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The spontaneous emission from nuclear spins has been observed at liquid- He temperatures. The

spins, 'Cl nuclei, are placed in the inductor of a tuned LCR circuit coupled to a dc superconducting

quantum interference device used as a radio-frequency amplifier. 'When the spins are saturated and

have zero polarization, the emission is observed at the nuclear quadrupole Larmor frequency as a

bump in the spectral density of the Nyquist noise current in the tuned circuit. This bump arises from

the temperature-independent fluctuations in the transverse component of the nuclear magnetization.
When the spins are in thermal equilibrium, on the other hand, a dip in the spectral density of the
current noise is observed, arising from an induced absorption of noise power from the circuit at the

Larmor frequency. The standard circuit-coupled Bloch's equation, modified to take into account ra-

diation damping and transverse spin fluctuations, is consistent with the predictions of the Nyquist
theorem and the Einstein equation for spontaneous emission. A spin-pendulum model for spin noise

is described. The signal-to-noise ratio obtainable in a spin-noise measurement is discussed.

I. INTRODUCTION

The recent development�' of the dc superconducting
quantum interference device (SQUID) as a low-noise
radio-frequency (rf) amplifier has made possible the detec-
tion of very weak signals at frequencies up to 300 MHz.
In the present work we use the SQUID as a rf amplifier
to measure nuclear-spin fluctuations generated at liquid
helium temperatures by a sample of spins placed in the
coil of a tuned circuit. In his classic paper on nuclear in-
duction, F. Bloch noted that an ensemble of N spins of
magnetic moment p would induce in a surrounding coil
very small voltages fluctuations proportional to N' p. In
our experiment, these voltage fluctuations produce current
fluctuations in the tuned circuit, which are amplified by
the SQUID and subsequently analyzed. In a calculation
seemingly unrelated to spin fluctuations Purcell showed
that the spontaneous emission of radiation from an en-
semble of nuclear magnetic dipoles would be enhanced if
the ensemble were coupled to a resonant cavity. These
two concepts have been brought together in our experi-
ments because the current fluctuations I, (t) arising from
fluctuating magnetic moments represent enhanced spon-
taneous emission into the circuit resistance R; in the form
of a power flow R;(I, ). Nyquist noise voltages in the
circuit are generated by R; and by the spins, which are
equivalent to a spin resistance R, for frequencies at or
near the Larmor frequency. The direct application of the
Nyquist theorem to interpret the measured current fluc-
tuations proves to be consistent with the use of the Ein-
stein equation and modified Bloch equation to describe
the detailed balance of the emission of spin noise power
into R; and the absorption by the spins of noise power
from R;.

At and above optical frequencies spontaneous emission
from electric dipole transitions is readily detected in free
space. The spontaneous emission of magnetic dipole radi-
ation, however, is less commonly observed, although the
21-cm hyperfine line of hydrogen generated in interstellar
space is well known. The spontaneous emission rate for
magnetic dipole radiation is proportional to v p, where v
is the emitted frequency. Thus, at first sight, one hardly
expects to observe spontaneous emission at radiofrequen-
cies from a nuclear magnetic moment which is three or-
ders of magnitude smaller than an electronic dipole mo-
ment. For a choice of p=ptt (nuclear Bohr magneton)
and v=30 MHz the rate is roughly 28 orders of magni-
tude less than that for electric dipole radiation in the visi-
ble spectrum. In fact, in free space the rate is 8&10
sec '. At wavelengths longer than optical, it is possible
to couple dipole systems almost completely to cavity
modes and thereby enhance the rate of spontaneous emis-
sion over that in free space. If one places the spins in a
cavity with Q = 1000, for a sample with volume v, =1 cm
the emission rate would be enhanced by a factor of
Qc3/2trv v, =10" over the free-space value to approxi-
rnately 10 ' sec '. At first sight, it might appear im-
practical to observe even this greatly enhanced emission
rate. However, given that there are of the order of 10
spins in the sample, by using the low-noise temperature
offered by the SQUID amplifier combined with signal-
averaging techniques we can observe a spontaneous emis-
sion power that is as low as 5 —10% of the Nyquist noise
power generated in the same bandwidth as the spin noise.

In Sec. II we introduce the concept of spin noise and
derive an expression for the fluctuations produced by an
ensemble of nuclear spins. Sections III and IV describe
the measurement of spin fluctuations from the Cl nuclei
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in samples of NaC103 and KC103 at the zero-field nuclear
quadrupole resonance (NQR) frequency of about 30 MHz.
In Sec. V we demonstrate the connection between spin
noise and spontaneous emission in terms of Einstein and
modified Bloch equations, and discuss the interaction be-
tween the spins and the circuit under general conditions.
Section VI presents a pendulum model to account for
equilibrium spin noise, while in Sec. VII we derive an ex-
pression for the signal-to-noise ratio expected from our ex-
periments and compare it with the expression for a con-
ventional NMR measurement. We make some conclud-
ing remarks in Sec. VIII.

is n =N/U„where Ã is the total number of spins, and the
Larmor frequency is co, /2~=yH, /2~, where y is the
gyromagnetic ratio. The axis of the pickup coil is along
the x direction. The magnetization along the z-axis can
be expressed in terms of a spin temperature T, :

M, = (nyh'/2) tanh(fico, /2kii T, ) . (3)

We assume that Bloch's equations apply, and neglect
departures from ideal behavior that occur in a solid, for
example inhomogeneous broadening and dipolar coupling
effects. Therefore,

II. PRINCIPLE OF SPIN NOISE:
APPLICATION OF THE NYQUIST THEOREM and

X'(co) = AcoT2X"(co) (4a)

(2/ir)kii [R;T+R, (co)T, ]
S;(co)=

(R;+R, ) + [co(Lp+L, ) —1/coC;]
(2)

Here, the term (2/ir)kiiR, T, is the spectral density of the
Nyquist voltage noise produced by the spins and is due to
fluctuations in the magnetization of the sample. In the
experiment we detect the presence of the spins by their
influence on the current noise in the circuit as expressed
by Eq. (2).

It is useful to compute the Nyquist noise generated by
the spins in terms of the microscopic parameters of the
sample. Although we use a sample exhibiting nuclear
quadrupole resonance (NQR) in our experiment, its
response is equivalent to a two-level system of spins with
I= —, in an external magnetic field H, z. The spin density

In the experiment, a sample of nuclear spins is placed
in the inductor L~ of a tuned circuit and the spectral den-
sity of the current fluctuations is measured over the band-
width of the circuit. The circuit resistance R; produces a
Nyquist voltage noise and therefore a current noise that,
in the absence of the sample, is given by

(2/ir)ka TR;
Si(co)=

R; +(coLp —1/coC;)

for fico «kii T. ~e see that Si(co) is a maximum at the
circuit resonant frequency (Lz C; )

' . The presence of
the sample modifies the shape of this noise-power spec-
trum in the region of the sample resonant frequency. The
influence of the sample is determined from its complex
spin susceptibility X(co) =X'(co) —iX"(co), where X' and X"
are the dispersion and absorption. The complex im-
pedance of the coil in the presence of the sample is

Zp icoLp ic——oLp [1+——4ir(X(co)]

=ico[Lp+L, (co)]+R,(co),

where g=u, /v, is the sample filling factor; u, and u, are
the volume of the sample and the pick-up coil ~ The added
spin inductance L, =4irgL&X' shifts the circuit resonant
frequency, while the added spin resistance R, =4~$coL&X"
modifies the damping of the circuit and acts as a source of
Nyquist noise. If we assume the spins are at a tempera-
ture T, (not necessarily equal to the bath temperature T)
the spectral density of the current in the presence of the
spins is given by

X"(co)=M, y T, /2[1+(hco) Ti], (4b)

Combining Eqs. (3)—(5) and neglecting terms of order
Ace/co, « 1, we obtain

/Loco, ny fi T2
S, (co) =

1+(Aco) T2

Remarkably, because of the cancellation of the hyperbolic
terms in Eqs. (3) and (5), S,'(co) is independent of temper-
ature throughout both the quantum (fico&&kiiT, ) and
classical (Ace «kii T, ) regimes.

It is also of interest to compute the mean square voltage
noise generated by the spins,

( V, ) = f S;( )dco=cogLmarco, ny A (7)

Note that ( V, ) is independent of the linewidth Af, of the
transition.

We can understand both the temperature independence
of S„' and the linewidth independence of ( V, ) from a
different point of view by applying Faraday s law of in-
duction to obtain the mean-square voltage ( V, )
=4irgL&co, u, (M ) in terms of the mean-square magneti-

zation (M„). For a sample with N spins

(M ) =N(p, )/v, =ny vari (I )/v, ,

where the magnetic moment of a single spin is p =ABRI
and (I ) = —,

' for spin I= —,'. Making these substitutions
in the expression for Faraday's law, we recover Eq. (7).
This derivation is essentially equivalent to Bloch's argu-
ment discussed in the Introduction.

We note here that the temperature independence of spin
fluctuations holds only for a two-level (I=—,') system. To
compute the spectral density for arbitrary spin with equal-
ly spaced levels, the expression for M, in Eq. (3) must be
replaced by

where Ace =co, —~, and the linewidth is given by
Af, = 1/irT2. The spectral density of the Nyquist noise
voltage produced by R, is

S,'(co) =—R, coth
2 Ace

'
2 2k' T,
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(2I+ 1)fico,
M, =nyA coth

2 B s

——,
' coth

B s

= n y fiIBr (x ),

( V, ) = 2irgL& co, n y fi IBr(x ) coth(fico, Ikrr T, )

= ( V, ) r i r i2IBi (x ) coth( fico, lkrr T, ) . (10)

In the high-temperature limit (fico,I « kri T, ) we find

while in the low-temperature limit (fico, »ks T, ),

( V, ) =2I ( V. ) r in=

Thus, for I & —,', the voltage fluctuations ( V, ) (or S,') do
depend on temperature in the region Ace, -k~T„but be-
come independent of temperature in the high- and low-
temperature limits. The significance of the temperature
independences of S,' for our experiment will be discussed
later in the paper.

III. EXPERIMENTAL PROCEDURES

The configuration of the experiment, which is carried
out at liquid-helium temperatures, is shown in Fig. 1.

Computer Spectrum
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r
4He
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I
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where Br(x ) is the Brillouin function for spin I and
x=kcu, I/k&T, . The voltage noise produced by the sam-
ple becomes

The sample of nuclear spins is contained in a supercon-
ducting coil L~ in series with a capacitor C;. A supercon-
ducting inductance L; ( «L~), also in series, represents
the input coil of a dc SQUID. The capacitance C; con-
sists of a fixed silver-mica capacitor in parallel with a
Murata-Erie MVM020W air capacitor, which can be ad-
justed from the top of the cryostat. The whole circuit is
superconducting with the exception of the capacitors; the
resistance R; represents losses in the capacitors and con-
tact resistance. An additional coil L„„wound around
the sample and the pickup coil, is used to apply continu-
ous or pulsed rf signals to the sample to saturate the spins
or test the system. This coil is wound perpendicularly to
L~ and is opened during data acquisition to eliminate the
possibility of external noise injection. A current I; in the
input circuit generates a magnetic flux &0, in the SQUID
loop L, producing an output voltage V across the SQUID.
The dc SQUID is a flux-to-voltage transducer which is
linear for small signals (4«No=h/2e). Our SQUID's
are planar thin-film devices' fabricated with standard pho-
tolithographic methods, and tightly coupled to a four-turn
planar superconducting input coil. They can be operated'
at frequencies up to 300 MHz with a typical power gain
of 20 dB. The noise temperature Trv (referred to the in-
put circuit) for a particular device was measured to be
1.7+0.5 K at 100 MHz at an operating temperature of 4.2
K. The noise temperature scales with the bath tempera-
ture and the signal frequency so that for our experiment,
which involves measurements at 30 MHz and 1.5 K, the
SQUID noise temperature Trv is reduced to 0.2 K.

Like any other amplifier, however, a dc SQUID has a
back action on the input circuit. The SQUID is coupled
to the input circuit predominantly by the mutual induc-
tance M; between the SQUID loop L and the input coil
L;, and to a small extent by the parasitic capacitance C~
between these two coils. A fraction of the SQUID
current noise couples inductively into the input circuit,
but this contribution to the noise in the input circuit is
less than 10%%uo of the Nyquist noise of the input resistor
under our experimental conditions. The SQUID induc-
tance also partially screens the input coil L;, but since
L~ —10 L; this effect can be neglected. On the other
hand, for the high values of Q used here, capacitive feed-
back can change the input impedance substantially. The
feedback effectively adds a resistance AR; to the input cir-
cuit, the sign and magnitude of which depend on the
SQUID bias conditions. ' Fortunately, the SQUID output
noise coupled into the input circuit via this parasitic ca-
pacitance is negligible for our SQUID amplifiers, so that
AR; can be considered to be noiseless for the rest of this
paper. The presence of the SQUID modifies the spectral
density of the current fluctuations in the input circuit
given by Eq. (2) to give

Rl TABLE I. Properties of NaC103 and KC103.

FIG. 1. Experimental configuration. Components in dashed
box are immersed in liquid He.

Sample

NaC103
KC1)3

f, (MHz)

30.6859
29.0389

Af, (kHz)

1.3
0.64

T2 (psj

240
500
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(2/n)kg [R;T+R, (ro)T, ]Sl(ro) =
[R;+R,(ro)+DR;] + [ro[L;+Lp+L, (ro)) —I/roC; ]

where we have ignored the effect of the SQUID noise cou-
pled back inductively into the input circuit.

The dc SQUID has an output impedance of about 10 II
which is matched to a low-noise room-temperature
amplifier with a 50-0-input impedance via a cryogenic
stainless-steel coaxial cable and a capacitor. The
amplified SQUID output is connected to an HP3835 spec-
trum analyzer interfaced to an HP9816 computer for data
storage, averaging, and analysis. The noise temperature
of the amplifier is about 100 K, provided its input is op-
timally matched to the SQUID output. Since the SQUID
power gain is typically 20 dB, the amplifier noise is
equivalent to a noise temperature of about 1 K referred to
the SQUID input circuit, compared to a bath temperature
of 1.5 K and a SQUID noise temperature of 0.2 K.
Hence the SQUID and the following amplifier contribute
about 1.2 K of noise, that is, at the resonant frequency
they produce roughly half of the total noise output.

Noise measurements were made separately on two
different powdered samples, NaC103 and KC103. For
NaC103 the sample volume was 0.63 cm resulting in a
total number of spins N of 6X 10 ', and the filling factor g
was about 0.35. The Cl nucleus has spin I= —', and is

split by the nuclear (electric) quadrupole interaction into
two doubly degenerate energy levels corresponding to
I, =+—,'and I, =+—,'. The transition frequencies (co, /2ir),
linewidths (bf, ), and transverse relaxation times
(Tq = I lmb f, ), measured at 1.5 K in separate pulsed ex-
periments, are given in Table I ~

IV. EXPERIMENTAL RESULTS

We performed two separate experiments corresponding
to two different values of T, in Eq. (2).

A. Thermal equilibrium

density as ro is scanned through the NQR frequency and
R, ( ro) passes through a maximum, as illustrated in Fig. 2.
These data were taken over a period of 3 h with the reso-
lution bandwidth of the spectrum analyzer set to 300 Hz.
The dip is largest at the Cl NQR frequency (indicated
by an arrow) measured separately. Furthermore, by
fitting the data to Eq. (12) we find good agreement with
the parameters cu, and T2 listed in Table I. For the data
in Fig. 2 the fit also yields a value of AR; = —0.5R;.

Strictly speaking, the system is not in thermal equilibri-
um for hR;&0. If we write the total resistance of the cir-
cuit as R +R„where R =R; + b.R;, Eq. (12) becomes

(2/~)ks T[R +R, (ro)) [ 1 —bR; /[R +R, (ro)]]

[R +R, (ro)] + ~X
~

(12a)

so that the effective temperature is T I 1 —b,R, /
[R +R, (ro)]]. The term ( —2/7r)k~TbR; represents an
additional source term and for AR; &0 is equivalent to
the injection of additiona1 noise into the circuit.
In addition, hR influences the Q [=co(L; +L~ ) I
(R;+b,R;)] of the circuit. For the data in Fig. 2, Q is
enhanced by a factor of 2 over its value in the absence of
the SQUID. It is useful to define the intrinsic quality fac-
tor Qo=ro(L;+L~)IR; in the absence of the sample and
of the loading by the SQUID. We measure Qo by turning
off the SQUID bias current and measuring the ring-down
time of the tuned circuit following an applied rf pulse;
even with the SQUID turned off there is sufficient reactive
coupling to produce a signal from the post amplifier. The
data yield the values Q=7320, R, (ro, )/R =0.12, and
R, (ro, )/R Q=4ir(X"(ro, ) = 1.6&& 10 . The dotted line in
Fig. 2 indicates the response we would expect from this fit

In the first experiment, the spins were allowed to reach
equilibrium (T, = T) with the helium bath at 1.5 K. Be-
fore the experiment could be performed, however, we had
to shorten the enormously long spin-lattice relaxation
time T~ of the sample (days). By exposing the sample to
10 Rad of 1.0-Mev y rays from a Co source, we re-
duced T~ to about 20 min at 1.5 K. In the high-
temperature limit Ace «k~T, the spectral density of the
current noise in the input circuit is given by

-86

E
EEI

-88
O

(2/~)ks T[R; +R, (co)]
~r(~)

l T =T=
[R; + b,R; +R, (ro)]'+

~

X
~

' (12)
-90

D

where X=j ro[L~+L; +L, (ro)] j /roC;. We obt—ain a
simple form for SI when the circuit is tuned exactly to the
Larmor frequency I ro, = [(L& +L; )C; ] '

] . If we as-
sume bf, is much less than the circuit bandwidth and ig-
nore AR; «R;+R„at or near resonance X=O and Eq.
(12) reduces approximately to 2k' T/vr(R; +R, ). Under
these conditions the spins produce a "dip" in the spectral

-92
50.682 50.686

Frequency (MHz)
50.690

FIG. 2. Spectral density of noise current for a NaCl03 sam-
ple in thermal equilibrium at 1.5 K; co, is at circuit resonance
frequency.
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in the absence of the sample (but in the presence of the
SQUID).

Figure 3 shows data for the same sample in the case
where the circuit is not exactly tuned to the Larmor fre-
quency. We observe a peak below cu, and a dip above co,
due to the influence of both the spin resistance and spin
inductance. In this case a fit reveals that AR; = —0.04R;,
so that the spins and bath were very nearly in equilibri-
um.

E
CD—-92

~ -93

C3

(o)

I I I
I I I I I I

B. Saturated spins: Spin noise

In the second experiment, the Cl spins of a sample of
NaCIO3 with an extremely long Ti (days) were saturated
by applying continuous rf excitation at resonance by
means of the coil L„,. After the excitation was turned o6'
(and the coil L„, opened) we measured the spectral densi-
ty over a time much less than TI. A saturated sample
has zero-spin population dift'erence, so that M, =7
=R, =L, =0 and T, = oo. According to Eq. (6), howev-
er, the voltage noise produced by R, ( ~ R, T, for
fico «kiiT) is independent of T, for a given frequency.
The spectral density of the current becomes

(2/m. )kii [R;T+R, (co)T, ]
S;(co)

i z;=
[R; +hR;] +-[co(Lp +L; ) —1/coC;]

(13)

Thus, one would expect to observe a "bump" in the spec-
tral response arising from the term R, T, in the numerator
of Eq. (13).

An example of our data for a sample of NaC103, which
was obtained in a resolution bandwidth of 300 Hz aver-
aged for 7 h, is shown in Fig. 4(a); the NQR frequency is
indicated with an arrow. From the fit of the data to Eq.
(13) we find Q =3430 and R, (co, ) T, /R; T=0.06. A mea-
surement with the SQUID turned off yielded Q0 =4000 so
that 4irgX"(co, )=R, (co, )T, /R, TQO ——1.4X10, a value

-94 I I I

~ +Q. I I I I I I I 1 I I I

C]
(b)

IP4h. s a Ala i JIALs a D sall AaM JlaA La.,. h I
&'~ W,

~ -O. I I I I

cL- 30.678 30.6

I I I

I I I I I

30.684
Frequency (MHz )

FIG. 4. Spectral density of (a) noise current for a NaC103
sample with saturated spins (T, = oo ), and (b) nuclear spin noise
of NaC103 sample obtained from (a).

in good agreement with that obtained in the previous
(equilibrium) case. The dotted line indicates the expected
power spectrum in the absence of the sample. By com-
paring this expected power spectrum to the data using Eq.
(13) the excess noise due to the spins [T,R, (co)] can be
determined and is shown in Fig. 4(b).

Figure 5 shows data from a similar experiment per-
formed on a sample of KC103, obtained by averaging for
2.3 h with a bandwidth of 300 Hz. As expected, for a
given Q the bump produced by KC103 is both narrower
and higher than that of NaC103. Since the area of the
bump [f T,R, (co)dco] is independent of the linewidth,

the narrow linewidth of KC103 compared with NaC103
leads to a higher bump. When the data are fitted to Eq.
(11), we find R, (co, )T, /R;T=O 103 which. , for the mea-
sured value of Qo ——4000, gives 4irgX"(co, ) =2.6X 10

We conclude this experimental section with two com-
ments. First, one could extend these spin-noise experi-

-9I -88
E

CQ

o 90

(a)

-95
30.682

f~

30.688 30.694
Frequency (MHz)

-92~ +0.2
(b)

0 .~w4~A~X. A

-0. I

29.035
Frequency (MHz)

I

29.040

FICz. 3. Spectral density of noise current for a NaC103 sam-
ple in thermal equilibrium at 1.5 K; cu, is below circuit resonance
frequency.

FIG. 5. Spectral density of (a) noise current for a KC103 sam-
ple with saturated spins (T, = ~ ), and (b) nuclear spin noise of
KC103 sample obtained from (a)
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ments by inverting the equilibrium magnetization M, to
—M, with a 180' pulse. In the limit R, «R; the magni-
tude of the noise bump is expected to be three times
greater than that observed for M, =O. As R, ~R;, the
noise bump approaches a singularity. If the threshold
condition R, ~R; could be achieved, maser oscillations
would result. Second, the value of T& does not enter into
either experiment except to determine the rate at which
the sample reaches thermal equilibrium. If one were to
introduce a pickup coil with its axis parallel to the direc-
tion of spin polarization, the longitudinal relaxation pro-
cess would induce into the coil exceedingly small voltage
fluctuations about zero frequency. In practice, it appears
that these fluctuations would be too small to be detected.

V. BLOCH-EINSTEIN POWER EQUATION

The relationship between spin fluctuations and spon-
taneous emission can be understood by examining the
average noise power flow AP between the spins and cir-
cuit. In this section we derive an expression for the power
flow between the spins and the resistor R;. The
equivalence of this expression to the Einstein equation for
detailed balance and to the predictions of the Bloch equa-
tions coupled to the circuit is demonstrated.

A. Circuit description of the power flow

In a circuit with a resistor R, at temperature T, and a
resistor R; at temperature T the ne( power from R, into
R; is

ficoR, R;[cath(fico/2k' T, ) —coth(fico/2kii T)]hP=

dt's

00 it[(R, +R, )'+ (X;+X,)']
(14)

where X, =coL~ —1/cue; and X, =coL, . The equivalence
of Eq. (14) to the Einstein equation of detailed balance
will be demonstrated in the case Ace, «Ace„co, =~„
b,co, «co„and R, «R;. Equation (14) becomes

AP=P, —PR

( V,')
R;

Ace, Ace,
coth R, co den,

R;n 2 gT —cc
(15)

where ( V, ) is given by Eq. (7) and we have used the fact
that b, co, «co, to remove co coth(fico/2kii T) as a constant
from the integral. The term ( V, )/R; in Eq. (15) is the
emitted spin noise power P, absorbed by the resistance R;,
while the integral is the power Pz absorbed by the spins
due to the Nyquist noise generated by the resistor R;.
Using Eq. (7) and Q=co, L~/R; (valid for L, &&L~ ), we
find'

P, = ( V, )/R; =irQco, Ny ft lu, . (16)

In Eq. (15), R, =4irgcoL~X", where X" is given by Eq.
(4b), and M, =yfihN/2v„where AN=N, N, is the to-—
tal population difference between ground and excited
states. The power absorbed by the spins is therefore

Pic =[irQco, y f't bN coth(fico, /2k' T)]/u, . (17)

Using Eqs. (16) and (17) we can convert Eq. (15) to the fa-
miliar form of Einstein's detailed balance equation,

fico, Ace,AP= A N AN(T, ) coth—
2 '

2k~ T
(18)

b,N(T, )
N, (T, )— (18a)

The rate of spin spontaneous emission into the resonant
cavity is given by A =2irQfiy !v„a result which can be
derived independently by applying Fermi's golden rule for

absorption of radiation by the spins, and by specifying the
density of states for a single cavity mode to be
2), (co, )=2Q/irco, v, . The equivalence of Eqs. (15) and
(18) demonstrates the close connection between spin fluc-
tuations and spontaneous emission and shows that the
bump observed in Figs. 4 and 5 represents spontaneous
emission from the spins into the circuit.

The spin noise power P, =(fico, /2)AN [Eq. (16)] ob-
tained from the temperature-independent term in the Ny-
quist formula is identical with the spontaneous emission
power [Eq. (18a)] only in the limit fico, « kii T, and

X, =N/2. However, AP conforms to the Nyquist predic-
tion Eq. (15) for all spin temperatures T, .

These data indicate that the spontaneous emission rate
for one spin is extremely low. The rate 3 =8&10
sec ' (about one spin flip in 10 years), corresponds to a
total emissive power P, =5&10 ' W from N=6)&10 '

spins. This power is about 5% of the Nyquist noise
power 4k& T/~T2 ——10 ' W generated in the bandwidth
of the spin noise 1/~T2.

B. Analysis of power flow with the Bloch equation

We now present an evaluation of the flow of power AP,
valid for arbitrary values of R; and R„ in terms of
Bloch's equations modified to include the effect of the cir-
cuit. The analysis is confined to the case of a homogene-
ously broadened two-level system. Our treatment of the
case of spin noise will require an additional noise term in
Bloch's equations to account for the fluctuating magneti-
zation. Before discussing the case of spin noise, however,
we consider the response of the system to an applied
coherent field H (t) =2Hi(t) coscoft, where H, (t) is the
component rotating at a frequency cof/2~. In a frame of
reference rotating at this frequency, Bloch's equations are
given by

dm (t) 1+ —ibcof m = —iyMiH(t),
dt T,
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and k(cp) =2m.(QR;/Z, (cp), (23)

dM, (t ) M, (t) —Mp= —y Im[m *(t)H(t )]-
dt T]

(20)

where m(t) =u(t) —iv(t) is the transverse magnetization
in the rotating frame, Ace~ ——co,. —co~, and Im is the imagi-
nary component. The total field H(t) is the sum of two
contributions H(t)=H~(t)+H„(t), where H~(t) is the
externally applied field. The response field H„(t) accounts
for the coupling of the spins to the circuit. If the circuit
Q is sufficiently small (a precise definition of the low Q
limit is given in Appendix A) the circuit responds to the
voltage induced by the spins with negligible delay. As
shown in Appendix A, the response field can then be writ-
ten as H„(t)= —ik(btp„)m(t), where bc@„=cp,—cp„and
k (Acp„) = k'( b tp„) ik "—

( Atp„) is a complex coupling
constant with co, = (LC )

' . Previous treatments' ' ' of
radiation damping in NMR, which employ the low-Q-
limit condition cp, /2Q && I/rR at resonance (bc@„=O),
yield k'(0) =2vrQg and k "(0)=0, where I/rR =yM, k'(0)
is the radiation damping rate. In terms of the applied
field H~, Bloch's equations in the low-Q limit for b,cp„&0
are written as

dm„(t)
+ m„(t) = iyM, H—(t),

dI T2
(24a)

dM, (t)
dt

= —y Im I [m„*(t)+m,*(t))H(t ) ]

where Z, =R;[I+i(2Q/cp)(cp —cp, )] is the impedance of
the circuit in the absence of spins.

We now adapt the Bloch Eqs. (19) and (20) to the case
of spin noise. The fields H~(t) and H„(t) are defined as
random noise fields, which are no longer coherent at a
single frequency. For convenience we choose the frame of
reference to be at the Larmor frequency [Acp/=0 in Eq.
(19)]. Also, additional terms must be added to the Bloch
Eqs. (19) and (20) to account for the fiuctuating transverse
magnetization. To do this we assume the total magnetiza-
tion m(t) is the sum of two terms m(t)=m„(t)+m, (t),
where m„ is the "response" magnetization which obeys
Eq. (19), while m, (t) plays the role of a noise source term.
The Bloch equations modified to include spin noise are
therefore

dm (t) 1 —i htpI m = —1y M, H ) ( t )
dt T2

(21a) M, (t) —Mp

Ti
(24b)

where

1/T2 —1/T2+ yk'M, (22a)

and

AcoI —~cog+yk Mz . (22b)

The term yk' m(t) =yk'[u (t)+U (t)] represents the
effect of coherent emission, which shortens T2 to the
value T'2 through the process of radiation damping [or
more appropriately, by coherent response to the radiation
reaction field H„(t)]. In addition, the Larmor frequency
cp, is apparently shifted to the value cp,

' =cp, +yk "M, (fre-
quency pulling). Note that these effects of radiation
damping will not be observed, '' according to Eqs. (19)
and (20), when the spin susceptibility X=m/H(t) is mea-
sured with respect to the total field H(t). When the low

Q condition is violated, we cannot assume that
H„(t)= —ikm Instead H„. (t) must be described [see Ap-
pendix A, Eq. (A4)] in terms of the convolution

H„(t)= ik(t)*m(t)—

and

dM, (t) M, (t) —Mp= —y 1m[m*(t)H, (t)]+y~m 'd'—
dt T]

(21b)

H(t)=H, (t) —ik(t)*[m, (t)+m, (t)], (24c)

with the convolution ik(t)e[m„(t)+m, (t)] expressed by
Eq. (A4) in Appendix A. Equations (24a) and (24b) form
a set of coupled Langevin equations with two source
terms, H] and m, . The field H~ arises from fluctuations
in the resistor R, while m, arises from the spins. The
remaining quantities H, m„, dM, /dt can be expressed in
terms of H~ and m, . The magnetization m„ is nonzero
only when the susceptibility is nonzero at finite spin tem-
perature T„whereas m, is temperature independent and
does not obey the Bloch equations. We emphasize that
the way m, appears in Eqs. (24) is only postulated and the
validity of Eqs. (24) can be justified only by the accuracy
of their predictions.

To solve Eqs. (24) we assume that the time average of
terms in Eq. (24b), coupled to Eq. (24a), allows M, to be
fixed at a spin temperature T, because T] is very long
compared to the time in which spin noise measurements
are made. Our goal is to compute the power flow from
the spins into the circuit, AP =H p p, (.dM, /dt ) „where
the brackets indicate the time average due only to the
effect of the circuit. Therefore the spin-lattice relaxation
term is dropped because it accounts for unobserved power
flow between spins and lattice. The Fourier transforms of
Eqs. (24a) and (24c) yield

i(27r) ' f k(r)m—(t —r)dr .
0

and

m„(bcp) =2XH(htp) (25)

The coupling coefficient

k(t) =(2~) ' f k(cp)e ' 'd(htp)

is the Fourier transform of

H(htp) =H) (hto) ik(tp)[m„(htp)+—m, (b, tp)] . (26)

We use Eq. (24b), dropping the term T& as explained
above, to find
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1 ~o
AP = lim —v, co, ImI [m„*(t)

Tp —+ oo 2TQ +p

+m,*(t)]H(t) )dt

m „=2X(H i
—ikm, i—km, )

= (2XH i i—2Xkm, ) /(1+i 2Xk )

lim —v, m, Im m„* Ace +m,* Ace
Tp ~ oo TQ —oo

= (Z, /Z, )2XHi —(Z, /Z, )m, , (28)

&&H(b.co) I db, co (27)

over a time (To~oo) average. To express Eq. (27) in
terms of the source terms I, and H i, we rewrite m„as

where Z, =i4irXQR; is the impedance of the spins and
Z, =Z, +Z, is the total circuit impedance. We have used
the relation t2kX=Z, /Z„where k is given by Eq. (23).
Combining Eqs. (26), (27), and (28) we find

hP= lim I ~
Z, /Z,

~ [ u, co—,X"
~

Hi(b, co)
~

+u, co, k'
~

m, (Aco)
~

]db, co
Tp —~ oo TQ —oo

= I ~
Z, /Z,

~ [ v, co, 2X—"SH, (hco)+v, co,k'S, (hco)]deco . (29)

The spectral density of the field H] is SH, , and S is

the spectral density of the fluctuations in the transverse
magnetization I,. We compute S~, by finding the spec-
tral density SH (co)=SH, (hco)/2 of the magnetic field in

the laboratory frame H (t) =2Hi(t) cosco, t:

fico fico=2), (co) coth
8w

' 4 2k' T

This is a spectral density which is defined from the noise
source R; as though the spins were absent. The density of
states is given by 2), (co)=(2Q/corfu, )

~

R; /Z, (co)
~

in
which the restriction co, =co, is removed. We can obtain
an expression for S (co) by setting b,P=O in Eq. (29) for
T, =T. It is found that

a fluctuating noise current remains in the circuit. This
current corresponds to a spin noise field —ik'I, which is
simultaneously emitted and absorbed by the spins as they
couple to the single cavity mode. The spin noise field is
modified by any circuit impedance, and is taken into
account by adding and subtracting the term
2v, co,X"

~

k
~ ~

m,
~

to the right-hand side of Eq. (29).
The spectral field noise from both R; and the spins is
given by

~
H„(b )co~ = ~Hi(bco)

~
+

~

k'
~ ~

m, (hco)
~

which becomes the total noise in the absence of spin ab-
sorption (X=0,

i
Z, /Z,

~

= 1). From the expression for
H(b, co) [Eq. (26)] and the relation m, =2XH(b, co), it fol-
lows that

~

H(bco)
i

=
i
H„(b )co~

~
Z, /Z,

~

. From the
combination of these relations the expression for hP in
terms of the total field intensity

~

H(b, co)
~

becomes

S~ =(ny fi /2u, )[T2/vr(1 +6,co Ti)]

as expected, where the factor of y A /2v, is the spectral
density of the spins. By substituting these expressions for
SH, and S into Eq. (29) we find that Eq. (29) is

equivalent to the Nyquist formula [Eq. (14)]. This
equivalence supports the conclusion that Eqs. (24)
represent the correct modification to Bloch's equations
when spin noise is taken into account.

The first term in the integrand of Eq. (29) represents
the absorption by the spins of the magnetic field energy
produced by noise from R; at temperature T. The second
term represents emission of noise power from the spins as
a result of radiation damping caused by the noise field
—ik'm, [Eq. (24c)] emitted into the circuit. After the
second term is integrated over frequency co in the limit
R, /R; «1, it becomes equivalent to the term Acu, AX/2
in Eq. (17) and leads to the interpretation that spontane-
ous emission of the spin system is accounted for by the
mechanism of radiation damping.

Physically the spins couple with the entire cavity noise
field H(t) given by Eq. (24c), while Eq. (29) indicates the
spin absorption of only the noise field H i (t) produced by
R; . The Nyquist relation [Eq. (2)] shows that for R; =0

hP = lim —v, co,2+" H Ace
Tp ~ oo TQ —oo

+v, co, k7-
~

m, (~co)
~

']deco,

where kz. =2vrcoLg(R;+R, )/
~

Zi
~

VI. SPIN NOISE PENDULUM MODEL

=Hpu, MO / (8r«1) . (30)

A pendulum model of the Bloch magnetization MQ
coupled to a circuit (see Appendix B) provides further in-
sight into the connection between radiation damping and
fluctuating spin magnetization. Suppose a coherent pulse
Hi tips M(T, ) through an angle 8 from the initial equilib-
rium value at spin temperature T, . After the pulse H~ is
removed the longitudinal and transverse magnetizations
are given by M, =McosO and

~

m
~

=MsinO, where we
have defined M=(

~

m
i +M, )'~ as the magnitude of the

total magnetization vector. The coherent power radiated
is obtained from Eq. (20) in the limit Ti, T2~co. Using
H(t) =k'M sinO with k'=2irgg, we find

P "=co,kM sin~8=2m. gu, gco, M sin 8
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The coherent radiation damping rate is well known' "to
be 1/r„= 2m.(My Q in the low Q limit where
1/r„«cv/2Q. The stored magnetic energy gained by the
spins after the pulse is given by

E= Hav, M(1 —cosO)=HDv, MO /2 (0«1) . (31)

Thus, for 0«1, the radiated power can be expressed in

terms of the stored magnetic energy as

P,' =2E/7, . (32)

In the incoherent case appropriate for spin noise we
find that Eqs. (30), (31), and (32) remain valid for
R, «R, if 0 is replaced with (0 &, where

(M„&+(M & 2(M„&
M~ M2 2M2U

(33)

is the mean-square tipping angle of the spins. Equation
(33) when combined with Eq. (30) yields Eq. (16). In ad-
dition, when Eq. (33) is combined with Eq. (31) we find

E = (fun, /2) coth(fun, /2k' T, ) = kti T, ( kg T, » irido, )

(34)

This equation expresses the coupling of a single Bloch
vector M to the RLC circuit together with a fluctuating
driving noise torque term F(t). The above equation can
be recast in the form

IM 0+/30+ MH, 0=F'(t ),
where the torque MH, O has been introduced. Here, I~
and P represent respectively the moment of inertia and
damping coefficient of the spin pendulum. The equilibri-
um value of (0 & is maintained by the statistical balance
of torques due to spin noise radiation emission (which
tends to decrease 0), and absorption of noise by the spins
(which tends to increase 0).

Except for the extreme nonlinear condition at T, = oo,
we may write Eq. (33) as

(0 & =—coth
2 2 Ace

N 2k' T,
(35)

which becomes 8(kii T, /fico) IN « 1 in the high tempera-
ture limit. It is difficult to violate the condition (0 & «1
here because N = 10 . The slightest amount of spin-
lattice (T~) relaxation makes T, sufficiently small for the

and P,'"""=2k~T, /~„ is the incoherent radiated power by
analogy with Eq. (32). Consequently, the magnetic ener-

gy stored in the two degrees of freedom [x and y, Eq.
(33)] associated with the tipping angle 0 is given by the
equipartition theorem. Equation (34) implies that a spin
temperature T, exists but does not require that T, is
necessarily equal to T. We note that (0& =0. The ex-
pression for the thermal magnetic energy in Eq. (34) re-
sults from the random torque MH, O imposed upon the
spin system by random field fluctuations. The torque is
identified from the pendulum Langevin equation, obtained
from the spin-circuit coupling equation (see Appendix B):

0+tvOI2Q+ mytv(MO= F(t -) .

condition (kti T, /flu) «N to be obeyed.
Although the spin-pendulum model is phenomenologi-

cal, it yields quantitative predictions of emitted spin noise
power in the limit R, /R; « 1, and accounts for the
equipartition of energy when a spin temperature T, is
defined. We may go a step further and estimate from the
model the fluctuations in spin population of the spin sys-
tem coupled to the single-cavity mode. For example, at
zero temperature an isolated spin system would have all
spins N=N, in the ground state. However, if the spins
are coupled to the cavity mode the excited state is ad-
mixed with the ground state, and the fraction of spins in
the excited state is given by

f(0)= ( i '(0/2) & = ( 0'
& /4 .

At T=O, Eq. (35) implies that (0 & =2/N and the en-
semble of N spins exhibits an average occupation of
Nf = —,

' spin in the excited state. At any spin temperature

T, the average magnetization along the applied field is
given by

M, =M(cosO&,

where M =Np tanh(irttv/k~ T, ). Therefore M(0 & /2
represents the mean square deviation of M, from the
Boltzmann equilibrium values, as measured along Hp,
where

&cosO& =1—&0 &/2 .

This time average implies that the quantization of M is
slightly tilted from the Hp direction because the spin sys-
tem is coupled to the cavity mode as well as to the field
Hp.

VII. SIGNAL- TO-NOISE RATIO

In addition to its fundamental interest, the measure-
ment of nuclear spin noise may have a practical value in
situations where T] is too long for the application of con-
ventional techniques. It is therefore of interest to deter-
mine the conditions under which nuclear spin fluctuations
are observable.

If we assume that the resolution bandwidth of the spec-
trum analyzer is small compared with the linewidth of the
spins, the relative mean square uncertainty in the mea-
surement of the spectral density S at a given frequency
is given approximately' by ( b,S & /S = 1/Bt, where
(b,S & is the mean square uncertainty in the spectral den-
sity, B is the resolution bandwidth of the spectrum
analyzer, and t is the time over which the measurement is
made. We define the signal-to-noise ratio for the mea-
surernent of spin fluctuations at a given frequency to be

SIN =(S:)'I(&S'&= [(S;)'I(S,)']&t,

where S;=4k' T,R, ( T, ) for spin resistance R, ( T, ) at spin
temperature T„and S, is the spectral density of the total
effective-noise voltage in the circuit. For R, «R;,
S, =4ktt(T+ T~)R;, where Ttv is the noise temperature of
the receiver. Since R, ( T, ) T, is independent of tempera-
ture, we can replace R, ( T, ) T, in the expression for S,'
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with R, (T)T yielding S;, =4k~ TR, , where R, is evaluated
at the bath temperature T. Thus

S R, T Bt=
R;(T+ Tv )

4~$7 "Q
1+Ty/T

2

(36)

For optimum signal-to-noise ratio it is desirable to have
the bandwidth B as large as possible. For B & 1/T2, how-
ever, the spin noise signal will be smeared out, resulting in
a reduction of the signal-to-noise ratio. The optimum
bandwidth B is therefore of order 1/T2.

We can estimate the expected averaging time for our
experiment by inserting appropriate parameters into Eq.
(36). The noise temperature Tq for the receiver is about 2

K, and for the data in Fig. 5 we have B=300 Hz,
R, /R; =0. 1, and S,'/AS=15. Under these conditions we
find t=300 sec. If the spectrum analyzer is of the scan-
ning type this is the time required to average a range of
frequencies equal to one resolution bandwidth B. To
average a wider range of frequencies /t f (with the same
resolution bandwidth) one must use a time tgf
= t(bf/B) =2.2 h for the bandwidth Af = 8 kHz used in
our experiments. If however, the spectrum analyzer is of
the Fourier transform type, t is the total averaging time.
This distinction can be understood by realizing that a
Fourier transform spectrum analyzer examines all fre-
quencies simultaneously while a scanning spectrum
analyzer measures only one frequency at a time.

We now compare the signal-to-noise ratio obtained in
the spin noise experiment with that obtained in a conven-
tional (continuous or pulsed) experiment. If we neglect

amplifier noise, the signal-to-noise ratio for homogeneous-
ly broadened spins in a conventional NMR experiment is
given by'

(Qcuv, MOT.2t

N kg TTi
(37)

From Eq. (36) with Ttv =0 and B= l/T2 and Eq. (37) we
find that

I = A(kgT/co)T) ——AT(np, (38)

where 3 =2rrQfiy /v, is the spontaneous emission rate
for the spin radiation into the circuit, and n~ =k~ T/Ace is
the number of photons in the cavity. For T~ larger than a
critical value T& ——1/An&, I becomes larger than unity

and it would become desirable to use the spin noise tech-
nique. We can estimate T ~ for our experiment using the

values 3 =2~10 ' sec ', T=1.5 K, and co, =2&10
sec ' to find T& ——3X10' sec =8&&10 years. This re-

sult implies that the spin noise technique would never
supplant the conventional technique as a way of perform-

This expression is derived under the assumption that the
magnetization is in equilibrium (dM, /dt =0) with the ap-
plied field H~. The maximum signal-to-noise ratio occurs
when Hi ——1/y Ti T2 and M, =Mo/2. To compare the
signal-to-noise ratio between the spin noise and the con-
ventional NMR experiment we define the quantity

r= (~ /+ )spin noise

(~ /+ )conventional

ing spin resonance. We note, however, that this deriva-
tion assumed that in the conventional method the condi-
tion M, =Mo /2 was satisfied from the beginning of the
experiment. A more realistic derivation of I would as-
sume that in the conventional measurement, Mo is initial-
ly zero and builds up as the measurement is made. How-
ever, even with this more realistic assumption, T~ would

C

be on the order of 1 year for the conditions of our experi-
ment. Thus, although we would not rule out the possibil-
ity that the spin noise technique might have an advantage
over conventional measurements in certain special cases,
in general it seems that spin noise is likely to remain of
fundamental interest rather than of practical importance.

VIII. CONCLUDING REMARKS

The very low noise temperature of the dc SQUID as a
radiofrequency amplifier has made possible the first obser-
vations of spontaneous emission from nuclear spins. A
two-level spin system placed in the inductor of a RLC cir-
cuit introduces an additional resistance and inductance,
defined in terms of nuclear susceptibilities. In accordance
with the Nyquist theorem, this additional resistance is ac-
companied by voltage fluctuations, which are temperature
independent for a two-level system. The resonance ab-
sorption of Nyquist noise energy from R by the spins is
observed as a dip in the noise spectrum of the tuned cir-
cuit when the spins are in thermal equilibrium. On the
other hand, of greater significance is the bump observed in
the noise spectrum when the spins are at infinite spin tem-
perature. An analysis of power flow in this nonequilibri-
um situation (in which induced absorption and emission
cancel) demonstrates that the noise bump is equivalent to
spontaneous emission.

The standard solutions to Bloch's equations modified
for radiation damping are consistent with the results of
the Nyquist theorem for the flow of power from the spins
into the circuit. This derivation includes a generalization
of previous treatments of radiation damping to cases of ar-
bitrary Q, which should apply to the coherent case as well
as to our case of spin noise. Because one measures the to-
tal noise from both spins and circuit, direct effects of radi-
ation damping and frequency pulling do not appear in the
Nyquist formulation. Using a spin pendulum model, one
can show that the populations of the spin states deviate
slightly from the Boltzmann distribution. This deviation,
which persists down to T=0, occurs because the spin en-
semble is coupled to the single cavity mode, and cannot
be viewed as an isolated spin system in pure eigenstates.

While the observation of spontaneous emission is made
easier by the use of a high-Q circuit at liquid He temper-
atures, in principle it should be observable in any system
which displays radiation damping. The concept of spin
noise can be extended to many other situations, for exam-
ple, electron spin resonance and atomic transitions where
the emission is enhanced by cavity modes. In the latter
case the equivalence of spin noise would be observed as
electric dipole noise in the electric field modes of a cavity.
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APPENDIX A

The expression for any induced reaction field H„(t) as a
convolution integral is derived from the equation for the
coupling of spins to the circuit. ' The coupling constant
k (co ) [Eq. (23)] and the Fourier transform H„(b to)
= —ik(co)m(bco) [Eq. (26)] are then obtained. With m(t)
defined according to Eq. (19) and b,cof =0, the spin-
coupled circuit equation is

rotating at co, =co, . In Eq. (Al) the low-Q condition is
generally expressed by

dH„/dt «co, /2Q .

This result takes into account T2 damping also, since H,
depends on m„(t) which includes contributions from both
rates 1/T2 and O. In Eq. (A4) we express the low-Q
limit by letting

H„(t)= ik(—bco„)m(t),

where k(b, co„) is time independent (and allows b,co„ to be
nonzero) if the function m(t —r) in Eq. (A4) changes
slowly compared to the rate at which

dH„(t )/dt +yH„(t ) = —vrgcoim (t ), (Al)
k(t) = v'2irircog exp[ —t(1/r, i Aco—„))

H„(t)= —
wicopy f ' e~ ' "m(t')dt'

iricoj —f"e ~'m(t —r)dr .
0

From Eq. (A2) we define

k(r) = t 2irircoge

and the Fourier transform of k(~) is therefore

(A2)

(A3)

where y =co/2Q —id, co„and b,co„=(LC) ' —co, . In-
tegration of Eq. (A 1) results in

changes. Here, r, =2Q/co is the circuit-ring down time.
Examination of Eq. (2la) (for Hi =0) shows that m(t)
changes in a time T2. The low-Q limit is therefore given
explicitly by

co, /2Q»1/T2 =1/Ti+yk'M, ,

where 1/T2 ~~@A."M, =1/~z is the usual condition in
which T2 damping prevents the observation of much
longer radiation damping times w~.

APPENDIX B

k ~ e' "'dr=k e
&2~ The pendulum equation discussed in Sec. VI is ob-

tained from the form of Eq. (Al) in which the total noise
field HT(t) is determined from the Langevin equation for
Ace„=0:

or

k(r) = —f k(co)e ' "'db, co,
1

&2~ HT(t)+ HT(t)= 2tricogm—(t)+S(t) .
2

(Bl)
where k(co)=2irQ/R;/Z, . Thus we express Eq. (A2) in
Eq. (14c) as the convolution The noise term S(t) is assumed to apply to the local mag-

netization M where
~

m(t)
~

=u=MO and u =b,co=0.
Thus for weak Hr(t) fields, we have O « 1 and
O=yHT/2. Equation (Bl) becomes, with change of vari-
ables,giving the Fourier transform H„(b, co) = —ik (co )m „(bco )

expressed in Eq. (26).
The low-Q limit co/2Q «1/ dres onot take into ac-

count the efT'ect of the transverse relaxation time Tq. In
the absence of Tq, the rate 1/~„specifies that the total
magnetization M, after having been tipped away from the
z axis, remains constant and returns toward the z axis at
the precession rate O=yH„= —(I/r„) sinO in the frame

O+- +ncoygMO=F(t) .
2

(B2)

Only the properties of (O ), deduced from Eq. (B2)
which determines the spin temperature T, [Eqs. (31) and
(34)], are independent of relaxation. Therefore it is as-
sumed that T~ ——T2 ——~.

ik(t)em(t)=—H„(t)= —f k(r)m(t r)dr, (A4)—v'2~ o

*Present address: AT%T Bell Laboratories, Murray Hill, NJ
07974.

Present address: Microelectronic and Computer Technology
Corporation, 12100 Technology Blvd. , Austin, TX 78727.

'C. Hilbert and J. Clarke, Appl. Phys. Lett. 43, 694 (1983);
IEEE Trans. Magn. MAG-21, 1029 (1985); J. Low Temp.
Phys. 61 (1985); C. Hilbert, J. Clarke, T. Sleator, and E. L.
Hahn, Appl. Phys. Lett. 47, 637 (1985); Bull. Am. Phys. Soc.
30, 280 (1985).

2Tycho Sleator, Erwin L. Hahn, Claude Hilbert, and John
Clarke, Phys. Rev. Lett. 55, 1742 (1985); Bull. Am. Phys. Soc.

30, 478 (1985).
3F. Bloch, Phys. Rev. 70, 460 (1946).
4E. M. Purcell, Phys. Rev. 69, 681 (1946). For recent work con-

cerning effects of cavity modes on spontaneous emission, see
D. Kleppner, Phys. Rev. Lett. 47, 233 (1981); D. Meschede,
H. Walther, and G. Muller, ibid. 54, 551 (1985); S. Haroche
and J. M. Raimond, in Advances in Atomic and Molecular
Physics, edited by B. Bates and B. Bederson (Academic, New
York, 1985), Vol. 20, p. 347.

5C. P. Slichter, Principles of Magnetic Resonance, 2nd ed.
(Springer-Verlag, Berlin, 1978), p. 37.



1980 SLEATOR, HAHN, HILBERT, AND CLARKE 36

6M. Bloom, E. L. Hahn, and B. Herzog, Phys. Rev. 97, 1699
(1955).

7H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
8R. V. Pound, Ann. Phys. (N.Y.) 1, 24 (1957); F. N. H. Robin-

son, apoise and I'/uctuations (Clarendon, Oxford, 1974), pp.
167-170.

9In situations where 1/Tq»co/g with R, /R; «1, a sharp cir-
cuit resonance would appear on top of a Hat spin spectrum.
In this case the spin noise power P, given by Eq. (16) would
be reduced by the factor T2/( Tz + T2) where Tz =Lp/R;.

' N. Bloembergen and R. V. Pound, Phys. Rev. 95, 9 (1954); C.
R. Bruce, R. E. Norberg, and G. E. Pake, Phys. Rev. 104,
419 (1956)~

S. Bloom, J. Appl. Phys. 28, 800 (1957).
' J. S. Bendat and A. G. Piersol, Random Data; Analysis and

Measurement Procedures (Wiley-Interscience, New York,
1971), p. 188.

N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
73, 679 (1948).


