T ~ 'IV ~ T 1 I 1 V W ~ T T T T T v v v v

wrier

a'= —T [F(T)—Fb,„g(T)]aT2

a'=T TlnZf(T) .
aT2

(5.17)

C, p(T) = 1nZf ( T),
Q(inP)~ 0 ln

(5.18)

with P= 1/T.
The scaling behavior of the specific heat was illustrated

in Sec. III. As an equilibrium property, the specific heat
may be computed by the Bethe ansatz. ' ' The Bethe an-
satz requires a linear band dispersion. Nevertheless, since
low-temperature properties assume a universal form,
Bethe ansatz results may be compared directly with the

Here, C (Cb,„z)and F (F»„z)are the specific heat and
free energy of the interacting system (noninteracting con-
duction band). An equivalent form more convenient for
numerical work is

0.2

0.0
0.01 1

T/Tp

'10 100

FIG. 35. Comparison of large-degeneracy expansion and
Bethe-ansatz results for N =6: specific heat and susceptibility.
The large-degeneracy results correspond to the first parameter
set in Table I. The Bethe-ansatz results for the Coqblin-
Schrieffer model (Ref. 30) (the integral-valent limit of the
infinite-U Anderson model) are shown for comparison. Since the
conduction band densities of states and the momentum-cutout'

schemes difter in these two approaches, the low-temperature
scales are not trivially related. The Bethe-ansatz temperature
scale has been adjusted to rnatch the two susceptibility curves at
high temperature; the excellent agreement of the specific heat
and low-temperature susceptibility in the two approaches
confirms the validity of the large-degeneracy approximation
scheme.
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1.2

1.0

0.8

1.„(T)= f dk
3m (2vr)

2[N(0)] kF
dE,

3m C

~f zk (Ek p—)"7(Ek)
Bcf,

C/ka

x(T)/x(o)

0 4

X 8"[N(0)r '(E)/C]

(5.20)

0.2

here C, is the dimensionless impurity concentration (the
number of impurities per unit cell), and the scattering rate
per unit impurity concentration is

0.0
N(0)T (E)/C =NI pf(E) (5.21)

0.01 0.1

T/To

10 100

The comparison is simplest on a logarithmic tempera-
ture plot: in this case, the scale ratio may be varied by
sliding the curves along the temperature axis without dis-
tortion. The agreement between the large-degeneracy and
Bethe-ansatz results is excellent. This substantiates the
approximation at finite temperatures, directly for equilib-
rium properties and indirectly for dynamic properties as
well.

E. Transport properties

In the linear response regime, the resistivity p, thermo-
power S, and thermal conductivity ~ are simply related to
the f density of states: this is because conduction elec-
trons scatter by hopping in and out of impurity orbitals.
As shown in Appendix D, all three properties may be ex-
pressed in terms of standard transport integrals:

1P=

L]
eT Lp

(5.19)

L 2

L2-
T Lp

where

FIG. 36. Comparison of large-degeneracy expansion and
Bethe-ansatz results for N =4: specific heat and susceptibility.
The large-degeneracy expansion is not sufficiently accurate to
produce a finite-temperature peak in the susceptibility; the small-

est degeneracy for which such a peak appears in Bethe-ansatz re-

suits is 4.

Since the scattering rate r '(e) assumes an approximate
scaling form, all three transport properties have universal
characteristics at low temperatures: the appropriate scal-
ing functions are pjp(0), S and ir!1~(0). Note that the
resistivity and thermal conductivity must be divided by
their zero-temperature values to eliminate material-
dependent parameters.

As shown in Fig. 15, the resistivity displays scaling
over a temperature range of several decades for valences
larger than 0.7. The thermopower, thermal conductivity
and Lorentz ratio ~p/T exhibit deviations from scaling at
relatively low temperatures, since they measure higher en-
ergy moments of the conduction electron lifetime than the
resistivity. Recall that only the Kondo resonance in the
scattering rate has a universal form; scattering at high en-
ergies is dependent on the details of the band density of
states, the position of the f orbital and the strength of the
f-conduction electron coupling.

The sign change in the thermopower at high tempera-
tures is due to a competition between the broad scattering
resonance near cf and the Kondo resonance: the dom-
inant contribution to transport properties at temperature
T is made by electrons and holes in an energy range of or-
der T at the Fermi surface. If, in this range, energy is
transported predominantly by holes (i.e., electrons are
scattered more strongly), the thermopower is positive; if
energy is transported predominantly by electrons (i.e.,
holes are scattered more strongly), the thermopower is
negative. (The sign diff'erence arises since electrons and
holes are positive energy excitations which carry opposite
charges. ) At low temperatures, the thermopower is posi-
tive (electrons are scattered strongly by the Kondo reso-
nance). As T increases, hole scattering becomes more im-
portant; eventually, the same amount of energy is trans-
ported by electrons and holes, and the thermopower van-
ishes. At higher temperatures, energy is transported
predominantly by electrons, and the thermopower is nega-
tive (as in a free-electron metal). As discussed in Sec. III,
the peak thermopower in Kondo systems is one to two or-
ders of magnitude larger than the thermopower in con-
ventional metals. This is due to the enormous disparity
in electron and hole lifetimes at low temperatures. Since
the Kondo contribution to S(T) is so large, its calculation
is not subject to the notorious difhculties which plague
most theories of the thermopower.
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TABLE VI. Diagrammatic rules for evaluating Mf(iv ). We list below rules for evaluating the
moment-moment correlation function Mf (i v ).

To compute a general contribution to Mf(iv ) of O(V ") n &0:

(a) Set down 2n +1 vertices (solid dots) in a vertical line. Beginning at the bottom with a dashed
line, connect the vertices with alternating dashed and wavy lines (all ascending), finally leaving the
top vertex on a dashed line. (A total of 2n +1 lines now appear. )

(b) Convert the bottom vertex to an open circle (to represent the operator m'F F ). Break one of
the dashed lines by inserting a second open circle (to represent the operator mF F ).

(c) Always working to the right of the vertical line, connect the remaining 2n vertices with full
lines in all possible ways which maintain the direction of the dashed line at each vertex.

(d) Working on the left of the diagram, connect the open circles with a dash-dotted "external line, "
carrying energy i v from top to bottom.

(e) Assign quantum numbers km (m) to solid lines (dashed lines), conserving angular momentum at
each vertex.

(f) Assign to ascending band lines a factor I fq an—d to descending band lines a factor fq, with

f the Fermi function.

(g) Draw a perpendicular to each local configuration line, and assign to it an energy denominator
(z —E ) ', where E is found by adding the energies of ascending lines intersected by the perpen-
dicular and subtracting the energies of descending lines intersected.

(h) Multiply the product of energy denominators and Fermi factors by V '( —)'(gp&)'mm', where
m and m' are the angular momentum attached to the open circles, and c is the number of conduc-
tion line crossings. Sum on conduction momenta and angular momenta (including m and m').

(i) Compute the contour integral

j —/32+ ( )
Zf r 2~i

where R is the result of the preceding operations, Zf is the system partion function, and I encir-
cles all singularities of R in a counterclockwise fashion.

F. f moment spectrum (b)

The moment spectrum o.f plays the same central role
in magnetic phenomena that the f density of states pf
plays in transport properties. The moment spectrum is
defined as the spectral density of the f moment correla-
tion function

I Vmg P '&m+ &

Mf(t) = —i8(t) ( [M(t),M(0)] ),
rrf(ru) = ——ImMf(cu+i0 ),1 +

(5.22)

i&m

where M =gpss g tnN . The moment spectrum may be

evaluated by computing the Matsubara correlation func-
tion

Mf(iv )= J dec [—('T~(r)M(0))], (5.23)
0

then performing the analytic continuation to real frequen-
cies. General rules for evaluating Mf(iv ) appear in
Table VI. The lowest order contribution [see Fig. 37(a)]
is simply

2 +IV~ —Ef 2 —Cf

—pef 2

5 o, (5.24)
3T

FIG. 37. Diagrammatic representation of the f moment
correlation function. As before, wavy lines represent the empty
impurity orbital, dashed lines the occupied orbital, and solid
lines the conduction electrons. Open circles represent the f
moment operator. A dash-dotted "external line" carries frequen-

cy i v between the open circles. (a) Correlation function in the
absence of hybridization. (b) Correlation function in the self-
consistent large-degeneracy expansion. The double dashed lines
incorporate the self-energy in Fig. 24. (c) Vertex correction with
noncrossing conduction lines. This contribution vanishes when
the sum over magnetic quantum numbers m and m ' associated
with the two moment operators is performed. (d) Vertex correc-
tion with crossing conduction lines. This diagram, which cannot
be obtained by dressing the empty- and occupied-state lines with

self-energy insertions, remains after the sum on magnetic quan-

tum numbers. Relative to the contribution in (b), it is O(1/N ).
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with

p,' =j (j + I )(ghatt )',
Zf =1+Ne

The occupied state lines in Fig. 37(a) may be dressed to
give

Mf(iv )= e 'G (z+iv )G (z)
NPj 1 dz p,

3 Zf 27Tl

2

dEe p~
3 Zf —oo

0.4

3
b ~02

3
N~

To /D

4.8 x IQ

53 x IQ

I. I x IQ

X [G (8+iv )+G (s i v )] .

(5.25)

Additional diagrammatic contributions, such as those in
Figs. 37(c) and 37(d), involve vertex corrections. Dia-
grams which may be broken into disconnected parts by
cutting two empty-state lines [such as Fig. 37(c)] drop out
when sums over the quantum numbers m and m' are per-
formed. The remaining diagrams are smaller than the
leading contributions by O(l/N ). Thus, the expression
in Eq. (5.25) is the complete result for Mf(iv ) within the
self-consistent expansion. The f moment spectrum be-
comes

of(co) = f ds e ~'p (E)
Npj

3 Zf —00

0 . . --f--
—4

I

—2 0
4J/To

FIG. 38. Behavior of o.f(~)/~ in the low-temperature limit.
For T~O, the calculated f moment spectrum exhibits a spurious
low-energy cusp associated with the incipient breakdown of the
self-consistent large-degeneracy expansion. Results for parame-
ter sets 1, 3, and 5 in Table I are shown above. The exact behav-
ior at zero temperature and energy (indicated by &) follows
from a Fermi-liquid relation:

Pj elf (cO)
lim
AP~ 0 3 Qpg

X [p (E+~)—p (E —co)] . (5 26) p, of(co)
?im03 ~y2 N'

(5.27)

Note that this spectrum is odd in ~. The dominant
features in the zero-temperature moment spectrum are
resonances at energy —+To. These resonances indicate
that the system has high probability for gaining or losing
energy To in interactions with an external magnetic probe
(such as a neutron). In other words, a set of many-
particle eigenstates with an intrinsic magnetic moment is
centered at energy To above the ground state; these are
the same states containing a large f' admixture which
contribute to the Kondo resonance in the f density of
states. For this reason, the energy scale for transport and
magnetic phenomena is the same. The actual spectrum
measured in neutron scattering is (1—e ) 'af(co).
The temperature-dependent factor reflects the fact that at
low temperatures only the positive-energy moment spec-
trum (corresponding to neutron energy loss) is measur-
able.

The inadequacy of the self-consistent large-degeneracy
expansion at zero temperature ' (cf. the discussion for
the f density of states in Sec. VA) is re(Iected in the f
moment spectrum as well (see Appendix C). The break-
down of the approach at low temperature and energy is
most clearly exhibited by plotting crf(cu)/co. At zero tem-
perature, this quantity obeys a Fermi liquid relation first
proved by Shiba:

As shown by Miiller-Hartmann and Kuramoto and
Kojima, ' o f (co ) /co actually diverges as

~

co
~

within the large-degeneracy expansion. This nonanalytic
low-energy behavior is illustrated in Fig. 38. At higher
temperatures, the low-energy cusp rapidly disappears and
the expansion becomes reliable.

G. Magnetic susceptibility

X(co)=f" dte" +' "A.(t), (5.28)

with

JR(t) = +1e(t) ( [u(t),Jt(o)] )

and

k, o

(5.29)

The moment spectrum discussed in Sec. VF is closely
related to the absorptive part of the magnetic susceptibili-
ty. In the linear response regime, the system's total sus-
ceptibility is
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crf(E)=P dE +irrcrf(cu),
C —67

(5.30)

where P denotes a principal value. In particular, the stat-
ic susceptibility is just

In general (see Appendix E), IN. (t) separates into terms
measuring the self-correlation of the conduction-band
magnetization, the self-correlation of the f magnetization,
and the mutual correlation off and band components. In
the dilute impurity limit, the first term produces the Pauli
susceptibility of the band electrons (slightly modified since
electrons near the Fermi surface have a finite lifetime in
the presence of impurities). The second term is the most
interesting: its contribution to X(T) reIIects the quenching
of the effective impurity moment, showing a crossover
from Curie behavior at high temperatures to Pauli behav-
ior at low temperatures. The remaining term in W(t)
contains band-f polarization effects. This term is nonzero
in general; however, it may be argued that its contribution
to the susceptibility is small in large bandwidth systems
(see Appendix E). We discuss only the dominant contri-
bution to X(T) below. Ignoring polarization effects, the
impurity susceptibility is

g(cu+iO+) = —Mf(co+-iO+ )

The static susceptibility may also be obtained directly
from the partition function Zf as a thermodynamic
derivative. It may be checked that the same result is ob-
tained by both approaches. Since the moment spectrum
obeys approximate scaling at low temperatures and fre-
quencies, the static susceptibility also assumes a universal
form (see Figs. 19 and 20). The susceptibility calculated
within this approach is in good agreement with the exact
result obtained by the Bethe ansatz (see Figs. 35 and
36).

Values for the susceptibility in the zero-temperature
limit are presented in Table VII. Note that the suscepti-
bility and specific heat coefticient are of the same order of
magnitude. For a Fermi gas, the Sommerfeld ratio

~/3 I'

p~ /3
(5.32)

is unity; deviations from unity measure the strength of
magnetic interactions in a Fermi liquid. From the table,
the Sommerfeld ratio for the systems in the integral valent
limit {nf- 1) is approximately —,', i.e., 1V'/(K —1) for
N =6. By comparison, the exact value, which follows
from a Fermi liquid relation, is

crf(E)
J(co=0)=P f" dE

l ——
N 3 y

(5.33)

N f" dEe ~'2ReG {E)p (E) .
3 ZJ

(5.31)

the charge susceptibility 7, vanishes in the integral valent
limit and increases slowly with decreasing valence. The
results from the self-consistent approach are in good
agreement with this exact relation.

TABLE VII. Results for normal-state properties in the Fermi-liquid regime (T~O). The zero-
temperature valence, magnetic susceptibility and specific heat coefficient for the parameter sets of Table I
are listed below. All properties are computed by extrapolation from finite temperature (0.02To —O. OSTO)

to avoid the difficulties known to occur in the self-consistent approach at zero temperature. The
specific-heat coefficient is computed using the fifth Fermi-liquid relation in Table V. The susceptibility
and specific heat coefficient are scaled by the single-channel density of states per unit cell at the Fermi
surface for conduction electrons:

2

1

p,'/3 (rrD) ' H/3 (rrD)

Values of order unity would be expected in nonmagnetic alloys. In this case, 7 and y are inversely pro-
portional to To.. the exact proportionality constant depends on the choice of a Lorentzian band, since

~
Ef -D By a Fermi-liquid . relation, the exact Sommerfeld ratio is

N 1 ~2 gc
N-1 N3 7

with +, the charge susceptibility (which vanishes in the Kondo limit ef &&NI ). The results below
are in good agreement with this exact relation for N =6 (R —1.2).

Parameter set

4.8~10—4

5.3 ~ 10-'
1.8~ 10
1.1 ~ 10
8.7 X 10—4

1.5 ~ 10
2.9 && 10—-'

0.97
0.92
0.87
0.71
0.97
0.86
0.85

5970
537
161
24

3220
181
958

4980
452
135
20

2730
162
799

1.20
1.19
1.20
1.18
1.18
1.12
1.20
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VI. COMPARISON WITH EXPERIMENT

In this section, we compare the results of the self-
consistent large-degeneracy expansion with experiments
on Ce compounds. %'hile the experimental results hold
strictly only in the dilute limit, it is of interest to compare
with experimental measurements in concentrated systems
as well. As shown below, a single-impurity theory offers
a surprisingly good description of properties which de-
pend weakly on wave function coherence in a periodic lat-
tice. These properties include the photoemission spec-
trum, the static and dynamic susceptibility and the
specific heat.

The dilute Ce alloy most thoroughly studied by experi-
mentalists is (La,Ce)B6 Imp. urity interaction eA'ects

in this system are believed to be largely absent for Ce con-
centrations less than about 2%. This alloy exhibits Kon-
do anomalies in the 1-K range. A small Kondo scale is
important for reliable comparisons with theory: in the 1-
K range, phonon contributions to the specific heat and
transport properties are small, and magnetic impurity
effects may be separated out by performing background
subtractions. (Deviations from Matthiessen's rule are
known to be important when phonon and magnetic con-
tributions to transport properties are comparable. )
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Another convenient feature of (La,Ce)86 is the absence of
a superconducting transition down to the millikelvin
range; this allows normal-state measurements over several
decades of temperature. Measured properties include the
static susceptibility, specific heat, resistivity, and ther-
mopower.

Large cubic crystal fields in the LaB6 matrix lower the
ground-state degeneracy from six to four. The existence
of a quartet-doublet level scheme with splitting -600 K
has been confirmed by inelastic neutron and Raman
scattering. In addition, evidence exists for a fine-scale
( —30 K) splitting of the quartet ground state, presumably
by a dynamic crystal-field-phonon interaction. (A
symmetry-lowering process must be postulated, since cu-
bic crystal fields break a sextet into a doublet and quartet,
rather than three doublets. ) So long as the hybridization
width I is larger than the quartet splitting, the ground
state degeneracy remains effectively four.

Assuming X =4, we have computed X(T), C(T), p(T),
and S(T) within the self-consistent large-degeneracy ex-
pansion. The parameters chosen (see Table VIII) provide
results in the scaling regime. Experiment and theory for
all four properties may be compared by fitting a single pa-
rameter, the Kondo scale To, this provides a relatively
stringent test of the theory. The results of the fit for
TO=1 K are shown in Figs. 39—42. The experimental
curves show only the magnetic contribution to each prop-
erty. The approximations made in arriving at this contri-
bution are the following.

(I) For the susceptibility, specific heat, and resistivity, a
simple background subtraction based on pure LaB6 has
been applied. The subtraction is most problematic for the
resistivity, since Matthiessen's rule (additivity of scatter-
ing rates) is assumed. Even in this case, the subtraction is
reasonably justified since the phonon and nonmagnetic
impurity contributions to p(T) are much smaller than the
magnetic contribution.

TABLE VIII. Parameters for comparison with (La,Ce)B&.
A Lorentzian conduction band of half-width D with center at
the Fermi level was assumed. The degeneracy N =4 is ap-
propriate for a Ce ion with a I 8 crystal-field ground state. The
parameters lie within the scaling regime: all static properties
may be expressed as universal functions of the reduced temper-
ature T/TG. The susceptibility and specific-heat coeScient are
scaled by the single-channel density of states per unit cell at
the Fermi surface for conduction electrons, (~D)

Parameter Value

c/D
I /D
TG/D

nf

7/y

4
—0.67
0.075

3.5~10—4

0.96
7710
5830
1.32

1 20 V W T T '
~ T'S ~ T '~ V V 7 VIV

1.00 O O

0.800
0.60-

0.40

0.20

0.00
0.01 0.1

T(K}
10

OO
C

FIG. 39. Comparison of theory and experiment for
(La,Ce)B6. magnetic susceptibility. In Figs. 39—42, the experi-
mentally determined contribution to each property is denoted by
open circles. The solid lines are the results of the self-consistent
large-degeneracy expansion: the same value of the theoretical
low-energy scale, TG ——1 K, has been assumed for each property.
A I 8 quartet ground state is assumed. The magnetic susceptibil-
ity shows the largest discrepancy between theory and experi-
ment. The disagreement may be of experimental origin: in the
study cited (Ref. 59), a doublet ionic ground state was deduced
from the high-temperature moment. Subsequent high-
temperature susceptibility measurements, as well as neutron
studies, have confirmed that the ground state is a quartet.

1 y 1

2 —1 ' ~ 2p j /3 (~D) ' ~ /3 (nD)

Note that the Sommerfeld ratio is in this case -N/(N —1)= —.
The value of TG assumed for (La,Ce)B6 is 1 K.
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FIG. 40. Comparison of theory and experiment for
(La,Ce)86. specific heat. The experimental specific heat is com-
pared with the large-degeneracy result for N =4 and Bethe-
ansatz results for N =2 and 6. The experimental peak is slightly
broader and lower than the N =4 theory curve; however, it
clearly cannot be described by the curves for N =2 or 6.

FIG. 42. Comparison of theory and experiment for
(La,Ce)B~. thermopower. The raw experimental thermopower
for a sample with 0.25% Ce impurities is denoted by triangles.
The magnetic thermopower deduced from the Nordheim-Gorter
rule is denoted by open circles. The peak magnetic thermopower
in theory and experiment is of order 90 pV/K.

(2) The Nordheim-Gorter rule is assumed in extract-
ing the magnetic impurity thermopower. This rule states
that the contribution of each scattering mechanism to the
thermopower is weighted by that mechanism's contribu-
tion to the thermal resistivity, i.e.,

g S;(T)a;'(T).

where S, and ~; are the thermopower and thermal con-
ductivity due to mechanism i In c. ases where the ~;(T)
are not well determined experimentally (such as the
present case), the thermal resistivity is conveniently re-
placed by the electrical resistivity, i.e.,

S(T)= (6.1) (6.2)

The Nordheim-Gorter rule is valid provided the scattering
mechanisms for particle (and energy) transport act in-
dependently (or at least that interference terms be small).
The magnetic thermopower in this case takes the form

0.8
S,s(T) = [S(T)p(T)—S„,„(T)p„(T)]/p„g(T), ,(6.3)

0.2

0.0
0.01 0.1

T (K)

10

FIG. 41. Comparison of theory and experiment for
(La,Ce)B6. electrical resistivity. The experimental resistivity is
reasonably well described by theory over a temperature range of
nearly four decades.

where S and p (S„andp„)are experimentally deter-
mined for the Ce impurity system (the "pure" system,
containing only nonmagnetic impurities), and p, s

——p—p„.The correction is small at low temperatures
(where the resistivity is almost entirely magnetic) and in-
creases with temperature (as p, s decreases). While the
peak value we have determined for the magnetic thermo-
power depends on the validity of the Nordheim-Gorter
rule, the quality of the overall fit would not be
significantly altered if the subtraction could be performed
more rigorously.

The agreement between theory and experiment is
reasonable for all four properties. The relatively poor sus-
ceptibility fit may be at least partially due to experimental
error: high-temperature data from the same experiment
led to an erroneous identification of the Ce ground state
as a doublet, rather than a quartet. More recent measure-
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ments of the high-temperature susceptibility have
confirmed the existence of a quartet ground state. Addi-
tional measurements in the 1-K range might improve the
fit in Fig. 39.

The experimental specific heat falls below the theoreti-
cal curve: the experimental entropy at the highest tem-
perature measured is only 0.71n4. It has been suggested
that this discrepancy is due to the fine-scale quartet split-
ting mentioned previously. The specific heat can cer-
tainly not be described by assuming a sextet or doublet
ground state.

The experimental resistivity is described particularly
well by theory: the fit extends over more than three de-
cades in temperature. Subject to the caveat on the use of
the Nordheim-Gorter rule, the thermopower is also de-
scribed well by theory. The thermopower in this system
is the largest measured in a dilute Ce alloy; for a sample
containing 0.5% Ce, the peak value before the
Nordheim-Gorter correction is 66 pV/K. In comparison,
typical metallic thermopowers are of order 1 pV/K.

The present calculations, which rigorously pertain to
dilute Ce alloys, provide a surprisingly good description
of the density of states and spin spectrum in concentrated
systems as well. These properties are essentially local in
character and are relatively insensitive to f-electron coher-
ence. Note that the simple relationship between the f
density of states and the conduction electron scattering
rate breaks down in concentrated systems; for this reason,
transport properties may radically differ in dilute and con-
centrated systems even though similar 4f densities of
states are present.

Due to signal-to-noise limitations, f photoemission ex-
periments are not feasible in the dilute limit and must be
conducted in concentrated systems. Detailed comparisons
with experiment have been made by Gunnarsson and
Schonhammer within a zero-temperature large-
degeneracy expansion. We would like to emphasize as-
pects of the finite-temperature theory relevant to such
comparisons. Most photoemission and inverse photoemis-
sion experiments are performed at room temperature. Re-
call that in the simplest picture of Ce alloys, the weight of
the Kondo resonance is of order l —nf, where nf is the f
valence. The weight becomes vanishingly small when the
Kondo scale To is itself small; furthermore, the weight at
low energies decreases as the Kondo resonance broadens
with increasing temperature. In contrast, the low-energy
weight observed in photoemission experiments is typically
quite large, even at room temperature. Gunnarsson and
Schonhammer have considered several effects which alter
the simplest theoretical picture. These include (a)
conduction-band structure; if the conduction density of
states is sharply peaked below the Fermi level, additional
low-energy weight may appear in the f density of states as
well (cf. the behavior of bonding antibonding levels in
one-body models); (b) f admixture in the ground state
(i.e., finite-U eff'ects); and (c) spin-orbit multiplet structure.
We have considered the last effect as well. The presence
of spin-orbit structure may partially account for the large
temperature-insensitive weight observed in high-resolution
studies of y- and a-Ce (see Fig. 43). The spectra may
be qualitatively understood as follows: in the low-

—4.0
40.0

—3.0
m(eV)

—2.0 0.0 1.0

o 20.0

3
2.0

~ 1.0-

"y—Ce" (278K)

"a—Ce" (20K)

0.0

FIG. 43. Model spectra for e- and y-Ce. The spectra shown
for a- and y-Ce correspond to parameter sets 7 and 6 of Table I,
with D =3 eV. The values of the Kondo scale To are 520 and
30 K. The four resonances described in Figs. 32 and 33 are well
resolved in the y-Ce spectrum, even at 278 K (T/To-9). The
increased hybridization width in cz-Ce shifts the bottom reso-
nance (transition 4 in Fig. 32) to lower energy; since T„and
6, , are of the same order of magnitude, the resonances for tran-
sitions 1 and 3 are smeared into a single feature with width
—5, , =0.21 eV. The resonance for transition 2 at To +6, ,
remains well resolved.

temperature a phase, the 4f-band hybridization is rela-
tively strong. Since the spin-orbit splitting and the
excited-multiplet Kondo scale are of the same order of
magnitude, the characteristic triple peak at low energies
(see Fig. 33) is altered: the feature just below the Fermi
surface (transition 3 in Fig. 32) and the central Kondo
resonance are smeared into a single peak with width

At higher temperatures, the a-y phase transition
occurs and the Ce lattice expands by approximately 15%
in volume. If it is assumed the principal result of this ex-
pansion is a reduction in f-band hybridization, the second
density of states in Fig. 43 results. The peaks at low ener-

gy are now well resolved, even at temperatures T& To,
T,„.The spin-orbit feature at —(b...+ To —T,„)is al-
most as sharp at 300 K as at zero temperature: this peak
measures f '~f transitions between the ground state
(and low-lying states with similar j= —,

' admixtures) and
high-lying states with excitation energy —5, , ; smearing
due to thermal occupancy effects is negligible for tempera-
tures &&6, , It is plausible that the experimental peak
observed in y-Ce (but not in a-Ce) is a spin-orbit feature
of this type.

A detailed comparison of theory and experiment for the
dynamic susceptibility Im+ is possible in at least one in-
stance. The spectrum of CePd3 at 5 and 280 K has been
measured by Galera et al. The spectrum is compared
with a quasielastic Lorentzian line shape and with large-N
results in Fig. 44. The experimental spectrum shows
large deviations from quasielastic behavior and is better
described by the theoretical line shape for T~O. This is
expected since the experimental temperature is much
smaller than the characteristic scale estimated from the
specific heat ( —750 K).

More generally, the large-degeneracy expansion pro-
vides a qualitative description of trends in neutron scatter-
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FIG. 44. Comparison of theory and experiment (Ref. 67) for
the dynamic magnetic susceptibility Im/(co). The frequency and
susceptibility scales are set by the peak value of the spectrum at
each temperature, (Img), „atcu,„.The solid circles are experi-
mental points for CePd3 at 5 K, and the open circles experimen-
tal points at 280 K. Values of (Imp) „and {Imp),„

for the
280-K data were deduced by {a) extracting a value of To from
the 5-K data, (b) computing T/To for T =280 K, and (c) read-
ing off' the required information from the theoretical spectrum
(cf. Fig. 8) for that value of T/To. The so1id lines are results of
the large-degeneracy expansion in the scaling regime; the dashed
line corresponds to the standard quasielastic line shape,

mI g(T)
Img{co)/7{ T) = ~~+ I ~g{ T)

The experimental spectrum shows clear deviations from quasi-
elastic behavior at 5 K and is reasonably described by the large-
degeneracy results for T~O.

ing linewidths. Linewidth measurements are typically re-
ported for temperatures in the range 4—300 K. Systems
in which the linewidth increases with temperature over
this range (often roughly as T' ) are said to exhibit
"Kondo lattice" behavior; the characteristic scale (from
specific heat measurements) is typically of order 10—20
K. On the other hand, systems with a large
temperature-independent linewidth over the same range
are said to exhibit "mixed-valent" behavior; the charac-
teristic scale is in this case on the order of hundreds of de-
grees. As shown in Fig. 45, the present theory allows
"Kondo lattice" and "mixed-valent" behavior by a single
system in diFerent temperature regimes. For tempera-
tures below the Kondo scale, the linewidth is temperature
independent; for temperatures above the Kondo scale, the
line-width increases with T. Within a sufficiently small
temperature range, only one type of behavior may be ob-
servable. The large-degeneracy expansion provides a con-
sistent interpretation for both "Kondo lattice" and
"mixed-valent" linewidths. Recent NMR measurements
on ten diFerent materials are in good agreement with the
results described here over two to three decades of tem-
perature. (Note that NMR samples an effective linewidth
corresponding to the quantity X lim oco/ImX. )

The present calculations have been limited to the scal-
ing, or Kondo, regime. The detailed behavior of the neu-
tron linewidth in the strongly mixed-valent regime has not

FIG. 45. Neutron scattering linewidth I „,„,(T) in the Kondo
regime. The linewidth is defined operationally as the position of
the peak in the f moment spectrum rrf(co) =a 'ImX(m) (see Fig.
8). The linewidth is temperature independent for T & To, at
higher temperature, the linewidth increases with a T' '

power
law.

been studied. It is possible that some systems with
"mixed-valent" linewidths would be better described by
parameters in this regime. Nevertheless, many concen-
trated systems with both "Kondo lattice" and "mixed-
valent" linewidths show evidence for single-parameter
scaling: this suggests the applicability of Kondo regime
studies.

VII. CONCLUSIONS

The self-consistent large-degeneracy expansion provides
a unified picture of both the static and dynamic properties
of magnetic alloys over essentially the full range of tern-
perature. Only in the extreme low-temperature regime
(T « To) is the method inadequate (see Secs. VA, VF,
and Appendix C). Comparisons of the calculated suscep-
tibility and specific heat with exact Bethe-ansatz results
indicate that the self-consistent approach is quantitatively
accurate for degeneracies as low as four. Direct com-
parison with experiment (see Sec. VI) provides a stringent
test of the method's success: the susceptibility, specific
heat, resistivity, and thermopower of (La,Ce)B6, an excep-
tionally well-studied Ce alloy, may be consistently de-
scribed using a single parameter, the Kondo scale To.

The self-consistent approach has been extended to de-
scribe the properties of systems with spin-orbit splitting
(see Sec. VB). (It is conceptually trivial to describe in ad-
dition systems with crystalline electric field, or magnetic
field, splitting. ) The incorporation of such effects is a step
in the development of a "first-principles" description of
transition-metal and lanthanide alloy properties.

Interesting problems in dilute alloy physics which
remain for future study include the following: (a) devel-
opment of a comparable theory for systems with more
complex multiplet structure (e.g. , alloys of Sm, Tm, and
U); ' (b) investigation of higher-order extensions of the
self-consistent approach described above; and (c) calcula-
tion of additional properties, such as the spin and charge
polarization in the vicinity of an impurity, and the Knight
shift. Of potentially greater interest are possible exten-
sions of the dilute alloy approach to concentrated systems;
while success in the dilute limit in no way guarantees the
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applicability of the large degeneracy concept in the con-
centrated limit, it is tempting to believe that some aspects
of the approach may be of greater generality.

In conclusion, the self-consistent large-degeneracy ex-
pansion is a new theoretical tool for analyzing magnetic
alloys, which emphasizes the simplifying features of the
Kondo eff'ect, while allowing quantitatively accurate cal-
culations. While the method does not constitute a "solu-
tion" of the Kondo problem, it furnishes one of the most
complete pictures of magnetic alloy physics now available.

tribution function are separately computed.
The positive-frequency distribution functions are deter-

mined by the self-energies Xo and X . The only new
quantities which must be calculated to find the negative-
frequency functions are

Imago '(co, T) = e ImXO(~, T),
(A2)

ImX' (co, T) =e ImX (co, T) .

2. Conduction-band kernel
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APPENDIX A: NUMERICAL DETAILS

While the integral equations for Xo and X may be
evaluated directly as formulated in the text, we actually
found it more convenient to use the spectral representa-
tion for the f-state propagators: integrals may then be ex-
pressed in terms of the positive-definite quantities po and
p . For example, the equation for Xo(co, T) is

&o(~+i0+, T)= J
"

dip (g, T)K(cu —g+i0+, T)

where the kernel K (z, T) is given by

(A3)

10

P(z) =P(z + 10)—g
) z+n —1

(A5)

K(z, T)= J" dsv(s)
QO z+g

and v(e) =N(s)/X(0) is the normalized density of states.
The kernel may be readily evaluated in terms of digamma
functions for either a flat or Lorentzian density of states.
The digamma functions may in turn be evaluated numeri-
cally by applying a recursion formula and asymptotic
expansion:

In this appendix we provide technical details on the nu-
merical solution of the self-consistent integral equations,
the calculation of the f density of states and moment
spectrum, and the evaluation of the specific heat.

1. Negative-frequency distribution functions

with

P(z + 10)= In(z + 10)— 1

2(z + 10)
1 1

2+ + \ 0 ~

12(z + 10) 120(z + 10)
(A6)

While, in principle, all quantities are computed in terms
of the empty- and occupied-state distribution functions
po(co, T) and p (co, T), it is convenient to define
"negative-frequency distribution functions" po

' and p
by

p~ '(~, T)=e " -"")p,(~,T),
(A 1)

ET(T) is an offset energy set at the programmer's conveni-
ence: to obtain accurate results, Er{T) should be close to
the NCA ground state energy Eo.

It is necessary to define such functions since the
"positive-frequency" distribution functions po and p
vanish exponentially fast below the energy Eo, in expres-
sions for the partition function and correlation functions,
po a~d p must be multiplied by an exponentially grow-
ing Boltzmann factor. Such a procedure is subject to
gross numerical error when the Boltzmann factor and dis-

3. Iteration procedure

The individual numerical spectra were evaluated on
separate logarithmic meshes running from +5;„about
the sharpest spectral feature to +Dc, where D~ is some
large energy scale of many times the bandwidth. The
small increment 5;„wastaken to be an order of magni-
tude smaller than the sharpest spectral variation. In the
runs reported here, D~ was 10 D. More recent calcula-
tions have made it clear that Dc ——30D is sufticient for re-
liable results. The advantage of logarithmic meshes is
that spectral features with exponentially varying energy
scales may be faithfully represented by relatively few
points {compared with the requirements for a linear mesh
or a sequence of coarse-grained linear meshes). The re-
sults reported here were obtained on 603-point meshes.
More recent studies have shown that 83-point meshes are
adequate for calculating the static susceptibility, magneti-
zation, and occupancy, while meshes with a few hundred



2068 N. E. BICKERS, D. L. COX, AND J. W. WILKINS 36

points appear to give reliable spectra. Since the compu-
tation time for evaluating the self-energies varies as the
number of mesh points squared, these latter numbers
represent substantial time savings over the original calcu-
lations. Integrals were computed using the trapezoidal
rule, and at each stage the normalization of the positive
and negative frequency distribution functions was
checked. Typically, the positive frequency norms deviated
from unity by no more than a part in 10 . The values of
the negative frequency norms were used to monitor the
convergence of the iterative solution.

The results reported in this paper were all obtained on
an IBM 3081 computer. A single iteration of the coupled
integral equations for a 603-point mesh takes approxi-
mately 80 CPU seconds [assuming the use of the kernel K
in Eq. (A4)]. A fourfold time savings results if the in-
tegrals are evaluated without introducing spectral repre-
sentations; however, this approach leads to a considerable
loss of accuracy on coarser meshes. This is presumably
due to sign changes in the real parts of the empty- and
occupied-state propagators. More recent evaluations on
the Cray X-MP/48 computer at the San Diego Computer
Center provide a factor of 10 improvement in CPU (cen-
tral processing unit) time over the IBM results, and a fac-
tor of 100 over comparable calculations on a Digital
Equipment Corporation VAX-11/780 computer.

Operationally, the iterations are started by a seed at
high temperatures: the first order iterates for Xo and
Imago are input to an evaluation of the occupied-state( —)

self-energy, with the initial ET(T) a reasonable approxi-
mation to the NCA ground state energy. The converged
output po and po spectra are then input as seeds when( —)

beginning a lower temperature iteration. We have always
found this procedure to be stable. The energy ET at the
lower temperature is not known a priori: ho~ever, this
value may be readily determined from the ratio of nega-
tive and positive frequency spectra at a single frequency.

When multiplet structure is to be included (as in spin-
orbit calculations), the most convenient approach is to
evaluate the contributions of each multiplet to the empty-
state self-energy using the single multiplet code, then to
add these contributions before computing po and po

4. Convolution integrals for py and o.~

Because we have employed logarithmic meshes, stan-
dard numerical convolution procedures (such as that
based on fast Fourier transforms) are not useful. Hence,
we have devised an alternate code for performing convolu-
tions. As an example, consider the following integral to
determine the f density of states:

1
pi (ci) ) = ( 1 +e ) f de pp (E)pm (8+co)

ZJ oo

Denote the mesh centers E,p (empty state) and E, (occu-
pied state), with rp =E —E p —Tp. For 0.75co,
& co & 1.25cu„p is interpolated onto the empty-state
mesh. When co is larger than 1.25co„the integration is
broken up into three parts: (a) for c & E —co, po

' is in-
terpolated onto the occupied-state mesh; (b) for s& E,p,

p is interpolated onto the empty-state mesh; (c) for

E, —co & c. &E,o, all spectra are interpolated onto an in-
termediate mesh specified by the variable z, where

z =ln c+ co —Ec~
Ep —c (A8)

5. Specific-heat evaluation

Evaluation of the specific heat using Eq. (5.18) was
straightforward apart from one detail: since the partition
function is evaluated in terms of the negative frequency
distribution functions, it is necessary to tabulate Er(T),
then shift all partition function data to a common refer-
ence value of ET. Five-point derivative formulas give the
best results, and it is best to use a constant set of mesh
parameters for all iterations.

APPENDIX 8: SUM RUI.ES
FOR THE INFINITE- U ANDERSON MODEL

In this appendix we derive several exact sum rules for
the infinite-U Anderson model and demonstrate that these
rules are satisfied within the self-consistent approximation
(the noncrossing approximation).

1. Sum rules from analyticity

Recall from Eqs. (4.9) and (4.10) that the Anderson
model partition function may be written

z/Zb, .d = f dz —pz 1
e TII

2~i z —H~ Xf (z)

dz e -I' dz e+N
2rri z —Xp(z) r 2~i z —c~ —X (z)

(B1)

where the contour I encircles the real axis in a counter-
clockwise fashion. The "propagators" (z —Xp) ' and
(z —ey —X )

' are analytic in the upper and lower half-
planes and decay at infinity as 1/z, independent of the de-
tailed form of Xo and X . Distorting the contour I into
a circle at infinity gives immediately

with

1 1
po(c) = ——Im

s+iO+ —Xp(e+iO+ )
(82)

which varies rapidly near the sharp features of the distri-
bution functions and slowly elsewhere. The interpolation
schemes for all frequency regimes are summarized in
Table IX.

The results of each convolution are examined visually
(sometimes rapidly varying spectra exhibit spurious jumps
at the breaks in the mesh), and the sum rules in Eqs.
(B9)—(B1 1) are checked. The sum rules are typically
satisfied at the order of a part in 10 —10 . The jurnp
problem can be cured by altering the mesh breaks to
0.95TO and 1.05To.
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TABLE IX. Details of the meshes for numerical convolutions. The empty- and occupied-state distri-

bution functions are centered at E,o and E, ; co, =E, —E,o is the separation of the mesh centers.

{i) 0.75~, &co &1.25co,

~p[ '(E, T) is interpolated onto the p (E+co, T) mesh.

(ii) 1.25co, &cu

~ for e&E, —co, p[ '(s, T) is interpolated onto the p (E+co, T) mesh.

~ for e) E,o, p (8+co, T) is interpolated onto the pt )(e, T) mesh.

~ for E, —~ & c &E,o, both spectra are interpolated onto the mesh specified by (A8).

(iii) 0 & co & 0.75co,

~ for c.)E, —~, po '(c, T) is interpolated onto the p {c.+~, T) mesh.

~ for c&E,0, p (c+co,T) is interpolated onto the po '(c, T) mesh.

~ for E,«c.&E, —co, both spectra are interpolated onto an intermediate mesh specified

by the variable z with

c—E,o
z =ln

Ecm co

(iv) co &0
~ for e &E,o ~

cu ~, p' I(e, T) is interpolated onto the po(e+ co ~, T) mesh.

~ for )EE, , po(s+
~

co ~, T) is interpolated onto the p' '(E, T) mesh.

~ for E,o ~co
~

&e&E, , both spectra are interpolated onto an intermediate mesh specified

by the variable z with

s+ ]co/ Eo-
z =ln

E, —c

f dz 1 00 dip (E)=1,
r 2~i z —ei —X (z)

with

likewise,

Gg(&~0 )= &F F & = —ni(T) .
1

N

Since

(87)

E+ i 0+ —ei —&~ (E+&0
(83)

—ECOn 0+
8

lMq —E

+1
+-PE+ 1

(88)

2. Sum rules from equal-time correlation functions

First we look at GI(r). Recall that the correlation
function

it follows that

f" dip~(c, )[1—f(E)]=1—n~(T), (89)

Gg(~) = —
& 'T,F (r)F (0) &,

F = fO&&m
/

has the frequency decomposition

1 —ice„rf dzGir= — e
P„r2mi ice„—z

= f depi(e) —g
n

—I CO n

From the definition,

Gf(r 0 )= &F F & =
& I I

0&&mllm &&0

= —[1 nI( T)];—

(84)

(85)

(86)

and

f" dEpi(E)f(e)= —ni(T),
oo N

f dept(E)=1 — 1 ——ni(T) .
oo N

Next we look at Mi(r). The correlation function

MI(r) =——
& T+(r)Q(0) &,

M =gpss g mN
m

has the frequency decomposition
—IV 7m

Mi(~)= f deox'(e) —g
oo p iv —e

1
oi(E)= ——ImMy(E+iO+ ),

(810)

(811)

(812)

(813)
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with v =2m~T a Bose frequency. Note o.f is an odd
function of frequency. By definition,

Mf(r 0+)= (g—p, )' y mm'(X X )
m, m

2

= —(gp, ~) g m (N ) = — nf(T)
3

(B14)

Thus,

(819)

f" dcob(cu)of(cg)

Npiof(co)= (e —1) f dEe ~'p (E)p,„(e—~) .
3 Zf

with

+
'~m p

P iv —e

+1
,

——+b(+-E),
e

I '=i V+1)(gS e)'

Since

(B15)

dE e 'p (E)p,„(e—cu)
XPJ

3 Zf
2 2

dEe 'p (E)= nf(T) .
NPJ 1 P

3 Zf —M 3
(B20)

it follows that

2f" d. ~,(e)b(e)= f"—dE~f(E)i ( —.)="' nf(T) .
cc 3

(B16)

3. Sum rules within the self-consistent approximation

The sum rules (B2) and (B3) are trivially satisfied
within the self-consistent large-degeneracy expansion.
The sum rules (B9)—(Bl 1) and (B16) are also satisfied.

Proof: The self-consistent approximation for the f den-
sity of states is

1
pf(co)= ( 1+e ~

) f dE e ~'pp(E)p„,(~+e)
Zf Qo

(B17)
Zi ——f dc[pp(e)+Np (E)] .

Thus,

dmpf ~ 1—

1

ZJ

1

Zf

f "
dE e ~'pp(E)do (~+ E)

f d E e ~'pp(c) = 1 —nf(T), (B18)

by Eq. (B2). Sum rules (Blo) and (Bl 1) follow in similar
fashion.

The self-consistent approximation for the f moment
spectrum is

APPENDIX C: FERMI LIQUID RELATIONS
%'ITHIN THE SELF-CQIVSISTENT APPROXIMATION

A number of exact sum rules and Fermi-liquid rela-
tions for the degenerate-orbital Anderson model may be
established to all orders in perturbation theory. We
reserve the name "sum rule" for global (i.e., integrated)
frequency relations based on the properties of equal-time
correlation functions (see Appendix B); and the name
"Fermi liquid relation" for identities connecting thermo-
dynamic derivatives, or zero-frequency correlation func-
tions and thermodynamic derivatives. A number of Fer-
mi liquid relations for the Hamiltonian of Eq. (2.10) are
listed in Table V. These relations may be established by
all-orders perturbation theory in the Coulomb energy U;
the relations remain valid in the limit U~ ac.

Arbitrary approximations in diagrammatic perturbation
theory need not preserve such results. In general, the
self-consistent large-degeneracy expansion discussed in the
text (a) obeys sum rules (see Appendix B) and (b) violates
Fermi liquid relations. The second point limits the utility
of the expansion in the extreme low-temperature or low-
frequency limit (T « Tp, rp « Tp). Miiller-Hartmann~3
and Kuramoto have quantified the violation of Fermi
liquid relations through analytical studies of the self-
consistent approximation. At zero temperature, the in-
tegral equations discussed in Sec. IV may be converted to
differential equations following a technique introduced by
Inagaki. The following results have been established for
the asymptotic low-frequency forms of the spectra pf and
o.f within the self-consistent approximation (a flat density
of states with half-width D is assumed):

NCA( )
(,@+1)'r

1
4 sin

(X+ I)'I N+1

1 2

N+2 N+1 ' N+1

1/(-&' -+ & )

TNcA (N+1)
)

cu
)

cos~/(N + 1) I /~ T
X—

1 1 2X
2N+1 N+1 ' %+1

(N+1)
~

u
i'X

cos~x /(N + 1) TN

co)0
M (0

(C 1)
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TNc =D—( I /wD) ' exp(ncf /NI )-To,

with B the beta function;

2

NCA( )
3 N+1 +TgcA

(N+1)
~

co
~

TNCA

N N
N+1 N+1' N+1 (C2)

(The subscript "NCA" is a mnemonic for the noncrossing approximation. ) The complete f Green's function at the Fer-
mi surface takes the form

G NcA( O+ )
77

1
N + 1 77 77 l77

(N+1)I N N+1 N+1 N+1 (C3)

so that the imaginary part of the self-energy becomes

ImXf (iO+ ) = —I
2

N+1 7T1— ny- cot +
N N+1 N+1 (N +1)' (C4)

ImXf (iO+ ) ——I /nf . (C5)

The first two Fermi liquid relations in Table V state
that the character of the f electron self-energy at zero fre-
quency is unchanged by the presence of Coulomb correla-
tions. It is clear from Eq. (C4) that the first relation is
violated by the self-consistent large-degeneracy expansion;
for N~ ~,

order of T~cA, a characteristic crossover energy for the
two asymptotic contributions in Eq. (C 1). We define
T~cA as the energy cu & 0 at which these contributions to
p~ are equal. By a short computation,

Twc~ 2N+1 B( T~c
N+1 N+2 B I /~

(1V + ] ) /( N —] )

This result approaches the exact result only in the integral
valent, or Kondo, limit ny~1. The second Fermi liquid
relation is also violated since the self-consistent Green s
function is nonanalytic at co=0: the density of states ex-
hibits a slightly asymmetric and very sharp cusp
( —

~

co
~

"~+') at ~ =O.

The third and fourth Fermi liquid relations connect
thermodynamic derivatives with low-frequency dynamic
properties. The third relation is clearly violated since

with

g sec N+1

+O(1/N)
N +1 I"/m

2
N+1 ' N+1

(.V+ ])/(N —1)

NCA(O)
(N + 1)'I

(C6) 1 2N
N+1' N+1

(C7)

a value independent of the valence; once again, the correct
value is approached in the integral valent limit for large
N. The self-consistent approximation fails most severely
for the fourth relation: the quantity crf (co)/co actually
diverges for co~O.

The appearance of nonanalytic features in pI and o.I in-
dicates the failure of the self-consistent large-degeneracy
expansion at zero temperature and frequency. In general,
however, a violation of Fermi-liquid relations does not im-

ply the inadequacy of an approximation scheme at finite
temperature and frequency. In the present case, spurious
nonanalytic features are restricted to an unphysically
small energy scale (i.e., a scale much smaller than To or
To/N, the smallest physically relevant energies).

The anomaly scale for the f density of states may be es-
timated quantitatively. Note that the sharp cusp which
dominates pf(co) for co~0 falls off' rapidly; for larger co

(still in the asymptotic regime), the dominant contribution
to the density of states varies as

~

co ~' +". For large
N, this term becomes indistinguishable from a linear con-
tribution. Thus, on a coarse-grained frequency scale, the
density of states appears smooth down to an energy of the

The height of the cusp above its value at the crossover en-
ergy is

pf(O) —p f(TNCA)

pf ( TNCA )

TNCA

rAr

N/(N —1)

(CS)

The cusp anomaly may have a sizable effect over a large
energy range in the mixed valent regime, where TzcA —I;
however, in the Kondo regime, where T~cA &&I, the
crossover scale TNcA is tiny [O(TNcA/I )] in comparison
with T~cA, and the relative height of the cusp above
background at co=T~cA is equally small. At finite tem-
peratures, thermal smearing prevents the observation of
zero-temperature spectral features with energy scales
smaller than T; the temperature acts as a natural coarse-
graining scale. This means that, in the Kondo regime,
self-consistent calculations should not produce an anoma-
lous zero-frequency feature for T & TzcA. In particular,
if the onset of a Fermi-liquid regime (in which properties
vary with simple power-law temperature dependences)
occurs at T& T~cA, one expects extrapolations of self-
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consistent calculations to zero temperature, or frequency,
to be reliable.

Numerical results indicate that the anomaly scale for
the f moment spectrum is somewhat larger than that for
the f density of states (see Fig. 26). An analytical esti-
mate of this scale is in principle possible, but has not been
attempted. It is clear from Fig. 26 that the new anomaly
scale is, like TNCA, much smaller than the relevant physi-
cal scale To .

APPENDIX D: DERIVATION OF TRANSPORT
INTEGRALS FOR RARE-EARTH

IMPURIT Y SYSTEMS

In this appendix, we derive expressions for the trans-
port coefficients of a system containing rare-earth impuri-
ties. The Hamiltonian and notational conventions have
been presented in Sec. IV. In the linear response regime,
transport properties may be expressed in terms of particle-
and energy-current correlation functions. Specifically,
the dc conductivity tensor takes the form

o ~(T)= —lim —Im f" dt e' +' "H ~(t)
co~0 CO OC'

where H p is the current-current correlation function

& t3(t) = t +(t) (—[J' ( t),jp(0) ] ),

(b)

(c)

~n ~m

k, 4)n

k ~n+ v~

k, 4J n

k

~n+ vm

k 2

k2 kl

k, 4Jnt + v~

k qQJnt

+ e ~ ~

(D2)
j(t)= f dr j(r),1

with Y the system volume For convenience, we set
V = 1 hereafter. For plane-wave conduction states, the
current operator

j= ——g kc t,~cq~ (D3)
m

Note the sign convention e =
~

e
~

.
The conductivity tensor in a system with randomly dis-

tributed impurities is diagonal. It suffices to calculate the
Matsubara correlation function

FIG. 46. Diagrammatic representation of the current-current
correlation function. Solid lines represent conduction electron
propagators dressed by interaction with impurities; rectangles
represent two-particle scattering vertices I . (a) General repre-
sentation of the correlation function. The first diagram includes
all scattering events which occur independently on the upper and
lower lines; the shaded vertex I" in the second diagram includes,
by definition, all joint scattering events from one or more impuri-
ties. (b) Simplest contribution to (a). Vertex corrections [the
second diagram in (a)) drop out when scattering occurs in a sin-
gle angular momentum channel. (c) Simplest ladder diagrams
contained in (a).

H(iv ) =——,
' f dr e™'[—( 7;j(r).j(0) ) ]

0
2

(k.k') f dr e™1[—( Tz q (r)cq (r)c q (0)cq (0) ) ];
m k, k', o 0

(D4)

the retarded function follows by analytic continuation. The last integral has the diagrammatic representation in Fig.
46(a). Solid lines represent dressed conduction electron propagators; the shaded vertex represents the full two-particle in-
teraction with impurities. It is shown below that the diagram containing I does not contribute to H; only the simple po-
larization bubble in Fig. 46(b) need be considered. This result is well known for s-wave impurity scattering; it continues
to hold as long as the scattering process takes place in a single angular momentum channel.

Consider first the conduction-band propagator

(i', ) = f «e'""'[—
& 'T&k (~)ck' '(0) ) ]

0
(D5)

in the presence of a single impurity at R;. By an equation-of-motion treatment (or direct diagrammatic summation), the
propagator may be expressed exactly in terms of the fully dressed impurity propagator G~. Thus,

Gt ~t: ~ (i'„)=G t ~(i'„)6~'6~~+ G g~(iru„)Tt ~t ~ (i'„)Gg ~ (i tu„),
where

Tt, g ~ = V Gy(i'„)X4rr+ (cr
~

m)(cr'
~

m) YI (k)Y~* (k')e
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and

( cr
~

m ):—(s = —,
' l cr m —o

~

s = —,
' l j m ) . (D6)

The spherical harmonics and Clebsch-Gordon coeKcients follow from expressing ck and ck ~ in terms of the spherical-
wave operators in the interaction Hamiltonian [Eq. (4.1)].

The angular sum in (D6) may be reduced to a simple form for k=k ':

4' g (o
~

m)(cr'
~

m) Yi (k)Yi*~ (k)= 6 (D7)

The factor (2j + I)/2 just counts the number of angular momentum channels available for scattering with spin conserva-
tion. In the absence of spin-orbit coupling, this factor would be 2l +1.

In the presence of many impurities, the scattering matrix Tk k ~ must be generalized. In the extremely dilute limit,
impurity-impurity interactions and correlated scattering involving two or more impurities may be ignored. The scatter-
ing matrix in (D6) is replaced by the obvious generalization describing uncorrelated scattering by one or more impurities:

Gkk ~(ice„)= Gk~(icon )6kk +g Gg~(icon )Tkk (ice„)Gg~(icon )

Gg~( cia n)Tki;(icon )Gk ~(ice„)Tk-k(ice„)Gk~(icon )+
k",i &j

(ij . . i (k —k'j-R,
Tkt (i~„)= T~.(im„)e

(D8)

Averaging over a randomly distributed impurity ensemble to restore momentum conservation and summing the resulting
series gives

Gk~' (i&„)= (Gg~ ) '(1&n ) —Xbend(1 &n ), (D9)

where

Xb,„d(iso„)= CV Gf(i~„);2j+1
2

(D10)

here, C =N;/N is the dimensionless impurity concentration and V has a unit-cell normalization. Note that Xb,„dis
momentum independent. This follows from assuming a momentum-independent coupling to the impurities V. The
imaginary part of the retarded self-energy X ,„b(cdo+iO ) gives the energy broadening of conduction states. The corre-
sponding decay rate is

'(co)= —2 CV ImGf(co+iO+)=NCrrV pf(co) .
2

(Dl 1)

This rate is strongly energy dependent; the rate peaks at small positive energies due to the Kondo resonance in the f den-
sity of states. It is intuitively clear that the band scattering rate and the impurity density of states are closely related:
band electrons scatter by hopping into f orbitals. The scattering rate reflects the weight in these processes.

It may now be demonstrated that only Fig. 46(b) contributes to the conductivity in the dilute limit. Neglecting corre-
lated multiple scattering corrections to Gk, the simplest diagrams to be considered are those shown in Fig. 46(c). Here,
I

&
is the single-site two-particle scattering vertex, whose form need not concern us here. Omitting explicit frequency

dependences, the sum of these diagrams is

Hi(iv )= — g g GkG„k+g (k.k))I i(k, k, )G„,G„,2e 1 2

frequency k k

+ g (k.ki)I i(k, k2)Gk, Gk, I i(k2, ki)Gk, Gk, +
kl, k2

(D12)

The factor of 2 arises from the spin sum. Each term in
I i(k, k~) contains a k-dependent factor of the form

Yi, (lc) Yi', (k);
hence, each diagram in Hi(iv ) after the first is a linear
combination of terms with k dependence

kYi, m, —~(k»i*, m, —~(k) .

I

When k~ —k, this factor is converted to

( —1)"+'k Y(,m, —~(k) Yi*,m, —~(k),

hence, these contributions to II~ (iv ) are odd in k and
sum (integrate) to zero.

Thus, in the extremely dilute limit,
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2e2 t- dk
3m (2~)

k r(EI, ) (D14)df 2

BEg

with r ' the scattering rate in Eq. (Dl 1).
Note that the lifetime appearing in the conductivity

equation, i.e., the transport lifetime ~,„,is just the single-
particle lifetime ~. The transport and single-particle life-
times differ in isotropic impurity scattering: in the isotro-
pic limit, ~„p~, since small-angle scattering processes do
not significantly reduce the conductivity. The lifetimes
are the same in the present case since scattering occurs
entirely in one orbital angular momentum channel. More
generally, the lifetimes are identical if scattering occurs
only in orbital channels [1; i

with I; —l~ )2 for all i
and j.

In the numerical evaluation of the resistivity, the fol-
lowing approximate form of Eq. (D14) has been applied:

H, (iv )=, gk —g Gk(i(co„+v )}Gk(ice„).~
2ez 2 &3m'„P

„

(D13)
This is a standard expression in transport theory. Upon
analytic continuation, one finds

ImHt(co+i0 )
o'( T) = —lim

Again note the sign convention e =
~

e
~

.
The new correlation functions may be evaluated by the

same method applied previously. The only difference is
the presence of additional factors of the excitation energy
c.~ —p in momentum sums: thus,

I.„(T)=,f3m (2~)'
df k (El, —p)"r(eg)

Bck

2N (0)kF
[(2j + 1)Crr V']

3 foal

xf" dE— E"[py(E ) ] (D19)

In the preceding equation, a constant conduction band
density of states near the Fermi surface is assumed.

APPENDIX E: ESTIMATES OF HIGHER-ORDER
DIAGRAMS IN g( T)

In this appendix, we provide explicit estimates for con-
tributions to the magnetic susceptibility beyond the lead-
ing term considered in Sec. VG. In general, X(iv ) may
be divided into three parts:

o(T)= kF f2e2 2 dk
3m (2n )' r(ck )

df
0cj

2e N (0)kF
[(2j+1)C~V ]3mz

dc [pg(e)]

(D15)
p(T)=o '(T) .

Additional transport properties such as the thermo-
power and thermal conductivity may be evaluated in simi-
lar fashion. The appropriate correlation functions in this
case involve both the particle and energy currents. In an
isotropic system, resistivity, thermopower and thermal
conductivity may be jointly defined in terms of

I (co+ &0+ )tIgmn
cu ~0 CO oc

)Pm

i (Ca)„
Ap

H "(t)= —ie(r)([j,' '(t),j,'" (0)]),
'

(D16)

where

J'"' =—g ( cl —p, )"kc k~c k~ .
m k

The defining relations for transport coefticients are

p(T) = 1

e Lp

&(T)=—1 L
eT Lp

1
lr(T) = —Lp-

T Lp

(D17)

(D18)

FIG. 47. Diagrammatic contributions to the magnetic suscep-
tibility within the self-consistent approximation. (a) Xyy(iv ),
the contribution from f moment correlations. This term, which
is considered in detail in the text, dominates in the large-
bandwidth limit. (b) X,y(i v ), the contribution from
conduction-moment —f-moment correlations. (c) One of the two
diagrams in X,',"(iv ), the contribution from conduction-moment
correlations involving a one-electron scattering vertex. (d)
X„(iv ), the contribution from conduction moment correlations(2)

involving a two-electron scattering vertex.
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X(iv ) =XD(iv )+2X,/(~v )+X„(iv ),
where

X&&(iv ) = f dr e (M(&)&(0)&,
0

X,/(iv )= f dye (M, (r)M(0)),

X„(iv )= f dre (M, (r)M, (0)),
0

(El)

(E2)

Rules for
summarized
summarized
in general,

evaluating M/(iv )= —X//(iv ) have been
in Table VI. Rules for evaluating g,I are
in Table X. g„may be further simplified:

(E4)

Xp,„b= (1Vp j~ /3 )X(0)

X„(iv ) =Xp,„b6 o+X,',"(iv )+X,', '(iv ),
with

with

M =gp~ g mF F (f moment),

(E3)
M, =g, {tte g mckt ck (conduction moment) .

k, m

For simplicity, we assume g =g, .

the static susceptibility of the pure system; 7,'," a sum of
contributions involving the vertex for scattering of a single
conduction electron; and g,', ' a sum of terms involving the
vertex for correlated scattering of two conduction elec-
trons. Since the one-electron scattering vertex is just
T~ ——V GJ, with G/ the f-electron propagator, X,", takes a
simple form. It may be demonstrated that

P k t &n —Ek t (run +Vm ) ek I run —Ek

1T~(ice„)+ T~(i (ru„+v ))
l (Ci)„+V ) —Ek

Rules for evaluating G/(i'„)have been summarized in Table IV. Rules for evaluating X'„)are summarized in Table XI.

TABLE X. Diagrammatic rules for evaluating g,y. We list below rules for evaluating the
conduction-moment —f-moment correlation function X,/{iv ).

(a) Set down 2n +1 vertices (solid dots) in a vertical line. Beginning at the bottom with a dashed
line, connect the vertices with alternating dashed and wavy lines (all ascending), leaving the top
vertex on a dashed line. (A total of 2n +1 lines now appear. )

(b) To the left of the diagram and above all local lines, draw an isolated open circle (to represent
the operator mcus ck ). Convert the bottom vertex to an open circle (to represent the operator
m'F F ). Connect the two open circles with a dash-dotted "external line, " carrying frequency
i v from top to bottom.

(c) Working to the left of the diagram, draw in two solid (conduction) lines connecting the isolated
circle with vertices at odd and even positions. Assign to these lines Fermi frequencies, satisfying
frequency conservation at the, isolated circle.

(d) Working to the right of the diagram, connect the remaining 2n —2 vertices with solid lines in
all possible ways which maintain the direction of the dashed line at each vertex.

(e) Assign quantum numbers km (m) to solid lines (dashed lines), conserving angular momentum at
each vertex.

(f} To hnes on the right of the diagram, assign a factor 1 —fk,„(ascending) or fk {descending),
with f the Fermi function. To lines on the left of the diagram, assign conduction propagators
1/(tea„—Eq ).

(g) Draw a perpendicular to each local configuration line, and assign to it an energy denominator
(z —E ) ', where E is found by adding the energies (frequencies) of the ascending lines intersect-
ed by the perpendicular and subtracting the energies (frequencies) of descending lines intersected.

(h) Multiply the product of Fermi factors, propagators and energy den'ominators by V "(gpz) mm',
where m and m' are the angular rnomenta attached to the open circles. Sum on conduction mo-
menta and angular momenta. Sum on the free internal frequency with an associated factor of 1/P.
Multiply by ( —)'+": c is the total number of conduction line crossings; d is the number (0 or 1)
of descending lines which appear on the left of the diagram when the isolated open circle is rubbed
out (merging two lines into one).

(i) Compute the contour integral

1 f dz o~( )
Zg r 2&l

where R is the result of the preceding operations, Zy is the system partition function, and I encir-
cles all singularities of R in a counterclockwise fashion.
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TABLE XI. Diagrammatic rules for evaluating g,', '. We list below rules for evaluating g,', (iv ), the
sum of contributions to the conduction-moment correlation function involving the vertex for two-
electron scattering.

(a) Set down 2n vertices (solid dots) in a vertical line. Beginning at the bottom with a dashed
line, connect the vertices with alternating dashed and wavy lines (all ascending), finally leaving the
top vertex on a wavy line. (A total of 2n lines appear. )

(b) To the left of the diagram and above all local lines, draw two isolated open circles, one above
the other. (These circles represent the operators mcus cq and m'cq cq .) Connect the circles
with a dash-dotted "external line, " carrying frequency iv from top to bottom.

(c) Working to the left of the diagram, draw in a solid line connecting the lower open circle with
the bottom vertex. Draw in a second solid line connecting the lower circle with an arbitrary ver-
tex at an even position (counting from the bottom). Draw in solid lines connecting the upper cir-
cle with two of the remaining vertices at odd and even positions. Assign to the four solid lines
Fermi frequencies, satisfying frequency conservation at each open circle.

(d) Working to the right of the diagram, connect the remaining 2n —4 vertices with solid lines in
all possible ways which maintain the direction of the dashed line at each vertex.

(e) Assign quantum numbers km (m) to solid lines (dashed lines), conserving angular momentum at
each vertex.

(f) To the lines on the right of the diagram, assign a factor 1 fq (asc—ending) or fq (descending),
with f the Fermi function. To the lines on the left of the diagram, assign conduction propagators
1/(i co„—eg ).

(g) Draw a perpendicular to each local configuration line, and assign to it an energy denominator
(z —E ) ', where E is found by adding the energies (frequencies) of ascending lines intersected by
the perpendicular and subtracting the energies of descending lines intersected.

(h) Multiply the product of Fermi factors, propagators and energy denominators by V "(gp&) mm',
where m and m' are the angular momenta attached to the open circle. Sum on conduction mo-
menta and angular momenta. Sum on the two internal frequencies with associated factors of 1/P.
Multiply by ( —1)'+ +'. c is the total number of conduction line crossings on left and right; d is
the number (0, 1, or 2) of descending lines which appear on the left when the open circles are
rubbed out (merging four lines into two).

(i) Compute the contour integral

f e s'A (z)
Zy r 2ni

where R is the result of the preceding operations, Zy is the system partition function, and I encir-
cles all singularities of R in a counterclockwise fashion.

Diagrammatic representations of Xff, X,f, X,',", and X,', ' within the self-consistent approximation are shown in Fig. 47.
The first contribution has been considered in the text. In the infinite bandwidth limit, the other contributions vanish.
More generally, X,'," is a modification of the normal Pauli susceptibility proportional to the impurity concentration; this
term rejects the finite lifetime of conduction electrons near the Fermi surface. X,f, which measures the mutual correla-
tion of conduction and f-electron moments, is of greater interest. We show below that it is of order (1 /D)X// Since.
XI,' contains two of the f-electron insertions which appear in X,/, we conjecture, but do not prove, that it is of order
(I /D) X//.

The expression for X,f which results from the diagrammatic rules in Table X is

Xpf = Np~- f dev(e) —g f e 'G (z)Go(z —ice„)r) 1 1 1 dz
77 —cc r)F t Ql„—e Z/ I 27TE

(E7)

Here, v(e) is the normalized density of conduction states, N(e)/N(0). After (a) integrating by parts on e and (b) per-
forming the contour integral, one finds

Pg I dv c.N

3 7T —oo d C
(E8)

with
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F(c,)= f
defoe

~ [2ReG (cu)p (co)S&(ro, E) —pp(ro)Sp(ro, e)],1

Zf —oo

1 1
S)(ro, E) =—gP l co„—e

1 1
Sp(co, E) =—gP „&~n—e

Gp(co —i co„),

G (cu+iro„) .

(E9)

Carrying out the Matsubara sums and cancelling terms where possible in F(E) gives

X,f =67]+61'
with

N
5X, = "' ' f" d~e-i &(2ReG (co)p (co) f" d ev'( )ef( —e)ReGp(co —E)

3 1T Zf —oo CC

and

N
M'q= f dere ~"pp(co) f dE. v'(e)f(e)ReG (cg+e) .

3 '77 Zf —cc oo

(E10)

(El 1)

(E12)

In order to proceed, approximate forms
may write

1 p„ 2
e ~"X 2 ReG (~o)p (ro) = ——n/

f
1

5(co Ep ), —
To

(E13)

for the distribution functions are required. In the zero-temperature limit, we

1
e ~ pp(ro) =(1—/n)5( co Ep), —

ZJ
(E14)

and

ReGp(cu) = (1 —nI )P
CO —Ep

co —6'
(co —5~)'+ (N I )'

(E15)

ReG (co) =Re
1

(co Ep —Tp+i srTp/—N)
(E16)

Here, P denotes a principal value, Ep is the ground-state energy, and 6~ is the hybridization-induced shift of the zero-
frequency pole in Gp.

We assume a Lorentzian band profile with half-width D:

v(e) = [1+(e/D) ]

Inserting (E14) and (E16) into (E12) gives

5Xq= (1—n/) f dy =Xp,„~;—(1 n/)[2 in(D/Tp)+O(—1)],Np,'- r
~D (1+y ) (y —Tp/D)

(E17)

(E18)

where Xp,„~;=(Np&/3)(1/AD) is the susceptibility per electron in the pure system. This term is smaller than P// by or-
der (Tp/D) ln(D/Tp).

Inserting (E13) and (E15) into (El 1) yields two terms, due to the two peak character of (E15). The term arising from
the Kondo anomaly may be written as

2
NPq I 2 1 ~ —2y 1

n/ (1 —n/) dy — —= — —gp, „);.
3 JTD N Tp p (1+y ) y N

This term is smaller than off by order Tp/D.
The contribution to 6X] from the broad resonance in Gp near zero frequency may be estimated as

N
defoe ~")&2ReG co p co —— dcv' c ReGp Ep —c

3 Zf —00 77 p

r I —2y—Yff —f de v'( e)ReGp(Ep —e) =X// f dy, (E20)
7T p (1+y')' (y y)'+(NI /D)'—

with y—:(Ep —5')/D &0. The dimensionless integral is of order unity: hence, 5P~ is smaller than XI/ by order I /D.
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