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Amnon Aharony
School of Physics and Astronomy, Tel Avi-v University, Tel Avi-v 69978, Israel,

and Department of Electronics, Weizrnann Institute of Science. 76100 Rehovot, Israel

Eytan Domany and R. M. Hornreich
Department of Electronics, Weizmann Institute of Science, 76100 Rehovot, Israel

(Received 8 April 1987)

A renormalization-group analysis of critical behavior near a Lifshitz tricritical point (LTP) is

presented, with emphasis on the role played by new, momentum-dependent quartic terms. These re-

sult in new stable fixed points which determine the critical behavior. For some values of n (the num-

ber of order-parameter components) and m (the dimensionality of the "soft" subspace, characterized

by quartic momentum-dependent inverse correlation functions), the renormalization-group recursion

relations have two stable and accessible fixed points. However, one of these can never be reached in

practice, due to a thermodynamic instability which results in a first-order phase transition. For
m =d —1, one of the fixed points describes the critical dynamics of the usual n-vector spin model in

(d —1) dimensions. This dynamic fixed point also characterizes LTP behavior for large n and n =1.
In all other cases, the LTP has new exponents, which are not related to the dynamic model. Our re-

sults may be relevant to Lifshitz tricritical behavior in RbCaF3 and in some liquid-crystal systems.

I. INTRODUCTION

Multicritical points have been a subject of theoretical
and experimental interest for many years. Much of this
interest has centered upon tricritical points, at which a
second-order phase transition becomes first order, and
Lifshitz points, at which a transition into a commensurate
ordered phase (e.g. , ferromagnetic) turns into a transition
into an incommensurate one (with a wave vector which
varies continuously along the transition line). Under spe-
cial conditions, a line of tricritical points can cross a line
of Lifshitz points, thereby yielding a higher-order mul-
ticritical point, which we shall call a Lifshitz tricritical
point (LTP). A possible case in which this was both ex-
pected theoretically and observed experimentally is the
structural antiferrodistortive transition in the perovskite
RbCaF3, where the usual transition point appears to be
very close to the Lifshitz point, and which goes through a
tricritical point under uniaxial pressure. Other realiza-
tions possibly occur in liquid-crystal phase diagrams, e.g. ,
near the NAC point or for the smectic-A to stacked-
hexatic-B transition.

Recently, it has also been shown that the critical dy-
namics of certain systems in (d —l) dimensions is closely
related to the equilibrium properties of related systems in
d dimensions, at a special type of LTP. As a conse-
quence of this work, it was recognized that the earlier
analysis of the LTP by Nicoll et al. ' is inadequate, and
that a more general Landau-Crinzburg-Wilson effective
Hamiltonian must be considered. In particular, it was
shown to be necessary to take additional invariants, in-
volving momentum-dependent interactions, into ac-
count. '

Since the renormalization-group analysis of such Ham-
iltonians is of interest in itself and may also be relevant to

the interpretation of experimental results, we present
here a complete study of the LTP, including alI relevant
interactions. We proceed as follows: In Sec. II, we
present the eA'ective Hamiltonian to be studied and point
out the new features which were not considered in earlier
work. Next, in Sec. III, we carry out a renormalization
group, e-expansion analysis of the Hamiltonian for a gen-
eral n-vector order parameter to first order in e. The
question of thermodynamic stability is addressed in Sec.
IV and the n ~~ limit is considered explicitly in Sec. V,
where results are obtained for general dimensionality. Fi-
nally, in Sec. VI, we summarize our findings and discuss
their implications.

II. EFFECTIVE HAMILTONIAN

and the associated partition function

Z = D exp— (lb)

Here o. is an m-dimensional subspace with m (d and
V = g,.

&
it)/t)x;. Similarly, P is the complementary

(d —m )-dimensional subspace and Vp = V —V . The two
subspaces are each fully isotropic and P has 0 (n) symme-
try.

The usual tricritical point' is obtained when the scaling

In order to study simultaneously both the tricritical and
Lifshitz multicritical behavior of a d-dimensional system
characterized by an n-component vector order parameter
P(x), we consider the effective Landau-Ginzburg-Wilson
Hamiltonian'

&=—,
' f d "x [rP +p(V P) +(V P) +(Vyb) ]

+ f d'» fu4'+yes&'4. (VA.»+y24'(V-4)'+~4'j
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field u associated with u vanishes at the critical point t=O
[t is the scaling field associated with r in Eq. (la)], while
that associated with 1u (i.e., p) is nonzero. For d ) 3, tri-
critical behavior is governed by the Gaussian fixed point,
which becomes unstable with respect to w when d & 3. At
the Lifshitz multicritical point, on the other hand, p van-
ishes at t=O while u does not. In this case, u is the only

relevant field when d &4+m/2. The LTP is reached
when t, u, and p all vanish simultaneously. In this case,
in addition to w, we shall show that y1 and y2 are also
relevant to describing the system's critical behavior in
d & 3+m/2 dimensions. These terms were not included
in earlier studies of this problem. '

In reciprocal space (1) can be written in the form

4

m=-,' f V2(q)pq y q+ f f f f I'4(qi, q2, q3, q4)kq, Wq, 4q, 4qp
I. =1

6

q2 q3 q4 q5 (2a)

with

V2 ——r+pk +k +p

V4 —u -+y 1 k 1 +y2(ki+ k2)',

(2b)

(2c)

lengths in a by a and in P by b, and rescale the order pa-
rameter P by g. In order to keep the coefficients of both
the k P and p P terms in (2) at unity, it is necessary
that the bare rescaling factors satisfy

and f =—(2vr) f d "q over a d-dimensional volume

bounded by the surface k +p =1. Here k and p=q —k
are, respectively, m- and (d —m)-dimensional wave vec-
tors in the a and p subspaces and yi =yi —y2, y2= —,'y2.
Note that an additional invariant, having the form

~2 —4 —m ~ —(d —m) ~2 t —2 —m r —(d —m)

Thus, to this order,

b=a

g2 gd +2—m/2

(6a)

(6b)

is reducible to those appearing in (2) upon integration by
parts. Adding (3) to (2a) is equivalent to replacing yi in

(2c) by yi =yi+2y3 and y2 by y2=y2 —
—,'y3. Also, when

n=1, the two momentum-dependent quartic terms are
simply different forms of the same invariant '" and one
can delete the y2 term by replacing y1 by y 1' ——y1+ —3y2.

Near the LTP, we expect the spin correlation function
to have the scaling form

y1y2. y a a by-4 —2 —3m z —3(d —m ) g 3+ m /2 —d

w: g a~6 —5m z —5(d —m) i 2(3+ m /2 —d)

(7a)

(7b)

Thus the upper critical dimensionality d„associated with
the LTP is

d„=3+m /2,

The bare rescaling factors of the operators associated with

y1,y2 and w are

G(k p, tp, u)=(pq p q)

=t g(kt ~~pt, pt ",ut ), (4a)

and the operators associated with y1,y2, and w all, in
principle, become relevant for d & d„.

Defining

G (k,p, 0,0,0) =k ""g[p /k "" ' ],
with the scaling relations

(4b)

where N„and N„are crossover exponents. At the LTP,
t =p = u =0 and (4a) reduces to

e=d„—d =3+m/2 —d, (9)

3'1 =b [3 1
—(X13 1+X23'2+X33 13 2

it is straightforward to show that, to 0 (e), the relations
(6) are still valid. The O(e) recursion relations for yi, y2,
and w will have the form

yLr=v1(4 —2)~))=vi(2 —2)i) . (4c) +X 1 wyi +X2wy2+X 1'w )I lnb], (10a)

III. RENORMAI. IZATION-GROUP 6-EXPANSION
ANALYSIS

y 2 =b '[y 2 (X43 1 +X53' 2 +X6y 13'2

+X3wyi +X4wy2+X2'w )I lnb], (lob)

To determine the upper critical dimensionality at the
LTP and the relevance of the various operators appearing
in & when the scaling fields p = u =0, we apply standard
renormalization-group methods' ' based upon anisotrop-
ic rescaling of the a and 13 subspaces. We thus rescale

w'=b '[w —(X2wyi+Xswy2+Xqw )I lnb] . (10c)

Here the reduced prefactors X; arise from one-loop di-
agrammatic contributions, X from two-loop diagrams,
and X," from three-loop ones (see Fig. 1). The common
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2.
V4

V„' EO(e)l

W

w [O (e )1

y;*=ez;/I (i =1,2), (12a)

we obtain the following relations for the 0(e) reduced
fixed points z~, z2

From Eqs. (10a) and (10b) it is clear that the 0(e) fixed
point values y ~,yz are independent of w* when the latter
is 0(e ). Defining

V4 w:
w (0(e )1 z& =X&z ] +X2Z2+X3z]z22 2

z2 =L4z ] +X5z 2 +X6z ]z22 2
(13a)

W

3
V4 For each solution of (13a) the corresponding 0(e )

fixed point value of w * can be found by defining

w* =e z3/I (12b)

FIG. 1. Diagrammatic contributions to the renormalized cou-
plings, V4 and w' to O(e). The final diagram ( V4) is needed
when w is O(e ) (see text). The vertices V4 and m are defined in

Eq. (2).

—X»yiyz —X12y2)1»~j . (10d)

To obtain w*=O(e ), it is not necessary to calculate
0(e ) contributions to the order-parameter rescaling pa-
rameter g.

The one-loop diagrammatic contributions to (10) are
evaluated in the standard way, ' using the propagator

GJ=6;, /(r+pk +k +p ) .

To obtain the X, it is sufficient to set r =p=0 in (11) and
to evaluate all integrals in d„=3+m /2 dimensions. De-
tails are given in the Appendix and the resulting expres-
sions are listed in Table I. Note particularly that
X4(m =d„—1=4)=0. This is not accidental but rather a
consequence of the connection between (d —1)-
dimensional critical dynamics and the equilibrium proper-
ties of the d-dimensional LTP.

factor I is defined in Table I.
Note that the X and X;" terms in (10) are relevant, to

0(e), only when w*, the fixed point value of w, is of
0(E). We shall argue (see Sec. VI) that y, ,yz are 0(e)
and w* is 0(e ) at all physically relevant fixed points.
These can all be found by dropping the X, L;" terms in
(10a) and (10b) and replacing (10c) by

[w (X7w31+X8wy2 X93'i Xlo3 LV2

and solving (10d) to obtain

L9z ( +L)oz (z2+X))z)z2+L)2z23 2 2 3

Z3
X7z ) +X8z2 —2

(13b)

We shall need w* to 0(e ) in Sec. IV.
Equation (13) determines ally;=0(e), w*=O(e ) fixed

points. In general, there are four solutions of these equa-
tions, one of which is the Gaussian fixed point z; =0. The
others may be found by setting zz=crzi in (13a), solving
the cubic equation

Xpo'+(X3 —Xg)cr +(Xi —X6)cr —Xg=0, (14)

and using

zq ——o.zi =cr/(X~o. +X3o+Xi) . (15)

1 —2X~z ~
—L3z2

—(2X4z i+Xgzp )

—(2Xpzp+X3z i )

=0, (16a)
1 —2Xgz2 —X6z )

and the third is

kg) —2 L7z f X8z2 (16b)

A given fixed point is locally stable when the three eigen-
value exponents in (16) are negative, unstable when they

In this section we shall be interested only in results to
0 (e') and thus set w* =0.

Having found a fixed point (yi,y~, w*=0), the next
step is to examine its stability with respect to small devia-
tions. This is done' by linearizing the recursion relations
(10) about a given fixed point and calculating the relevant
eigenvalues I For all w ' =0 fixed points, two of the ei-
genvalue exponents k are given by the solutions of the
determinantal equation

TABLE I. One-loop diagrammatic contributions to the renormalization-group recursion relations.

XI =(n +8)
X4 = (n +8)(4—m)/24
X7 = 3(n + 14)
Xlp = 18(m +2)

Xq =4(m +2)(6—m)/3m
Xq = (m + 32m —36)/3m
Xg =60
X]]= 12(m +2)

X3 =4(16—m)/3
X6 =2(n +2)
X9:(n +26)(m + 2) /3
X„=8(m +2)/3

I = —,'K Kd 1[(m+2)/4]1[(6—m)/4]
" '-I (d/2)
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g~~, r)g=0+O(e') . (17)

The other exponents v~~, vq associated with a given fixed
point are obtained by considering the linearized recursion
relation for r in the neighborhood of the fixed point. ' To
O(E), for w' =0 fixed points, we have

are positive, and a saddle point when they have mixed
algebraic signs.

As at the usual Lifshitz point, the critical exponents g
and v are each replaced by the pairs g~~, gq and v~~, vq, re-
spectively. To O(e), we have

z( ——(X)+—', Xg)z ),2 (21a)

which has the z]&0 solution

z, =(X)+—4X4) '=2/(22 —m) .

The associated eigenvalue exponents are

ky
——1 —2(X) + —4X~)z, = —1,
=2 —Xqz~ = —2(23+m)/(22 —m) .

(21b)

(22)

Thus this fixed point is stable. The critical exponents
v~~, vq for n = 1 are, from (18b),

g 2 [(n +2)z I +4z& jeer'=b Dr,
and thus

VJ —
2v~~~

——[2—[(n +2)z~ +4zq]e}

(18a)

(18b)

vg ——2v~~
——[2—6e/(22 —m ) )

1

2(22 —m)
(23)

p' =pb t 1 —[(n +2)y f +4yq ]I lnb }

u'=ub '+'[1 —[2(n +8)y~ +24yq ]I lnb } .

(19a)

(19b)

We thus obtain

Finally, consider the crossover exponents N„and N„
defined in (4a). The relevant diagrams are shown in Fig.
2 and the linearized recursion relations for p and u are

cr =0; z~ ——I/(n +8), zq =0, (24a)

and

These results, given by us earlier, were obtained indepen-
dently by Dengler. "

The case (n, m=4) is of particular interest due to its
connection with the problem of critical dynamics in
(d —1) dimensions. For m=4, the solutions of (14) and
(15) are

Ap:0 p/VJ —1 —[(n +2)z~ +4zq]E

X„=&„/vq ——1+[1—2(n +8)zt —24zq]e .

(20a)

(20b)

4o. + 7o + (4 —n) =0,
zq=crz~ =o/(9o+4+2n) .

For o.=0 the corresponding eigenvalue exponents are

(24b)

The crossover exponent associated with m is, of course,
simply

ky, ———1, Ay,
——(4—n)/(n +8),

= —(n +26)/(n +8) .
(25)

(20c)

Before considering general solutions of the fixed point
Eqs. (14) and (15) for arbitrary (n, m), it is worthwhile to
examine the particular cases (n = I,m) and (n, m =4).
For the Ising (n = 1) case, we pointed out earlier that the
operators associated with the coefficients y],y2 are identi-
cal and it thus suffices to consider either of them. Taking
y~ as the relevant parameter, we straightforwardly obtain
the fixed point equation

This fixed point is stable only for n &4+0(e). Note,
however, that when the initial value of y2 in the Hamil-
tonian (3) is zero, it remains zero under renormalization-
group transformations. In this case the fixed point at
z~ =1/(n +8), yq =w*=0 is "stable" for all n as only
stability in the y] —m parameter space is relevant. This is
precisely the parameter space for the critical dynamics
problem and this special LTP determines the static criti-
cal exponents related to those of the dynamic model for
all n. From (18b) and (24a), we obtain

vq ——2v~~
——[2—(n +2)e/(n + 8)]

= —,'+ (n +2) E+O(e ) .2

4(n +8) (26)

I

U

FIG. 2. Diagrammatic contributions needed to calcu1ate the
crossover exponents N„and N„. The square is used to distin-
guish the u from the V4 vertex.

Note that 2vI~ coincides with the usual static correlation
length exponent of the n-vector model. '

We now return to the general case. Here the m*=0
fixed-point equations (13a) have four solutions, one of
which, z] ——z2 ——0, is unstable for all e&0. The other
three are given in Table II for 2&n &4, 1&m &4. For
each of these fixed points, the associated eigenvalue ex-
ponents are given in Table III. As usual, ' one of the
(y~ —yq) plane eigenvalues is always —e (to leading order
in e); its associated eigenvector is along the line joining
the fixed point to the origin.
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TABLE II. Fixed points for the LTP Hamiltonian in the u~ =0 plane. There is an additional point

at zl =zp =0.

(a)

(b)

(c)

(a)
(b)
(c)

(a)
(b)
(c)

(a)
(b)
(c)

z]

0.191 44
0.135 83
0.069 14

0.266 93
0.515 01
0.073 29

0.270 70
—0.915 68

0.081 42

0.209 93
—0.221 56

0.10000

Z2

—0.075 47
—0.11460

0.012 99

—0.120 52
—0.502 55

0.012 99

—0.11840
1.042 21
0.010 22

—0.075 49
0.308 05
0

Zl

0.155 27
0.106 31
0.061 72

0.180 19
0.299 75
0.064 74

0.163 74
—3.754 81

0.071 21

0.11645
—0.230 S4

0.090 91

Z7

—0.054 59
—0.097 03

0.0132 2

—0.066 74
—0.327 36
—0.013 75

—0.052 76
4.854 38
0.011 75

—0.018 27
0.367 27
0

0.130 84
0.087 53
0.055 61

0.13977
0.206 39
0.057 69

0.123 71
—1.223 15

0.062 57

0.083 33
—0.266 67

0.083 93

—0.041 96
—0.084 94

0.013 40

—0.044 30
—0.244 16

0.014 22

—0.030 93
1.727 58
0.013 29

0
0.466 67
0

The results of Table II can be summarized as follows
for e&0.

(1) The Gaussian fixed point at the origin is always un-
stable.

(2) For m =1,2, there is one stable fixed point, given by
(a). The points (b) and (c) are saddle points, with two and
one positive eigenvalues, respectively. This is also the
case for rn =3, n =4. Typical renormalization-group
fiows are shown in Fig. 3(a).

(3) For m =3, n =2,3 and for m=4, n =2,3,4, there are
ttoo stable axed points, given by (a) and (b). The points (c)
are saddle points with one positive eigenvalue. [For
m =n=4, the degeneracy would be lifted at O(e ), mak-

ing the above statement valid. ] Renormalization-group
fiows for this case are illustrated in Figs. 3(b) and 3(c).

z
~
= 1/n, zq ———(4—m)/24n,

with associated eigenvalue exponents

and critical exponents

vi=2vii = (2 —E)

4„=N„= (1 —e)vt .

(27a)

(27b)

(27c)

(27d)

Note that the y2 invariant is irrelevant in this limit (see
Sec. &).

In addition to the values 1 & n (4, it will be of interest
to consider explicitly the limit n~ ~. The relevant solu-
tion of (13a) is

TABLE III. Eigenvalue exponents associated with each of the Axed points of Table II. The eigenvec-

tor of A, „, is along w while A, l is in the yl —y2 plane. The second eigenvalue in this plane, kz= —1 for all

(n, m) (see Ref. 13).

(a)
(b)
(c)

(a)
(b)
(c)

(a)
(b)
(c)

(a)
(b)
(c)

—2.661
2.356

—2.098

—3.581
7.432

—2.297

—3.890
—16.580
—2.522

—3.547
—5.848
—2.800

—1.002
1.259
0.830

—0.939
3.321
0.567

—0.712
—5.406

0.386

—0.311
—1.270

0.200

—2.643
2.400

—1.941

—3.186
6.354

—2. 127

—3.185
—97.768
—2.337

—2.842
—8.279
—2.636

—0.986
1.345
0.787

—0.809
3.011
0.525

—0.516
—35.423

0.337

—0.105
—2.110

0.091

—2.548
2.369

—1.807

—2.889
5.505

—1.981

—2.82S
39.605

—2. 176

—2.500
—11.600
—2 ~ 500

—0.955
1.378
0.757

—0.732
2.732
0.500

—0.443
15.401
0.313

0
—3.267

0
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Z2

Zf

coefficients yi and yz are relevant to determining critical
behavior at a LTP. We believe, however, that only one of
the two stable fixed points, in fact, describes a general
LTP. When the initial values of the parameters in the
Hamiltonian are such that this fixed point is not reached,
we predict a first-order phase transition, regardless of
whether or not the alternate stable fixed point (when it ex-
ists) is within the range of attraction of our
renormalization-group recursion relations.

Our argument is as follows. From (2), the classical
Landau free energy density of our model system can be
written as

Z2
f(P,k)=(r+pk +k )P

+2[3(u+yik )+4yqk ]P +20wg (28)

Zf

where P are the Fourier components of the order parame-
ter with wave vector q =k (i.e., p =0) and P =

~ P ~

. At
the classical LTP, r =p = u =0, and thermodynamic sta-
bility requires that f be positive for all infinitesimal values
of P and/or k. Thus, for k=0, it follows that stability is
guaranteed provided that

w &0. (29)

The condition (29), while necessary, is not sufficient.
When (3y i + 4y2 ) & 0, thermodynamic stability requires
that (29) be replaced by

Z2 20w —(3yi +4y2) & 0 . (30)

Zf

FIG. 3. Schematic Aow diagrams on the critical surface for
Lifshitz tricritical points. An example with a single stable fixed
point is given in (a). Parts (b) and (c) illustrate the m=4 case
relevant to critical dynamics, where the axis z2=0 is invariant.
In (b) the z2 =0 fixed point characterizes critical dynamics while
behavior at a general LTP is described by the stable fixed point
in the fourth quadrant. In (c), the z&=0 fixed point is relevant
to both dynamics and the general LTP. The second fixed point
in (b) and (c) (in the second quadrant) is always thermodynami-
cally unstable. For m~4, the zl axis is not invariant and the
z& ——0 fixed point in (b) and (c) moves off this axis. Here also the
stable fixed point in the second quadrant (when it exists) is al-
ways thermodynamically unstable.

IV. THERMODYNAMIC STABILITY

In Sec. III we found that for certain values of the order
parameter and spatial dimensionalities (n, d), there exist
two stable fixed points. This is unusual and might be in-
terpreted as indicating that the initial values of the

Of course, the thermodynamic stability conditions (29)
and (30) are not directly relevant at fixed points of the
renormalization-group recursion relations since mean-field
theory is not valid there. However, if the fixed point
Hamiltonian does not satisfy these conditions, there will
exist renormalization group trajectories on which (a) the
LTP conditions p=u=0 are satisfied and (b) w, yi, and
y2 remain arbitrarily close to their fixed point values while
r Rows away from r*. On such a trajectory, r eventually
becomes O(1) and the mean-field thermodynamic con-
siderations (29) and (30) become valid. We therefore con-
clude that, in addition to being stable under
renormalization-group operations on the critical surface
(r*,p*,u*), a fixed point of (2) can describe an accessible
LTP if and only if (w *,y i,y 2 ) satisfy the thermodynamic
stability conditions given in (29) and (30).

Since the values of y i and y2 found in Sec. III are
0(e), it is necessary to calculate w* to O(e ) in order to
examine the thermodynamic stability of a fixed point.
This is easily done for all the fixed points in Table II us-
ing (12b) and (13b). We are, of course, interested particu-
larly in those fixed points which are stable (on the critical
surface) with respect to renormalization-group operations,
as summarized in Sec. III. The results are as follows.
Consider first the fixed points given by lines (a) in Table
II. For all of these points (3zi+4z2) &0 and z3 &0. We
conclude that all the axed points on lines (a) in Table II
are thermodynamically stable.

Consider now the other stable (in the renormalization-
group sense) fixed points given in Table II on lines (b) (for
m =3, n =2,3 and m =4, n =2,3,4). All these points are
characterized by z3 &0. We conclude that while several
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of the fixed points on lines (b) in Table II are stable under
renormalization, none of these are thermodynamically
stable. They cannot therefore describe critical behavior at
a LTP.

Finally, consider the special fixed point relevant to the
problem of critical dynamics in (d —1) dimensions. Since
here zi = I/(n + 8) & 0 and zq =0, zi & 0 and this point is
always thermodynamically stable, as would be expected.

V. n —+ ~ LIMIT: RENORMALIZATION-GROUP
ANALYSIS

We here consider the LTP in the limit in which the
number of components of the order parameter approaches
infinity (n ~ oo ) for general dimensionality d. As usual, '

we take the coefficients u, yi, yq, w to be O(n ') and, to
avoid additional notation, assume that this has been ex-
plicitly done in (2) (i.e., u~u/n, etc.). Following the
standard procedure, ' we obtain

r = r + uJD(r, p)+y i Ji(rp, ),
P=i +yiJo(» p»
u =u +wJii(r, p),

(31a)

(31b)

(31c)

where

Jq(r, p)= J d qk (r+pk +k +q ) (31d)

Note that y2 does not appear in the n ~ oo limit, in agree-
ment with the e-expansion results. At the LTP, r, p, and
u all vanish simultaneously. Defining

rt ~ = —uJD(0, 0)—yi Ji(0,0),
ALT ——y i Jo(0,0)

ui r = —wJii(0, 0),

(32a)

(32b)

(32c)

it is necessary to evaluate the ratio r/p as r, p, ~O. Set-
ting p=pii. (its critical value) we consider, from (31b)
and (32b),

p=yi[J(r, p) —J(0,0)] (33)

with c, & 0 and t = r —ri ~. We thus have

yt i =4/(2d —m —2),
@z——0&„=(2d —m —4) /(2d —m —2),

= —(6+m —2d)/(2d —m —2),
(3&)

in agreement with the e-expansion results given in Sec.
III ~

Consider now, in the n ~ op limit, fixed points at which

y~ ——0 and w &0. Then, instead of (34), we would ob-
tain

as p~O, r~O+. Careful analysis shows that, in this
limit, r /p reaches a unique, nonzero, value for
d & 3+m /2. Substituting into (31b), we obtain to leading
order in this limit

r =t —c, u r '"+c2wr —c,y, r '"—

d (3+m/2, (34)

——(2d —m —4) /4 — —(2d —m —4) /2r =t —ciu r +c2mr (36)

with c; &0. Since c2 &0, this equation has no solution for
r which vanishes as t~O. As in the case of the ordinary
tricritical point, ' we interpret this as indicating that the
phase transition associated with such ne ap fixed points
is of first order. Clearly, it is the y~ term, via the renor-
malization of p, given by (33), which changes the nature of
the phase transition and results in an accessible, stable
fixed point characterizing Lifshitz tricritical behavior in
the n~m limit.

VI. DISCUSSION

Our objective in this paper was to present a comprehen-
sive renormalization-group treatment of Lifshitz tricritical
behavior. The interest in such an analysis is twofold.
First, the possibility of experimental measurements at or
near such a multicritical point, and second, the close con-
nection between the Lifshitz tricritical point in d dimen-
sions and dynamical critical behavior at an ordinary criti-
cal point in (d —1) dimensions.

The essential difference between our study and earlier
work is that we have included all relevant invariants in
the effective Hamiltonian. In particular, quartic
momentum-dependent interactions, which are irrelevant
near the ordinary critical point, must be considered ab ini-
tio. The result, within the e-expansion framework, is that
there are, in principle, three relevant fields on the critical
surface of a LTP. This results in a maximum of eight
fixed points. At four of these, the fixed point value w' of
the sixth-order coupling constant is either zero (Gaussian
fixed point) or O(e ). These were found by us explicitly.
At the others (if they exist), w* is presumably 0 (e).
These latter points are extremely difficult to determine,
even to 0 (e), and we therefore used an alternate method,
the n ~ oo or spherical model limit, to examine their
relevance to Lifshitz tricritical behavior. Here we found
that for any fixed point at which the momentum-
dependent interaction term coupling constant y ~ is non-
vanishing, m is irrelevant. Conversely, any y &

——0, w*&0
cannot describe a LTP as such a fixed point is not accessi-
ble in this limit. We regard this as a strong indication
that, within the e-expansion framework, it is only the
w ' =0+0 (e ) fixed points which are relevant to describ-
ing Lifshitz tricritical behavior. Certainly, the O(e) stable
(with respect to both renormalization-group and thermo-
dynamic criteria) fixed point we have found for general n

does not lose its stable character as n~ ao. In any case,
the fixed point given earlier, ' with w*=O(e) andy;*=0,
as characterizing LTP behavior cannot be relevant as
n~ op.

An interesting aspect of our analysis was that for cer-
tain parameter values, there exist two O(e) fixed points
which are stable and accessible on the critical surface.
This has not, to our knowledge, been found previously in
an e-expansion calculation. Two stable fixed points had
been found for the random exchange Ising model, ' but
one of these points has unphysical parameters and can
never be reached. A stable fixed point which is not
reached because of a first order transition was found for
the Potts model in d =6 —e dimensions by Pytte. '
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There, for certain parameter values, he found that there
exists a (single) stable fixed point which, however, is not
accessible as a first-order transition must occur before this
point can be reached. This is precisely what we expect to
occur when the system is within the region of attraction
(in the renormalization-group sense) of the alternate stable
fixed points given in lines (b) of Table II. Unlike the
Potts model case, however, we find another fixed point
which describes the LTP critical behavior and which, as
shown in Fig. 3(b) and 3(c) has its own region of attrac-
tion on the critical surface. This latter point, unlike the
alternate one, is thermodynamically stable.

An additional aspect of our study was to consider the
special LTP, relevant to describing dynamical critical be-
havior at an ordinary critical point in one less spatial di-
mension, in the more general space required for a general
LTP. We find that this special fixed point also describes
the general LTP when n, the number of components of
the order parameter, is greater than n, =4+0(e). For
n & n„ the special point is relevant to (d —1) critical dy-
namics only.

Finally, we return to the possibility of finding a LTP
experimentally. From the scaling relation

TABLE IV. Critical exponent [(vi) ' —2] for the LTP.

0.286m

0.300@
0.3166
0.333m

0.464@
0.586m

0.609m

0.538m

0.558@
0.6346
0.608E
0.509@

0.486'
0.522'
0.495m

0.417m

predictions for a (unphysical values larger than unity are
obtained by naive substitution). Nevertheless, we expect a
LTP to be characterized by a particularly large specific
heat anomaly.
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2 —a =m vl+ (d —m)vq, (37)
APPENDIX

it follows that the specific-heat exponent at LTP is given
by

a= —,'+ —,'(2+3a)e+O(e ), (38)

where (ae) are the quantities given in Table IV for
different (m, n). In all cases of experimental interest a) 0
and thus the coefficient of e in (38) is larger than —,

'. This
immediately implies that the specific heat exponent 0, is
anom alously large compared with the usual tricritical
value' a= —,'. The large coefficient of e indicates that the
O(e) truncation in (38) does not give reliable numerical

The coefficients X;, i =1, . . . , 6 all arise from the first
diagram in Fig. 1. In the following, we set u=O, and
symmetrize the y| term in Eq. (2c):

V4(q&, qp 'q3 q4) gyl(k j+kz+k3+k4)+yp(kf+kp)

In the initial step of the renormalization-group iteration,
we expand Z in powers of V4 and integrate over Pq with
1/a &k +p &1. To second order in V4, the contribu-
tion to the renormalized V4 is

~ V4(q&, q&, q3, q&) = — f '
V4(qi, q»q, qi +q& —q) V4(q qi +q~ —q, q3, q4)Go(q)Go(qi+q& —q)

V4 q1 q2 q q1+q2 i V4 q q1+ q2 q q3 q4 ~0 k ~0 i1+q2

—4 f '
V4(qi, q3 q ql+q3 —q) V4(q qi+q3 —q q~ q4)Go(q)Go(q +q —q),

where

(A2)

Gp(q)=1/(k +p ), (A3)

and the integral f is over 1/a &k +p & 1, with q—:(k, p). We next set p; =0, expand Go(q&+qq —q) in powers of
(q~+qq), take pair products of V4's, and keep only terms quadratic in the k s. The results involve the integrals

k 41 —2

I~=f, , ; 1/a &k +p &1,
( k +p42) I I'+

with l=1,2,3. We now introduce polar coordinates'

y= ~k~, x= ~p~, z=(x +y )'~, O=tan '(y/z),

obtaining

I = 'K Kd f z dz—f (sinO) ' + (cosO) 'dO .
1/a 0

(A4)

(A5)
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For d =d„=3+m/2, this becomes

m+4l —2 6—m
(A6)

where 8 is the beta function. ' Thus

I, = 'Iln—b, I = + I, , I =( + )( + )I
8

' 96
(A7)

with I given in Table I. Collecting the terms in the expansion, using the symmetrizing transformation from Eq. (2c) to
(Al), and multiplying by the factor in Eq. (7a) yields the coefficients in Table I. The analysis of the other diagrams in
Fig. 1 is similar, and involves the same momentum integrals given above.
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