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Nonlinear infrared response of antiferromagnets
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We consider the nonlinear response of a uniaxial antiferromagnet, exposed to an elliptically polar-
ized magnetic field of frequency 0, with the field in the basal plane. Explicit expressions are ob-
tained for the contribution to the magnetic susceptibility cubic in the Cartesian components of the ap-
plied field, which describe the response at frequency Q. We use these to calculate, as a function of
applied power, the transmissivity of a thin film. We show that such samples should exhibit bistability
under conditions outlined.

I. INTRODUCTION

When a system of spins is exposed to intense radiation
with frequency at or near its resonance frequency, the
response of the system may be nonlinear. The best-
known and most easily described mechanism is simple
saturation of the resonance. ' If we consider a two-level
system, application of a sufficiently intense resonant field
depletes the ground state, leading to a decrease of the
effective absorption coefficient as the power increases.

In concentrated spin systems, such as ferromagnets,
nonlinear behavior in the resonant response is found for
power levels far below that required to saturate the reso-
nance in the above sense. Many years ago, a theory of the
microscopic origin of these low-power nonlinearities was
put forward by Suhl; in the recent literature, there is
renewed interest in the area, because subharmonics and
ultimately a chaotic response of the spin system are
found, well beyond threshold. Suhl's instabilities have
their physical origin in the buildup to nonthermal values
of the population of short-wavelength spin waves, as
power is applied to the spatially uniform main-resonance
mode of the sample. The main resonance is coupled to
such short-wavelength modes via nonlinear terms in the
spin-wave Hamiltonian, and at elevated power levels
pumps energy into them more rapidly than it can be re-
moved by relaxation processes, to produce the nonthermal
populations which then react back on the uniform mode.

The discussion of saturation effects and Suhl's pumping
instabilities has been focused on the microwave-frequency
regime. Here, in a typical experiment, the wavelength of
the radiation is very long compared to the sample size.
To excellent approximation, the exciting field may be re-
garded as spatially uniform, and throughout the discus-
sion, retardation or propagation effects can be ignored in
the description of the interaction of the electromagnetic
field with the sample.

Antiferromagnets have resonance frequencies which lie
in the infrared, and as noted some years ago, interesting
propagation effects can influence the electromagnetic
response of these materials, within which the wavelength
of the resonant electromagnetic radiation can be small
compared to the sample size. The electromagnetic normal
modes are in fact polaritons, where strong dispersion is

present by virtue of the resonance in the magnetic-
susceptibility tensor produced by coupling of the elec-
tromagnetic field to the antiferromagnetic resonance.
Toussaint et aI. have reported clear evidence for magnetic
polaritons in their experimental study of Mn-doped
FeF2.

In this paper, we discuss the nonlinear response of anti-
ferromagnetically ordered spin systems. We suppose the
material is exposed to an oscillatory magnetic field with
Cartesian components in the basal plane, perpendicular to
the anisotropy axis. If the field has frequency 0„, we ob-
tain expressions for the contributions to the magnetization
induced in the sample that are cubic in the field ampli-
tudes, also with frequency B.

With these results in hand we may calculate the
transmissivity of a thin film as a function of incident
power. For a film of uniaxial material such as FeF2 in
zero external field, with c axis normal to the surface, this

may be done through application of an approach
developed recently for the analysis of dielectric films and
multilayer structures. '

If the film thickness is chosen suitably, as discussed
below, we find bistability in the infrared transmissivity.
Thus, antiferromagnetic films may serve as nonlinear cir-
cuit elements in optical structures designed to operate in
the far infrared. In this regard, note that films of the
thickness required are now available which are of very
high quality. The material used in Ref. 5 had an
antiferromagnetic-resonance width of less than 20 G; this
figure is an upper limit and not the measured value of the
line width.

Viewed from the perspective of the literature on non-
linear instabilities in magnetic media, ' the bistability ex-
amined here may be viewed as a new form of instability
whose existence depends on the role of retardation in the
description of the electromagnetic response of the film.
As remarked earlier, such effects are unimportant in the
microwave response but, as we will see, they may play a
substantial role at infrared frequencies.

This paper is organized as follows. Section II discusses
the calculation of the nonlinear response of the antiferro-
magnetic spins. Section III examines the transmissivity of
the thin film as a function of power, and Sec. IV is a sum-
mary and general discussion.
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II. THE NONLINEAR MAGNETIC SUSCEPTIBILITY
OF UNIAXIAL ANTIFERROMAGNETS

and

H ff —z(Hp +H~ a, ) —H~b+ h( t) (2.2a)

In this section, we derive expressions for the trans-
verse elements of the nonlinear susceptibility tensor of a
uniaxial antiferromagnet that can be described by the
two-sublattice model. The materials MnFz, FeF, and
CoF2 are examples of crystals which can be described by
this model. These compounds form crystals of the rutile
structure, where the body-centered metal ions form sub-
lattice 2, say, and the corner metal ions form sublattice
B.

We begin with the assumption that the crystal is at a
low temperature, and then the magnetization on each sub-
lattice can be regarded as saturated. We define the +z
( —z) direction as the direction of the spontaneous magne-
tization of sublattice A (B). We let m~ and m~ be the
magnetization of each sublattice, and m, is the absolute
value of the saturation magnetization associated with each
sublattice.

To calculate the nonlinear contributions to the magnet-
ic susceptibility, we place the spins in a spatially uniform
magnetic field

h(t) =xh„cos(At+ /)+ yh~ sin(At+ P),

H, ff =z(Hp+H~b, ) H—Fa+h(t) . (2.2b)

a, =copa~+cpqa~a, +cp~(b~a, a~b, )——yh~(t)a, ,

(2.3a)

az ———cppa —cpqa„a, +cpF(a b, —b a, )+yh„(t)a, ,

(2.3b)

b =cppbz+cpzbzb, +cpF(azb, bza, ) —yhz(t)—b, ,

(2.3c)

Following the prescription used earlier, we assume the
internal field operating on each sublattice consists of an
anisotropy field of strength H q (m, /m, ) for each sublat-
tice, and the exchange field of strength H~ generated by
spins on the opposite sublattice.

If we define the characteristic frequencies
~o ——yHo, cuz ——yH&, and co~ ——yHE, then the equations
of motion for the various transverse-spin components be-
corne

polarized elliptically in the xy plane. The response of the
spin system to this field may be calculated from the
torque equations

ancI

b& = —cppb —cpg b b +cpg(b a, ab, )+y—h„(t)b,

(2.3(l)

ancI

dt
=y(aXH, ff')

dt
=y(b X HI,ff'),

(2. la)

(2. lb)

Assuming a~, a~, b„, and b~ are always small com-
pared to unity, we can write

(2.4a)

where y is the gyromagnetic ratio, a =m ~ /m„
b=m~/m„with H,'~' and H,'~' the effective fields acting
on sublattice 3 and B, respectively. Supposing the spins
are placed in a dc external magnetic field of strength Ho
directed along the z axis, H', ~' and H', ~' are given by

ancI

(l b2 b2)1/2 l+ 1(b2+b2)+ (2.4b)

Upon employing Eqs. (2.4), we may rewrite Eqs. (2.3)
to read with a ~

——a +a and bq ——b +b

and

a» =(cop+co~ +co~)a~+cp~b~ —yh~ —,'co~(a~bq+b~a—t) —
—,'cpqa ta~+ —,'yaqh~,

a~ = —(cop+ cp~ + co~)a» cp~b +yh„+—,'co~(a„bq+b—aq)+ —,'co~a qa„——,
' ya qh„,

b» = (cop cp ~ —co~ )b~——cp~ a~ +y h~ + ,' co~ ( a~ b i + b—~a ~ ) + ,' cp q b ~b~——,' y b ih~, —

(2.5a)

(2.5b)

(2.5c)

b~ = —(cop co~ — ~cp) —„b+~cpa„—yh —,cpt:(a bq+b,—aq)——,cp~btb, + ,ybih— (2.5cl)

From Eqs. (2.5), we shall extract the components of the response at frequency A, which are cubic in the amplitudes of
the applied field amplitudes h and h~. These are the components of the response that will prove of interest in Sec. III.
We seek solutions in the form

a (t)=a cos(At+/)+a„' cos(3At+3P)+ (2.6a)

and

a, (t) =a sin(At+ /)+a ' sin(3At+ 3P)+

and use identities such as

(2.6b)

cos(3x) = —,
' cosx + —,

' cos(3x)
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to isolate the coefficients of the terms which describe the response of the system at the frequency A. This leads to the
following set of algebraic equations:

Qa„+(cop+co~+co~)ay+co~by =yhy[1 —
—,'(a„+3ay )]+ ,'c—oqay(a„+3ay )+ ,'co~—[ay(b„+3by)+b»(a„+3ay )],

Qa»+(cop+coq +co~)a +co~b =yh [1——,'(3a„+a»)]+—,'co~a„(3a +ay }+,'co—~[a (3b„+by )+b (3a +ay )],
(2.7a)

(2.7b)

Qb»+(cop —co~ —coE)by —co~a» = yh—»[1 —,'(b—+3by)]—,'co—~b»(b +3by ) ,'co—F[—a»(b„+3b»)+by(a +3ay )], (2.7c}

and

f1b» + (cop —co q —co~ )b —co~ a = —y h„[ 1 —
—,
' (3b + by ) ]——,

' co q b ( 3b +b» ) ——,
' co~ [a„(3b„+b» ) +b„(3a„+ay )] .

(2.7(l)

In the end, we seek the net dynamic magnetic moment induced by the field, whose components are proportional to
a„+b, and a»+by. Thus we introduce t=a+b, and the staggered magnetization d=a —b, and rewrite Eqs. (2.7) in
terms of these two variables. The results are instructive. One finds that

nt. +~pty+~Ady h—y(t—,d—.+3tydy)+ "(3dy3+t2dy+2t. tyd. +9t»2dy+dzdy),X X (2.8a)

and

Qty + copt +cog d: (3t d + ty dy ) + (3d + ty d + 2t ty dy + 9t d +dy d )
8 '' 32

Qd + codpy +( cog +2 cgo)t » & hy[2
i
(6t + t3» +d +3'�) ]

+ )', (cog+2cog)ty(t +3ty+d +3dy)+, ', (cog 2(oE)dy(t d»+3tydy)

(2.8b)

(2.8c)

f) d» + copd + ( co g + 2(oE )t„=Yh» [2—
—,', ( 3t„+ty + 3d» +d» ) ]

(cog+2(og)t»(3t»+ty+3d +dy)+ (cog 2(og)d»(3t d +tydy) (2.8d)

From the general structure of these equations, one may
appreciate the crucial role played by the anistropy energy,
here represented through the parameter coq. If cuz is set
to zero, one sees that in the linear response of the system,
both h„and h~ couple only to the staggered magnetiza-
tion d, and the net magnetization t vanishes. The two
exchange-coupled sublattices each precess around the
external Zeeman field Ho, always remaining strictly anti-
parallel when co~ ——0. In this limit, the only nonlinear
terms in the equations for t which survive are those ex-
plicitly proportional to the driving fields h and h~.
Through these, one obtains a net transverse magnetization
t cubic in the amplitude of the applied field. However, if
one considers the case co~&0, and frequencies close to
that of the antiferromagnetic resonances, one may estab-
lish that the dominant contributions to the nonlinear sus-
ceptibility have their origin in the terms in Eqs. (2.8) ex-
plicitly proportional to co&. The role of anisotropy is thus
crucial.

From Eqs. (2.8), one easily obtains expressions for the
linear response of the system to the applied field. If t' '

and d' ' denote the response calculated in the linear limit,
then

and

dy' ' ——(co+X—co Y)h„+(co+X+co Y)hy . (2.9d)

In these expressions, we have

/CO g

Qp —( A+ cop)

Y= PMg

fl p (0—cop—)

(2.10a)

(2.10b)

where Qp =y ( 2H~H z +H q ) is the zero-field antiferro-
magnetic resonance frequency, and finally

(cop 0)
(2.10c)

«[o)+«[i)+. . . (2.1 la)

and

The nonlinear contributions to the response follow from
a perturbation theoretic analysis of Eqs. (2.8). One
proceeds by writing

d(o)+ d(1)+ (2.11b)
t'P'=(X+ Y)h„+(X—Y)h, ,

ty'
' (X—Y)h +(X+Y)hy, ——

d:(co+X+co Y)h +(co+X co Y)hy

(2.9a)

(2.9b)

(2.9c)

where t' ' and d' ' describe the linear response, and t"'
and d'" are the first nonlinear corrections, given by terms
of the form h "h~, where n +m =3. The first corrections
are found from
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Qt'"+co t "+co d"'= ——' h (t' 'd +3t' 'd ')+ —'co (3d ' +t' ' d '+9t' ' d '+d' ' d '+2t' t' d ') (2 12)x ~Oy ~W y
= —8$ y x x 32 ~ V X v x V x

and similar relations deduced from Eqs. (2.8b) —(2.8d).
We may write

(1j
tx

3

ct h hy
n=o

(2.13a)

3 3
ty' g —f—3„h„"hy" g——a3 „h, "hy", (2.13b)

and

n=0 n=0

3 3

dy": g(h hy": gi)3 h ~hy
n=o

(2.13c)

The identification of P„with a3 „, and g„with i)3 „ is a direct consequence of the invariance of the form of the
response under rotations of the reference axes about the z direction.

It is a straightforward, but nonetheless tedious matter to obtain expressions for the coefficients a„and g„ from the re-
lations given above. We quote only the results, which are as follows:

j [2cooco+( —coo+ flo+f1 )+co~( —Ao+fl +cop)(1+co+ )]X'

+[cop( —cop+flp+0 )(co++co )+cog( —flp+cop+fl )(1+co„co )]XY

+[2copco ( —cop+Op+A')+cog( —Qp+co2p+Q )(1+co )]Y )

+ 8cog I [Op —(fl —cop) ]( 3 tX + A3XY )+[(fl+cop) —fly]( ApX Y+ 34Y )I (2.14a)

a& = —( I 2cop[2co+(0 —cop+ Sip+ scop) —

Acorn

(1+co+)]+2(flp cop 6—)[fl—co+ —cow (1+co+ )]lX
XY y 2 2 2 2 2 2 2 2 2

y2 2 4

+ I 2' cop[co g ( 1 + co+ co ) —cop( co + + co ) ]+0(fl + cop —fl p ) ( co + + co ) ) XY

+ [ 2cop[2co (cop+ scop —O' —alp) —fico g ( 1+co )]+2(Qp —cop —fl )[fico +co g ( ]+co )] I Y )

+ ~cog [[Qp —(0—cop) ](3A&X —A3XY )+[(6+cop) —fly](ApX Y —324 Y )I (2.14b)

a2= —[2cop[co+(fl —cop+Ap+4flcop) —2AcoA(1+co+)]+(halo —coo —& )[4&co+—cow(1+co+)]IXy2 2 4

+[cop(coo —fl —Slo)(co++co —)+co~(Qo —coo —fl )(1+co+co )]XY

+ [2cop[co (Sl —cop+ fly+ 4$lcop)+ 20cog (1+co )]+(fl +cop —Qp)[4flco +cog (1+co )] I Y

+ ~cog [ [lip —(fl —cop) ](33 &X —A3XY )+ [alp —(fl +cop) )( A2X Y—3 24 Y )I (2.14c)

cc3= —
I [2$lco+(alp+cop —fl ) —20copcog (1+co+ )]X2 2

/co 4

+[f1(co++co )(cop+flp —fl ) —2Qcopcoq(1+co+co )]XY

+[2co A(cop+Op —fl ) —2flcopcog(1+co )]Y j

+ iicog [[Op —(0 cop) ]( A jX + A3XY )+[Op —(fl+cop) ]( A2X Y+ A4Y )I (2. 14d)
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In these equations, we have introduced the following quantities:

A
&
——co~+(3(p w

—2(pz ) —co+(A+coo) —3cp+(coo+ II ) + (2cpz + co a ),
A2 ——2cp+cp (cop —II )+4(p+cp (cog —cp q ) —2cp pep+

—4(p+(0 —cpp) —2cp (0, —cpp) —2(2cpg + co q ),2 2

A3 = 2(p ~ co —2(p+cp (cop+ 0 ) —4(p+cp (cog —cog ) —4(p (0+cop) —2cp+(cpp+ II )+2(2cpg + cog )

(2.15a)

(2.15b)

(2.15e)

and

r44 =co (cop —II)—cp (3cp g —2cpg ) —3cp (0—cop) —(2cpg +cog )
3 2 (2.15(l)

While the above expressions give a complete description
of the nonlinear response of the total moment to the ap-
plied field, quite clearly they are sufficiently cumbersome
that they offer little insight into the nature of the
response.

A much simpler picture emerges if we take the limit as
the externally applied Zeeman field vanishes, Ho ~0.
Then X= Y=ycp~/(Qp —II ), cp = —co+ ——II/co~, while
we also have 2 i

———A4, A3 ———A2. Then one finds that

lim a~ —— lim a4 ——0,
Ho-O Ho-O

(2.16a)

while

y cog' ($1 +cog )
lim ao ——

(Qp —0 )
(2.16b)

and

y3cpgQ (4IIp —311 —7(pg )
lim o.2 ———

Ho~0 (IIp —0 )
(2.16c)

In zero external Zeeman field, the relationship between
the nonlinear component of the induced magnetization
and the applied fields becomes

and

tx" =O'Ohx +a2hx hy (2.17a)

t~ =aOh~ +a2h~hx(&) 2 (2.17b)

It is also possible to obtain simple expressions in finite
field, where the frequency 0 is very close to Qo+~o, the
finite field antiferromagnetic resonance frequency. If we
define b, f1+ =Qp —(0+coo), and assume hQ+ is very
small, upon extracting the dominant terms in the
response, we find

N3 3 2a;=+a;= ~
(b,Q+)

(2.18a)

and

3y ~~ Ao3 3 2

a2 =+a~ (an' )4
(2.18b)

This completes our discussion of the nonlinear response
of the uniaxial antiferromagnet, in the presence of an in-
tense field. In Sec. III, we discuss the implications of the
results obtained here.

III. POWER-DEPENDENT TRANSMISSION
OF ELECTROMAGNETIC RADIATION

THROUGH ANTIFERROMAGNETIC FILMS

In this section, we employ the results of Sec. II to ex-
plore the dependence on incident power of the transmis-
sion of electromagnetic radiation through thin antiferro-
magnetic films. We shall be led to the instabilities men-
tioned in Sec. I.

We consider a rutile structure antiferromagnet, with c
axis oriented normal to the film. The source of the non-
linearity is coupling between the magnetic field in the in-
frared wave, and the spins. The results of the preceding
section show that for frequencies near resonance, the non-
linear response coefficients may become substantial, so we
focus on this regime.

We first recall the discussion of the transmissivity of
such a thin film in the linear theory. We confine our at-
tention to radiation normally incident on the film, so both
its electric and magnetic field lie in the xy plane, perpen-
dicular to the c axis. The dielectric tensor is diagonal in
this case, and the electric field senses its value eq appropri-
ate to the basal plane.

If a Zeeman field is applied parallel to the z axis, then
the magnetic susceptibility tensor has nonzero diagonal
elements X „(Q)=Y~~(Sl), and the off-diagonal elements
are nonzero also, with X„~(O)= —X~ (fl ), in a manner fa-
miliar from the theory of gyrotropic media. Explicit ex-
pressions for the nonzero elements of the magnetic-
susceptibility tensor are given in Ref. 4, and also in Eqs.
(2.9a) and (2.9b) of the present paper.

If plane-polarized radiation is incident on the film, then
as the radiation propagates through the film, its plane of
polarization rotates. This is the Faraday rotation; the
transmitted radiation is also plane polarized, but the plane
of polarization suffers a rotation through the angle 60,
controlled by the magnitude of the off-diagonal elements
of the susceptibility tensor.

In zero applied external field, both X ~(O) and X~ (II)
vanish identically. There is no Faraday rotation, so the
problem of calculating the transmissivity is quite elemen-
tary. In the absence of an applied Zeeman field, it
remains true also in the presence of the nonlinear
response that a plane polarized field incident on the slab
remains plane polarized always. We confine our attention
to this simple case. The extension of the discussion to the
case where the Zeeman field Ho is nonzero would be most
interesting to explore, but this is a nontrivial extension of
the calculation presented below. It no longer remains



2020 N. S. ALMEIDA AND D. L. MILLS 36

true that in the film the electromagnetic wave remains
linearly polarized everywhere, with the plane of polariza-
tion rotating continuously as one moves through the film.
At a general point in the film, the wave will be elliptically
polarized, and its description requires solution of a non-
trivial set of coupled, nonlinear differential equations for
the two field components h, and hz.

The results of Sec. II may be summarized as follows.
If, with Zeernan field set of zero, the film is excited by the
time-varying magnetic field h» (t) = h~ cos( fit+ P), then
the magnetic moment m~ induced in the spin system may
be written, with higher harmonics ignored,

m J(t):Xp(fl)[1+A(Q)hy]hy (3.1)

where the linear susceptibility is

2yHg m,
Xp(&) =

(Ilp —0, )
(3.2a)

and the nonlinear component of the response is controlled
by

y2 Q (Q +My)
7 (II) =

(IIO —II')' (3.2b)

If we use complex notation, with h~(t)=h~ exp(iAt+P),
then Eq. (3.1) is replaced by

my (t):gp(A )[1+X(II )
~

hy
~

]hy (t) (3.3)

Bh
rgb' ——0,z~ c~

(3.4)

with eq the dielectric constant in the basal plane, and we
then have

0 hy
~ + ~ e~g(&)hy+4~ cgXp(II)k(II)

~
hy

~

'h~ =0 .
z~ c~ c

(3.5)

We shall study the transmission of radiation through a
film described by Eq. (3.5); we suppose the strength of the
incident field which illuminates the film is hp. We then
seek a solution of Eq. (3.5) with

h, (z) =H, h(z) exp[i/(z)], (3.6)

with h (z) and P(z) real. We define k = fI /c,
n (II)=c~z(A), and we let y(A)=4~n(A)X (II)pA(fI)hp.
In this paper, we shall confine attention to the spectral re-
gime where both n ( A ) and y( A ) are positive. This is the
case for frequencies below Q,p. In Ref. 6, an extension to
the case y(II) &0 is given. Equation (3.5) then breaks
into two statements, once the real and imaginary parts are
set equal to zero. These read as

where now and in what follows, the physical response of
the system at frequency fI is given by Re[m~(t)].

Wave propagation in the medium is discussed by allow-
ing h~ to vary with the coordinate z normal to the inter-
face, with the relation between h~(z, t)=h~(z) exp(ifIt
+P), and m~(z, t) controlled at each point by Eq. (3.2b).
Within the film, for the simple case considered, Maxwell's
equations give

dh
h

dP
d

2

+k n (A)h+k y(A)h =0, (3.7a)

and

dhdP dP+h
dz dz dz ~

(3.7b)

Note that Eq. (3.7b) implies that the quantity

g=h
dz

(3.8)

is independent of z. In the film, one may show that
the time-averaged rate of energy How along the z
direction, ( S ), is proportional to g. In fact, one
has (S)=(c Hp/8rrcoeq)(h dP/dz) or (S)=(c Hp/
8rrcoE&)g. Since energy is conserved, in the appropriate
units, the parameter g is the transmissivity of the film.

By combining Eq. (3.8) with Eq. (3.7a), one may obtain
a second relation:

2
dA

dz
+knh+ —'kyh (3.9)

(3.10)

If h (z) is found from Eq. (3.10), we then have information
to find P(z) everywhere:

I

(t (z) =p(zp)+ g fzo h (z )
(3.1 1)

The relations above show that the solution within the
medium is characterized by four constants, g, r, h (zp),
and (t(zp). These are to be determined by submitting the
solution of the nonlinear equation to the appropriate
boundary conditions at each film surface. Note that in
the description of the transmissivity of thin films provided
by linear theory, four parameters are also required. In
the linear theory, the solution within the film is described
as a superposition of two plane waves, one propagating
from right to left, and one from left to right. Each has
wave vector of magnitude h. =(Q/c)n (fl), where ir is pure
imaginary in spectral regions where the product e~z(II)
is negative. Each plane wave is described by a complex
amplitude, which requires two parameters to specify.

The analysis of the response of the film to an incident
electromagnetic wave requires the four parameters to be
determined from the boundary conditions at each inter-
face. A recent paper describes how this may be reduced
to a search for a single parameter, g, which is bounded
between zero and a finite value gM =eq controlled by the
requirement that the transmissivity of the film be less than
unity. We summarize the approach used in Ref. 6, which
applies as well to the present problem.

The film is illuminated from the left by an incident
electromagnetic wave whose amplitude is Hp', to the left of

where r is a second constant of integration. If h (zp) is
the value of the field at an arbitrary reference point zp,
then we have

f h (z) hdh
h(zo) (&h2 g2 k2 2k4 ] k2 h6)1/2

2
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the film (z &0) the magnetic field in the wave is thus
h(z)=HO(e'"'+ Re '"'), with R the reflection coefficient.
To the right of the film, z & d, the transmitted wave is
h(z)=HOTexp(ikz) .The electromagnetic boundary con-
ditions at the two surfaces then provide us with the fol-
lowing statements:

and

dh =2k@i sin[/(0)]
dz

g+keih (0)=2keih(0) cos[P(0)] .

(3.13d)

(3.13e)

1 —R= 1

1kgi

dh

dz
+ ih(0)

d(5

dz

Teikd h (d)e iP(d)

1+R =h (0) exp[i/(0)], (3.12a)

e'~' ' (3.12b)

(3.12c)

Finally, Eqs. (3.13d) and (3.13e) may be squared and add-
ed to give

2 '2
dh

dz
+km, h (0) =4k'e', .

h 0
(3.14)

Also note that Eq. (3.9), along with Eq. (3.13b), provides
the statement

T ikd
~ 1

lk E'g
+ih(d) e'~'" (3.12d)

p2
r= —,'k yh(d) +k'n h~(d)+

h (d)
(3.15)

We may obtain useful constraints from Eqs.
(3.12a)—(3.12d). Quite clearly, Eq. (3.12c) gives us the re-
lation

I

T
I

=h (d) (3.13a)

dh

dz
=0, (3.13b)

and also

g'=keih (d) . (3.13c)

Equations (3.12a) and (3.12b) may be used to provide
the relations

while Eq. (3.12c) may be combined with Eq. (3.12d) to
yield

We may now proceed as follows. We choose a value of
the parameter g in the acceptable range 0&(&/M. Then
from Eq. (3.13c) we may find h (d), and the parameter r
from Eq. (3.15). The reference point zo is chosen to be
z =d, and we now have enough information to find h (z)
everywhere from Eq. (3.10), and P(z) from Eq. (3.11), if
desired. We can inquire if the value of g chosen corre-
sponds to a solution to the problem by checking if Eq.
(3.14) is satisfied at z =0; notice we need not calculate
(dh /dz)o numerically, but we may make use of Eq. (3.9)
applied at z =0. Shortly we shall see that the ambiguity
in sign on the right-hand side is of no concern. With this
procedure, we may scan the whole range 0 (g & gM, to
find the one or more values of g which yield a solution.

The integral in Eq. (3.10) may be arranged to read,
after using relations given above,

f h (z) hdh =+a
[[h (d) —h ](h —h )(h +h )}'

1/2

(d —z), (3.16)

where both h 2 and h 3 are positive numbers. We omit explicit expressions for these two quantities, in the interest of brev-
ity. It is possible to express the integral in Eq. (3.16) in terms of Jacobi elliptic functions. One finds

1

[h ~(d)+ h ~] ~~~

h (z) —hq h (d) —hq

h (d) —hp h (d)+h3

1/2

=+k — (d —z),
2

(3.17a)

if h (d) )hi, and

1
dn

(h 2+h 2 )1/2

h (d)+h3 hi —h (d)

h (z)+hi hi+h (d)

1/2

=+k — (d —z)
2

(3.17b)

if h (d) & hq. These relations may be inverted to give

h (z)= '

hq+[h (d) —hq]cn

—h 3 + [h '(d)+h i ]dn

' 1/2
y(h '(d)+ h i )

2

h (d) —hp
k(d —z)

h (d)+h3

y(hi+h, ) h~ —h'(d)
k(d —z)

h'(d)+h',

(h (d) )hi)

(h(d) &h, )

(3.18)



2022 N. S. ALMFIDA AND D. L. MIL

h o =
I 0 t'-

36

a) is an even

i n which occurs in ear ier equaguity in sign w
ffi lt s. It is possible to take

t vanishes in the
leads to no difficu ties.
»e nonlinear coe cien y vthe limit as t»e n

1 of the conventionalions to recover the resu ts o e
fil . Thi i do li itl

he h 0 is examined also, as
f the linear dielectric film. is i

in Ref. 6, where the hhe case where y ~ is
f the transmis-1 We discuss calculations o eremarked earIier. e

sivity o ef FeF films in Sec. IV.

IV. RESULTS AND DISCUSSION
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Of course, in any experiment at elevated power levels,
sample heating simply from dielectric loss can be prob-
lematical. Sample heating can mimic the intrinsic effects
studied here. If the sample is heated, the resonance fre-
quency Ao will decrease by an amount AA proportional
to (h ), the average of the square of the rf field in the
wave over the film, if the film is heated uniformly. Such a
shift in the resonance gives an effective nonlinear coupling
constant k(A)(h ) =2AOAA/(Ao —Sl ) which is positive
below resonance, very much as the result derived in Sec.
II. Note that the frequency variation of the contribution
to A.(A) from heating differs from the expression in Eq.
(3.2b) so at least in principle, detailed study of the depen-
dence of the bistability on frequency and power can
discriminate between the mechanisms described here.
The use of pulses sufficiently short will also discriminate
against heating effects.

Also, at elevated power levels, the analog of Suhl insta-
bilities may be encountered in antiferromagnets, as well as
ferromagnets. Rather little attention has been directed
toward this question in the literature. ' Suhl discussed
two distinctly different instabilities. The instability which
sets in at lowest power is one in which a wave of frequen-
cy Ao decays to a spin-wave pair, each member of which
has frequency A, o/2. For the example considered here,
the antiferromagnetic resonance frequency is the lowest-

frequency spin-wave mode, so Suhl's subsidiary resonance
absorption is absent. For experiments in a magnetic field,
the same statement applies if one explores the response
near the lower of the two resonance modes, at the fre-
quency Ao —Ho in our notation.

The second instability discussed by Suhl requires the
existence of short-wavelength spin waves degenerate with
the main resonance. There are no such waves either, at
the level of description offered here. However, a full
theory which incorporates dipolar fields generated by spin
motions may allow such degenerate waves, in particular
geometries. A detailed study is required to explore this
point.

The study presented here suggests that antiferromagnet-
ic films should exhibit bistability in their far infrared
response, for power levels presently accessible in the labo-
ratory. It will be intriguing to see experimental studies of
this phenomenon.
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