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The decay of a metastable state of a system coupled to a heat-bath environment is studied. A
functional-integral method is presented allowing for the calculation of decay rates at finite tempera-
tures and in the presence of dissipation. The theory is utilized to determine the rate for a wide range
of parameters. The temperature extends from the region where the decay is thermally activated
down to very low temperatures where the system decays by tunneling from its ground state in the
metastable well. The range of damping parameters covers the region from weakly damped to heavily
overdamped motions. It is found that the transition between thermally activated decay and tunneling
occurs near a crossover temperature To which decreases with increasing damping strength. Well
above To the rate follows the classical Arrhenius law where the preexponential factor is aff'ected by
the frequency-dependent damping. As To is approached, quantum corrections to the classical rate
formula become increasingly important. In the vicinity of To the rate follows a scaling law describ-
ing the crossover between thermally activated and quantum-mechanical decay. In the region below
To the decay rate can be determined analytically only in limiting cases. For a system with Ohmic
dissipation and a cubic potential, accurate numerical calculations are presented exhausting the range
of parameters not covered by analytical results.

I. INTRODUCTION

The decay of metastable states in macroscopic systems
plays a central role in many areas of physics including
low-temperature physics, nuclear physics, and chemical
physics. In this paper we investigate the influence of a
heat-bath environment on such processes. %'e aim at ac-
curate analytical and numerical predictions on the tem-
perature dependence of the decay rate covering the range
from thermally activated processes at high temperatures
down to very low temperatures where the system decays
by quantum-mechanical tunneling from the ground state
in the metastable well. We also examine a wide range of
damping parameters extending from weakly damped to
extremely overdamped motions.

This work was partially motivated by an ongoing dis-
cussion about the validity of quantum mechanics on a
macroscopic scale. Some time ago Leggett argued that
quantum mechanics might not be applicable to macro-
scopic variables and conjectured that corrections to stan-
dard quantum theory could perhaps be observable in the
rate of transitions between macroscopically distinct
states. ' This has stimulated recent experiments testing
quantum effects in the behavior of macroscopic state vari-
ables. The precise analysis of some of these experi-
ments requires reliable theoretical predictions for the de-
cay rate of a metastable state of a macroscopic system.
Here, we present methods and results of such calcula-
tions. Parts of this work were published earlier in short
form. The application of our results to the
phenomenon of macroscopic quantum tunneling in

Josephson systems ' will be discussed in detail in a subse-
quent article. '

Since microscopic variables interact with a large num-
ber of microscopic degress of freedom, the theoretical cal-
culation of transition rates between macroscopically dis-
tinct states has to start out from a formulation of quan-
tum mechanics which incorporates the effects of a heat-
bath environment. Clearly, the description of dissipation
within the framework of quantum theory has extensively
been discussed in the literature. For processes involving
tunneling, a functional integral formulation of the prob-
lem was found to be particularly suitable. The general
method was expounded in an article by Caldeira and Leg-
gett. " These authors have investigated the influence of
frequency-independent damping on the decay rate at zero
temperature. Subsequently, many authors have utilized
the Caldeira-Leggett approach to supplement and extend
the work in various directions ' including finite-
temperature calculations, the transition to Arrhenius-type
behavior, and the effects of memory damping. Some of
these problems were also addressed by alternative
methods. ~4

In the present work we shall assume that the system in
question can be visualized as a particle of mass M moving
in a metastable potential V(q) while coupled to a heat-
bath environment. Following Caldeira and Leggett" the
reservoir is assumed to be representable as a set of har-
monic oscillators interacting linearly with the particle.
The density and coupling constants of the environmental
modes are chosen in such a way that the classical deter-
ministic equation of motion takes the familiar form
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Mq+ +M J ds y(t —s)q(s) =0,av
Bq o

where y(t) is a damping kernel with Laplace transform

(1.2)

When V(q) is a metastable potential of the form depicted
in Fig. 1, a particle confined to the metastable region will
ultimately escape to the region of lower potential on the
other side of the barrier. Naturally, the concept of meta-
stability only makes sense when the barrier is large
enough that the decay rate of the metastable state is small
compared with other characteristic frequency scales of the
problem. Two of those are provided by the curvature of
the potential near the metastable minimum and the bar-
rier top. The well frequency

coo= [V"(0)/M]'i (1.3)

characterizes the undamped dynamics near the bottom of
the well which the system occupies initially in a state of
quasiequilibrium. The barrier frequency

cup = [ —V"(qb )/M]'

characterizes the width of the parabolic top of the barrier
hindering the decay process.

At high temperatures the decay is thermally activated
and the rate follows the Arrhenius law

r„=f,, exp( —Vz /kg T)

where Vb is the barrier height and f,~
the classical preex-

ponential factor, sometimes called the attempt frequency.
A simplified description of the escape by transition state
theory yields for this factor fTsT =coo/2w. In a seminal

paper, Kramers has determined the effect of friction on
the preexponential factor for a particle subject to frequen-
cy independent or Ohmic damping, y(z)=y, and corre-
sponding Gaussian white noise. In the region of moderate
to large damping f, ~

is reduced as compared to fTsr be-
cause of diffusive recrossings of the barrier top. On the

FIG. 1. A metastable potential well.

other hand, for very weak friction, typically
y 5 co& kz T / Vb, the inhuence of the heat bath is not
strong enough to maintain thermal equilibrium in the
metastable well ~ Because of the depletion of the highly
excited states, the preexponential factor decreases linearly
with y. This region of energy diffusion limited classical
escape has attracted renewed interest only lately, and at-
tempts were made to bridge between the Kramers limits.
Particularly important are recent extensions ' of the
Kramers theory for systems with frequency-dependent
damping corresponding to a retarded damping term in the
classical equation of motion (1.1). Since the barrier fre-
quency cob of a metastable system may well be in the
GHz region, the difference between the damping strength
at that frequency and the zero-frequency Ohmic damping
can be quite pronounced leading to significant memory
effects.

As the temperature is lowered, the classical escape rate
(1.5) decreases exponentially fast so that at very low tem-
peratures the metastable state can only decay via quantum
tunneling. A simple criterion for the temperature To,
where roughly the transition between thermally activated
and quantum mechanical decay occurs, was put forward
by Goldanski. Equating the Arrhenius factor with the
Gamov factor for the penetration of a parabolic barrier,
one finds To ——Acoq/2~k~. The effect of damping on this
crossover temperature was determined only recent-
ly. ' '-' These studies were based on a thermodynamic
method for the calculation of decay rates pioneered by
Langer. ' In this approach one calculates the free energy
of the metastable system. Because of the states of lower
energy on the other side of the barrier, the partition func-
tion can only be defined by means of an analytical con-
tinuation from a stable potential to the metastable situa-
tion depicted in Fig. 1. This procedure leads to an imagi-
nary part of the free energy of the metastable state which
then is related to the decay rate of the system in analogy
to the interpretation of imaginary energies of resonances
in quantum-field theory. An explicit calculation by
ANeck for an undamped system has demonstrated that
Langer's method yields the same result as a Boltzmann
average of energy dependent decay rates. While in the ab-
sence of a fully dynamical justification of the approach its
range of validity is not exactly known, it is highly sug-
gestive that Langer's method gives the correct result for
the decay rate whenever nonequilibrium effects within the
metastable well can be neglected. This is the case when
the environmental coupling is strong enough in order to
maintain thermal equilibrium within the metastable well ~

In fact, as we have shown previously, the rate formula
obtained from the imaginary part of the free energy of a
damped system reduces at high temperatures to the classi-
cal expression for moderate to large damping. The effects
of frequency-dependent damping and the size of quan-
tum corrections to thermally activated decay calculated
by dynamical theories are also fully reproduced by the
thermodynamic method. On the other hand, the region
of energy diffusion limited decay dominated by nonequili-
brium effects in the metastable well is not within reach of
Langer's method. However, this region, characterized by
y(cob) cobksT/VI, , is very small in particular for sys-
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tems with high barriers.
In the quantum regime the bottleneck of energy activa-

tion is absent since the state can decay by tunneling
without the help of thermal fluctuations. Consequently,
the range of validity of the thermodynamic rate formula is
expected to extend to even weaker damping below Tp. In
particular, at zero temperature the formula remains valid
even for vanishing damping. As a consequence, we are
confident that the results presented below give accurate
predictions of decay rates for damped metastable systems
in the entire temperature range below To (except for ex-
ponentially small damping) and also for temperatures
above Tp for moderate to large damping.

Specifically, the thermodynamic rate calculation starts
out from a functional integral representation of the free
energy which is evaluated in a steepest descent approxi-
mation. This simplification is appropriate whenever the
rate is exponentially small compared with other relevant
frequency scales. Only the region in the vicinity of Tp
needs a more careful treatment (see below). The crossover
between thermally activated and quantum-mechanical de-
cay is associated with a change from a trivial saddle-point
trajectory to an oscillatory orbit giving the predominant
contribution to the imaginary part of the free energy. The
calculation of quantum decay rates by Langer's method
has developed through the work of Miller, Stone, and
Coleman and Callan. Coleman coined the name
"bounce" for the oscillatory trajectory which exists only
for temperatures below the crossover temperature Tp. In
terms of the Euclidean action S~ of this bounce the quan-
tum decay rate reads as

I =coq exp( —Sii/fi), (1.6)

II. FREE ENERGY OF A DAMPED SYSTEM

In the absence of dissipation the coordinate representa-
tion of the canonical operator pal=exp( PH) of a particle-
of mass M moving in a potential V(q) may be written

& q'
I p/3 q &

= f D
I q]exp ——~ [q]

1
(2.1)

where P= 1/kii T is the inverse temperature, and where

where the quantum-mechanical preexponential factor coq

is related to the fluctuations about the bounce. The ex-
ponential factor smoothly matches onto the Arrhenius
factor for T = Tp. While the Arrhenius factor is indepen-
dent of damping, the bounce action is modified by dissipa-
tion leading to pronounced effects of friction in the quan-
tum regime. Dissipation was first incorporated into the
bounce technique for the calculation of tunneling rates by
Caldeira and Leggett. " In our earlier work ' and in in-

dependent studies by Larkin and Ovchinnikov, ' '' the
method was used as an effective scheme for the calcula-
tion of rates in the entire range of temperatures. In this
paper we shall exclusively rely upon this method. Apart
from the elegance of the approach, this choice is also dic-
tated by the fact that at present there is no alternative
method available for the calculation of quantum decay
rates in the entire range of parameters of interest.

the functional integral is over all paths connecting
q (0) =q with q (fi/3) =q'. The path probability is weighted
according to the Euclidean action

S[q]= f dr[ —,'Mq '+ V(q)] . (2.2)

Since the canonical operator may formally be considered
as a time evolution operator exp( —iHt/fi) in imaginary
time t = ik—p, the integral (2.1) is frequently referred to
as an imaginary time functional integral.

Naturally, environmental influences will modify the sta-
tionary density matrix of the particle. In the problem we
wish to address the coupling to the environmental degrees
of freedom is not of the most general form but such that
the damping term in the classical deterministic equation
of motion (1.1) is linear. A linear dissipative mechanism,
however, can always be modeled by a heat bath consisting
of an infinite set of harmonic oscillators. The system un-
der study is then governed by the Lagrangian

L = —,'Mq —V(q)+ g —,'m; q; —co; q;—

(2.3)

Here the coupling term is written in a form that does not
lead to a coupling induced renormalization of the poten-
tial. " The model characterized by (2.3) was studied fre-

quently in the last two decades. Within a detailed realis-
tic model of the environment, the model (2.3) is

equivalent to an approximation where the response of the
heat bath to the particle's motion is treated linearly. This
corresponds to the assumption of linear damping. It
should be noted that while each environmental degree of
freedom is perturbed only weakly by the particle, the
combined effect of these modes upon the particle's motion
is not necessarily weak and can cause strong damping.

Investigating the classical dynamics generated by the
Lagrangian (2.3), one finds that the deterministic equation
of the motion of the particle is in fact of the form (1.1)
with a damping kernel y(t) the Laplace transform of
which is given in terms of the model parameters by' '

C
2

y(z)= f dt y(t)exp( zt)=—
0 Pl;6); Z +6);

(2.4)

A given phenomenological damping kernel can now easily
be modeled by a suitable choice of the parameters in (2.3).
On the other hand, the microscopic model can readily be
quantized. In the imaginary time functional integral rep-
resentation of the canonical operator of the entire system,
the integrals over the environmental coordinates are
Gaussian and they may be evaluated exactly. Tracing
over the heat-bath coordinates, one then arrives at a func-
tional integral representation of the reduced equilibrium
density matrix pp of the damped particle which is again of
the form (2.1), however, with an eff'ective action"

S[q]= f dr[ —,'Mq + V(q)]

+ —,
' f dr f" dr'k(r ')rq( )qr( ')r, (2.5—)

0 0
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1k(r)= K(v„)exp(i v„r), (2.6)

where the v„=2wn /fiP are the Matsubara frequencies.
The Fourier coefficients are given in terms of the model
parameters by

C; V„K(v„)= g
m;m; v, +co;

(2.7)

Comparing (2.4) and (2.7) we see that K(v„)
I y{ I

v
I

) whi~h implies

where the last term describes the influence of the environ-
ment. The influence kernel k(r) is periodic with period
fiP and may be represented as a Fourier series

Mq(r)— BV(q) dr'k (r —r')q (r') =0
Bq(r) o

(3.2)

and the boundary condition q (0) =q (A/3). In the absence
of dissipation the evolution equation (3.2) corresponds to
a real time motion in the potential —V(q). In this invert-
ed potential (Fig. 2) there is a trivial periodic solution,
q (r) =0, where the particle just sits on top of the potential
barrier of the inverted potential, and another solution,
q (r) =qb, where it sits at the bottom of the well. Howev-
er, for temperatures below Tp ——%cub/2~k~, the period
fif3=fi/k~ T is long enough to admit also an oscillation of
the particle along a periodic orbit in the classically forbid-
den region. This latter trajectory is frequently called the
bounce.

Since the influence kernel satisfies
M

d 0 sinh( vs)
fiP 0 Bs cos(vr) —cosh(vs) f dr k (r)=K(0)=0,

p
(3.3)

+My(0):6(r):, (2.8)

Zp —— D qexp ——S q
1

(2.9)

where the functional integral is over all periodic paths
with period fiP. The free energy is then given by

where v=v~ =2~/fi/3 and where:6(r): is the fi function
periodically repeated at r=nfi/3, n integer. This equation
connects the quantum-mechanical influence kernel k (r)
with the damping kernel y(t) of the classical equation of
motion. Because of this relation further recourse to the
microscopic model is not necessary. Note that the nonlo-
cal form of the last term in (2.5) is not due to memory
eff'ects since k (r) remains finite for finite r even if y(t) de-
cays infinitely fast (Ohmic damping).

The partition function Zp of the damped particle is the
trace over the equilibrium density matrix pg. Using (Z. 1)
we obtain

the trivial solutions q (r) =0 and q (r) =qq are not affected
by dissipation although the action of paths in the vicinity
of these trajectories is modified. The bounce, however, is
changed by dissipation and exists in the damped case only
for temperatures below the crossover temperature '

Tp ——%cog /2~kg .

where ~~ is the largest positive root of the equation

(3.4)

(3.5)

It will become clear from below that Tp is the tempera-
ture where roughly the transition between thermally ac-
tivated decay and quantum tunneling occurs which is ob-
served experimentally as a flattening of the rate as the
temperature is lowered. This temperature is always re-
duced by dissipation which affects Tp through the damp-
ing coefficient at frequency co&. For weak damping, co& is
the order of the barrier frequency cub. In the particular
case of Ohmic damping, y(z) =y, we have

1F = ——lnZg . (2. 10)
cog =M b [( 1 + cx ) —ct ]

By virtue of (2.5) and (2.8), the free energy is now
specified completely in terms of quantities appearing in
the classical equation of motion (1.1). This is the starting
point for the further analysis.

III. THE CROSSOVER TEMPERATURE To

We shall be concerned here with a damped particle
moving in a metastable well of the form depicted in Fig.
1. Thermal and quantum fluctuations let the particle es-
cape from this well ~ Weak metastability requires a bar-
rier height Vb which is large compared with other
relevant energy scales, in particular

Vb ))kg T, Vb ))i6cop (3.1)

Then, the functional integral (2.9) may be evaluated in a
semiclassical approximation, i.e. , the main contribution
comes from the vicinity of those paths for which the ac-
tion (2.5) is stationary. The extremal action paths satisfy
the equation of motion FICs. 2. The inverted potential —V(q).
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and hence

To = (fico b /2~rks )[( I +a )
' —a], (3.7)

where e =y/2cob is a dimensionless damping parameter.
In the escape problem, various temperature regions

must be distinguished, in general (Fig. 3). Above To the
functional integral is dominated by the trivial semiclassi-
cal trajectories q(r)=0 and q(r)=qb. The fluctuation
modes about these trajectories lead to quantum correc-
tions which become increasingly important as the cross-
over temperature is approached from above. The semi-
classical approximation to the functional integral breaks
down near To where a new semiclassical trajectory, the
bounce, emerges. This crossover region has to be treated
with special care. Below Tp the functional integral is
dominated by the trivial solution q(r)=0 and the bounce
qadi(r). In this region quantum tunneling prevails. The
calculation of the rate in various regions will be discussed
in the following sections.

IV. THERMALLY ACTIVATED DECAY

In this section the thermodynamic method for the cal-
culation of decay rates is utilized to determine the rate in
the high-temperature region where thermal activation
dominates. The calculation is carried out fully quantum
mechanically and yields the quantum corrections to the
familiar Arrhenius law.

A. Imaginary part of the free energy

For temperatures above To, the functional integral (2.9)
may readily be evaluated in the semiclassical approxima-
tion where the main contribution arises from the vicinity
of the time-independent trajectories q (r) =0 and
q (r) =qb. A periodic path near the stationary trajectory
q(r)=0 may be written as

disregarded. The contributions of these paths to the parti-
tion function (2.9) can now be determined by performing
the Gaussian integrals over the amplitudes X, . This gives
the partition function Zo of a damped particle in a har-
monic well.

A periodic path near the other stationary trajectory,
q (r) =qb, may be written as

y (r) =qb + g Y„exp(iv„r) . (4.4)

The second-order action now reads as

S [y]= tip Vb + —,
' Mfif3 —g A.„Y„Y (4.5)

where

(4.6)

When we want to evaluate the contribution Zb of these
paths to the partition function we encounter a problem.
Since the eigenvalue A, o

———~b is negative, the trajectory
q(r) is not a minimum of the action but a saddle point
with an unstable direction. Because of this negative
mode, the integral over the amplitude Yo is divergent.
This should come as not too big a surprise, after all we
are trying to compute the free energy of an unstable sys-
tem. Langer ' has explained that in such a situation the
functional integral can still be defined by distorting the in-
tegration contour into the upper half of the complex plane
along the direction of the steepest descent which is the
positive imaginary axis in the present case. This leads to
an imaginary part of the partition function. When we
write Zi3 in the form Zii ——Zo(1+Zb/Zo) and note that,
as a consequence of the first term in (4.5), the ratio
Zb /Zo contains the exponentially small factor
exp( —

f3Vb ), the associated imaginary part of the free en-
ergy is found to read

x (r) = g X„exp(iv„r), (4.1) ImF = —( I /f3ZO )ImZb

where again v„are the Matsubara frequencies. When
(4.1) is inserted into (2.5) one finds for the action

= —(I/2p)[DD/
l
Db

l

]' exp( fBVb) . —(4.7)

Here Do and Db are the determinants connected with the
second-order action functionals (4.2) and (4.5)

S [x]= ,'Mfif3 g k„X„—X

where

(4.2)
Do= Db= (4.8)

A,„=v„+coo+
~
v„~ y( v„), (4.3)

and where terms of the third order in the amplitudes are

Note that the exponentially small contribution Zb of the
paths near q (r) =qb is kept in the semiclassical approxi-
mation of the functional integral (2.9) only because it
gives not just a small correction to Zo but a contribution
which is imaginary and hence of a different type.

C)
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FICz. 3. The dominant escape mechanism is depicted
schematically as a function of temperature.

B. The classical limit

Following Langer ' the imaginary part of the free ener-
gy is now interpreted in the same way as the imaginary
component of a resonance energy in quantum-field theory,
namely, as a quantity describing the finite lifetime of the
state. By analogy, we would define the decay rate
through I = —(2hri)lmF. This is actually the formula
which we shall use in the low-temperature region below
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COp COR

fq exp( —Vb /kz T), (4.9)

where we made use of k =cop ——cop and r'
p
———cob, and where

v„—Mb +v„p( v„)
(4.10)

Tp. However, Aleck has shown that above T t

ditional factor (T /T) a~ as a remnant of the transition
To. Inserting (3.4) and (4.7) into
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mation (4.13). On the other hand, for intermediate tem-
peratures Tp « T «4a Tp one finds

+ ~2/t 2 jT /Tf = (4 Tp/T) (4.17)

Note that this factor can enhance the rate quite substan-
tially even well above the crossover temperature. For
instance, for T =4Tp and tpp=tpb, one finds fz =a.

For weakly damped systems where y «cop, cob one has
approximately

A. Beyond steepest descent for T ) TD

V(q)= Vb M~b(q qb)—'+ g —M k(q qb—)
3 k

(5.1)

one readily obtains from (2.5)

To regularize the divergent integral we have to add
terms of higher order in the amplitudes Y~, Y ~ to the
second-order action (4.5). Expanding the potential V(q)
about the barrier top

cob sinh(f7ct7p/2k' T)
exp[Da+0(a )],

top sin(fmb /2k' T
(4.18)

S [y]=fiPVb+ ,'MfiP— A,"„Y„Y

where

COb
D = [ qi(1+cpb /v)+ O(1 tpb /—v)

V

—0'( I+imp/v) —+( I imp/v—)] . (4.19)

+2c3( Y z Y, + Yz Y

+2Yp Y, Y, )

+3c4 Y) Y (5.2)

Naturally, the limit of small damping must be treated
with care since for a &k&T/Vb, the rate is affected by
nonequilibrium effects as discussed above. For weakly to
moderately damped systems the quantum corrections are
only essential for temperatures of a few Tp. Hence, as a
function of T/Tp the classical limit of the rate is ap-
proached more rapidly than for strongly damped systems.

Independent of the form of the damping, the quantum
correction factor (4.10) becomes singular as T approaches
the crossover temperature Tp. This hints at the break-
down of the semiclassical approximation for the function-
al integral (2.9), a problem which will be discussed in Sec.
V.

V. THE CROSSOVER REGION

As we have seen in the preceding section, quantum
corrections to the classical escape rate become increasing-
ly important as the temperature is lowered and ap-
proaches the crossover temperature Tp. The semiclassical
approximation of the imaginary time functional integral
(2.9) used so far breaks down in the vicinity of Tp because
the eigenvalue A,

~
=k

~
=v cps + vy (v) va—nishes for

T = Tp so that the Gaussian integral over the amplitudes
Y&, Y

~
becomes divergent. Therefore, the functional in-

tegral over these fluctuation modes has to be evaluated
beyond the Gaussian approximation. It is readily seen
that the definition (3.4), (3.5) of the crossover temperature
Tp is just derived from the condition A, ~(Tp)=0. Here
we have tacitly assumed that the eigenvalue A,

&
vanishes

first as T is lowered which is the case for most models of
the dissipative mechanism of interest. The vanishing ei-
genvalue points to the fact that below Tp the evolution
equation (3.2) admits a new oscillatory solution. As a
consequence, the evaluation of the functional integral in
the crossover region proceeds differently above and below
Tp. Here we give an extended account of our previous
study of the crossover region. For T ) Tp an equivalent
analysis was also given by Larkin and Ovchinnikov. '

where terms up to the fourth order in Y], Y ] were kept.
For temperatures slightly above Tp, the contribution Zb
to the partition function can now be calculated by first in-
tegrating over the amplitudes Yp and Y+„, n )2 as be-
fore. Then, we are left with an integral over the ampli-
tudes Y~ and Y ~. The integrand is determined by the
effective action

b,S) ———,
'

M/(32K, ) Y) Y )+BY)Y ) ),
where

(5.3)

B =4c 3/~b —2c 3/A 2+ 3c4 . (5.4)

Using 2~ '~ J dt exp( —z ) =erfc(z), the remaining in-

tegration is found to give the factor

I/A~= (nM/3/2B)'~ erfc[A, ",(MP/2B)' ]

)& exp[(A, ~ ) (MP/2B)] (5.5)

(5.6)

where e=(Tp —T)/Tp is negative above Tp which is con-
venient for later purposes. The coefficient a is positive
and reads

a =tpb + Cpg ( 1 + dl (cpR )/dtpR )

The factor (5.5) thus takes the form

1/A~ =v'n(v/a)erfc( —I~a)exp(x' e ),
where

(5.7)

(5.8)

~=a (MP/2B)' (5.9)

Clearly, 1/A, remains finite in the limit e~O and instead
of (4.10) we now obtain for the quantum correction factor

which replaces the factor 1/A, ~ obtained in the semiclassi-
cal approximation [cf. (4.10)]. Near Tp, A, ~ may be writ-
ten as
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fq =(Q/&1)fR,
where

(5.10)
S [qR+g']=SR+ ,'M—Pip cp—b

- 11+ g 2A,„:-„:"
n =3

fR = Q (A.„/A,„)
11 =2

(5.1 1) +a@(:-1+= 1) +2Aq-q"

is the regular part of the product (4.10). Hence, the
singularity arising for T~ To in the prefactor of the semi-
classical rate formula (4.10) is removed by nonlinear
terms in the action functional. Before entering a more de-
tailed discussion of this result let us investigate the behav-
ior of the rate for temperatures slightly below To.

(5.16)

p= p
—(2c3/cob )(ae/B)' (:"1+" 1)

=+~==+2+ (2c, /A2)(a@/B)'
(5.17)

where only terms of leading order in e were kept and
where we introduced the transformed amplitudes

B. Beyond steepest descent for T & To

For temperatures below To, a third extremal action
path, namely the bounce, exists in addition to the two
time-independent solutions q (r) =0 and q (r) = qb of the
equation of motion (3.2). Since the bounce is a periodic
trajectory, it may be written as a Fourier series

qR(r}=qb+ g Q„exp(iv„r) . (5.12)

Q1=(«/B)' ',
Qp

—— (2c3/~b )Q1-,
Q2

——(C3/X&)Q1

(5.13)

Now, when qR(r) is an extremal action trajectory,
qR ('7+ rp) is also a solution of (3.2). Hence, there is in
fact a whole family of bounces with different phases. We
can choose a particular one by requiring qR(r)=qR( —r)
or, equivalently, Q„=Q „. Clearly, a fluctuation about
the bounce which leads to a mere phase shift will not
change the action. The amplitudes Q„are small near Tp
and they can be calculated perturbatively from (3.2). Us-
ing e=(Tp —T)/Tp ~ 0 as a small parameter, one obtains
the Q„as a power series in &'e. ' The leading-order
terms are

We see that a "o fluctuation leads to a decrease of the ac-
tion so that the bounce is in fact a saddle point of the ac-
tion. The main difference between the second-order ac-
tion (4.5) above Tp and the result (5.16) valid for tempera-
tures slightly below To is that the twofold degenerate ei-
genvalue A,

&

——A.
"

&
which would become negative below To

is now replaced by a small positive eigenvalue k&
——2am

and a vanishing eigenvalue A,
&

——0. As mentioned above,
the zero mode is associated with a phase shift of the
bounce. The corresponding eigenfunction has Fourier
coeKcients =„cuing„/Q1. When such a fluctuation is in-
serted into the action one obtains no contribution of the
considered order because of the form (5.13) of the Fourier
coefficients of the bounce and the absence of a term pro-
portional to (:-1—= 1) in (5.16).

As a consequence of the small eigenvalues k~ and A,

the amplitudes =~ and:-
~ of a fluctuation lead only to a

small increase of the action (5.16). Hence, these ampli-
tudes can become very large and the second-order approx-
imation is again not sufficient. Rather, the action of a
path q(r)=qR(r)+g(r) must be determined more accu-
rately by taking into account terms of the third and fourth
order in the amplitudes =] and:- ]. These higher-order
terms include nonlinear couplings between the amplitudes

~ and other Fourier coefficients. The relevant terms
of this expansion read

ASn1™fiP[c3(:-2=',+= 2-1+2:-p=1- 1)

from which we obtain for the bounce action

SR =ApVb —,'tip(Ma /B)e +O(e—') . (5.14)

+3c4gl(=1= 1+= 1=1)+—,'c4=1=' 1] .

(5.18)

g(r) = g:"„exp(iv„r) . (5.15)

The Auctuation g(r) leads to a change of the action (2.5).
Near Tp we may insert the perturbative solution (5.13) of
the bounce trajectory and the second-order action can be
written as

Note that the bounce action is smaller than the action of
the trivial saddle point q (r) =qb. Hence, compared with
this trivial solution the bounce trajectory qR(r) becomes
more important as the temperature is lowered.

To study the fluctuation modes, we put q (r)
=qR(r)+((r) and expand g'(r) in a Fourier series

~S1 = —,
' MB%[ Q1(:-1+:-—1)'+2Q1(:-1+:-—1):-1:-—1

+(:-1-= 1)'] . (5.19)

Now (5.18) is added to (5.16) and this expression for the
action is inserted into the functional integral (2.9) for the
partition function. This way we can evaluate the contri-
bution Z~ of trajectories in the vicinity of the bounce to
the partition function.

The integrals over the stable modes (:-+„,n ) 2) can be
performed in semiclassical approximation. The integral
over the negative mode (:-p) can likewise be carried out by
distorting the integration contour as above. This leads to
an imaginary part of Z~. One is left with an integral over
the amplitudes =] and:-

~ where the integrand is given
in terms of the effective action
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I = dppexp — ( —p —Qi)
oo pB i 2

P 2 2
(5.20)

which may be transformed into an error integral. Finally,
using Zp=Zo(1+Zs/Zp) and (2.10), the imaginary part
of the free energy emerges as

Now, we introduce polar coordinates (p, P) by

p cos(P) =Qi+ —,(:-i+= i), p sin(P) =( I/2i)(:-, —:-,).
Then, b,S, turns out to be independent of P. A change of
p just corresponds to a phase fluctuation of the bounce
which does not change the action. After a corresponding
transformation of the integration measure, the P integral
gives a factor of 2~. The p integral corresponds to an in-
tegration over the amplitude fluctuations of the bounce.
These fluctuations can be as large as the bounce ampli-
tude. In particular, trajectories with p near zero are in
the vicinity of the trivial saddle point whose contribution
cannot be separated from Z~ for small e. The remaining

p integral is of the form
T

Hence, in view of A. i = —a@, the formula (5.23) then
reduces to the semiclassical rate (4.9), (4.10). For temper-
atures below the crossover region (iran& 1) we can use

erfc( K—c) 2 for r~e& 1

and the rate (5.23) reduces to

(5.26)

Sp ——8ir (Ma/BOP)e . (5.28)

The result (5.27) holds for r~ '&@&&1 and coincides in
this region with the low-temperature semiclassical rate
discussed below.

Within the crossover region (5.24) it is convenient to
consider the quantity

I =[Do/
I
Dii

I
]' (Sp/2M)' exp( —S /A'), (5.27)

where D~ is the determinant connected with the second-
order action functional (5.16) with the zero mode omitted
while the quasi-zero-mode A, I

——2a e is included. The
remaining factors are lumped into

IrnF = —(1/2p)[Dp/
I Dii

I

)' v rr(ir/a) y =I exp(vblkir T) . (5.29)

X erfc( —xe)exp( —Sii /A') .

Here Dp is the determinant (4.8) and

Dg' ——

(5.21)

(5.22)

In the classical limit this quantity is independent of T.
However, quantum eA'ects lead to an increase of y as T is
lowered. Let us study y as a function of x = T —Tp.
Then, we see from (5.23) that there is a temperature scale
xp = Tp/~ and a frequency scale

1/2

is the determinant connected with the second-order action
functional (5.16) with the zero mode and the quasizero
mode omitted.

The result (5.21) is valid for temperatures slightly below
Tp. Now, inserting (5.13) and using I = —(2/iri)lmF one
finds for the decay rate

p
1 ~p ~I 2 2r= fg +iTK erfc( —ice)exp(x. e —Vb /ks T)

fiP rob a

Mcus
yo = ,'(~o+~—b)

ciJp ii coir +cop+ iicoii 'P(iicoir )x
rpb „—2 ii COir

—rgb + il Cpir P(ii Ci)ir )

so that

y lyo=F(xlxo)

(5.30)

(5.31)

(5.23)

Since at the crossover temperature 1/RP=coii /2ir, the for-
mula (5.23) coincides in fact with (4.9) when (5.10) is in-
serted there. Hence, (5.23) describes the behavior of the
rate in the crossover region both above and below Tp.

where F(g)=erfc(g)exp(g ) is a universal function which
is independent of the form of the metastable potential and
also independent of the dissipative mechanism (Fig. 5).
Only the scale factors xp and yp depend on the particular
system under consideration. The rate follows the univer-
sal law (5.31) in the crossover region (5.24).

C. The sealing region

I
T —To

I
&To«, (5.24)

where the argument of the erfc function is of order 1. Be-
cause of ~ &&1, the crossover region is narrow on the scale
Tp. For temperatures above this region (r~e & —1) we can
use

+irK erfc( —ire)exp(ir e ) = —I /e for xe & —1 (5.25)

For systems with high barriers and reasonably smooth
potentials, the coefficient ~ defined in (5.9) is much larger
than 1. This follows from the fact that Ma /B is an ener-

gy of the order of the barrier height so that ~ is of the or-
der of ( Vb/irroi„)' »1. The formula (5.23), which goes
beyond the semiclassical approximation, is only needed in
the region

I

i~@
I

& 1, or

VI. QUANTUM TUNNELING

Below the crossover temperature Tp, the metastable
state decays predominantly by quantum tunneling. The
most probable escape path is the bounce trajectory qs(i. )

which for temperatures below the crossover region (5.24)
has an action S~ that is substantially smaller than the ac-
tion fif3Vb of the trivial saddle-point trajectory q (r)=qb.
Hence, the contribution Zb of the trivial saddle point to
the partition function (2.9) may be disregarded and the
imaginary part of the free energy arises predominantly
from the contribution of paths in the vicinity of the
bounce qs(i ). This trajectory is an oscillatory solution of
the nonlocal and nonlinear equation of motion (3.2). In
this chapter we summarize the available analytical results
deferring the numerical calculations required for a large
region of the parameter space to the subsequent section.
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X Xo

A. The quantum rate formula

Let us first derive the formal expression for the quan-
tum decay rate in the semiclassical approximation. To
evaluate the contribution of paths in the vicinity of the
bounce to the partition function we proceed as earlier and
expand the action (2.5) about the saddle-point trajectory.
Putting q(r)=qii(r)+g(r) we find for the second-order
action

S[q]=S&+ f dr[ ,'Mg +——,' V"(qs(r))P ]

+ — d7
0 0

where S~ is the action of the bounce trajectory. This may
be written as

S[q]=Ski+ —,'M f dr((r)Lii[((r)], (6.2)

where

FIG. 5. The scaled rate y/yo is shown as a function of the
scaled temperature x/xo. The high-temperature formula (4.9)
and (4.10) is shown as a dashed line and the low-temperature
formula (5.27) as a dotted line. The crossover function smoothly
matches onto these formulas valid outside the crossover region.

S0 ——M d~q P
0

(6.5)

This way the imaginary part of the ratio Z~/Z0 is ob-
tained as

ImZii /Zp = f1@(Sp/2irA) [—Dp/
~
Dii

~ ] exp( —Sii /A')

(6.6)

where Dq is the product of the eigenvalues of L~ with the
zero eigenvalues omitted. Now, using I = —(2/
fi)In&' = (2/fiP)ImZJi/Zp the quantum decay rate
emerges as

I =coqexp( —Sii/A'), (6.7)

where

rpq =(So/2irR) ~ [Do/ ~Da ]i~~ (6.8)

is the quantum-mechanical prefactor of the rate while S~
is the bounce action. An analytical evaluation of this for-
mula is generally only possible for temperatures near T0
where the bounce can be calculated perturbatively. The
action S~ is then given by (5.14) and the zero-mode factor
(6.5) takes the form (5.28). Furthermore, for small
E=( Tp —T')/Tp the eigenvalues of Lii are found to read

of the bounce is arbitrary. To linear order we have

qadi (r+ 5)= qadi (r) + qadi (r)5 which shows that the zero
mode is in fact proportional to qadi(r). Since the bounce is
periodic, the zero mode qs(r) has one node within the in-
terval fi/3. By the node-counting theorem there exists a
nodeless eigenmode of Lp with a smaller, negative eigen-
value. This negative eigenvalue points again to the fact
that the system is unstable. The other eigenvalues of L~
are positive. The smallest positive eigenvalue, which
merges into the quasi-zero-mode near T0, is now
su%ciently large so that all positive modes can be integrat-
ed out from the functional integral by steepest descents.
The integration contour of the negative mode is distorted
as above leading to an imaginary part of Z~. The remain-
ing integral over the zero mode is formally divergent.
However, since the mode describes a shift of the bounce,
this last integral sums over the family of bounces and it
can be transformed explicitly into an integral over the
bounce shift which varies over a finite interval. From
the change of the integration variable one picks up an ad-
ditional factor which depends on the zero-mode normali-
zation factor

d~'k ~ —~'
M 0

(6.3)

Lii[qii(r)] =0 . (6.4)

is a linear operator acting in the space of periodic func-
tions with period fi/3. The Gaussian functional integral
over the fluctuations g(r) may be expressed in terms of
the eigenvalues of this operator. Now, differentiating the
equation of motion (3.2) satisfied by qadi(r) with respect to
~ one finds

which gives

Dii =20 Egg
tl =2

2

A,p= —coii+O(e),

A, ~ =2ae+. O(e ),
) ——0,

R+„=A+„+O(e), n )2,

(6.9)

(6.10)

Hence, qadi(r) is an eigenfunction of Lii with eigenvalue
zero. This zero mode arises from the fact that the phase

where again terms of order e were omitted. When these
approximate expressions are inserted into the rate formula
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(6.7) one finds

pI = A. , + (AM/2' PB)'~ [1+O(e)]
~b n =2 ~n

U —~b /~p 2~+)pq p/ (6.20)

Again we choose a bounce trajectory with the symmetry
qii( r—) =qs(r) implying R „=R„. Furthermore, intro-
ducing the dimensionless barrier height

&&exp[ —Vb/k sT+i~ e +O(e )] (6.11) we may define a dimensionless bounce action

B. The case of a cubic potential and Ohmic damping

So far, we have considered arbitrary forms of the meta-
stable potential and the general case of frequency-
dependent damping. In the sequel however, we shall as-
sume that the part of the potential relevant for the decay
process can well be represented by a cubic

V(q)= —,'Mp~pq (1 —q/qp) . (6.12)

which coincides with (5.23) for ice) 1 where erfc( KE)—
can be replaced by 2. Hence, the crossover formula (5.23)
matches onto the semiclassical rate (6.7). In the region

'(e «1 the result (6.11) can be improved systemati-
cally by calculating higher-order terms in e of the ex-
ponent and the prefactor. This is shown in Sec. VI C.

s =S~/fiU (6.21)

which by virtue of (6.15) and (6.17) may be expressed in
terms of the Fourier coefficients as

s = (2ir/8) 1+—,
'

n, m = —oo

Rn+mRnRm (6.22)

g =Sp/2vrkv (6.23)

which also is only a function of a and 8. Using (6.5) and
(6.15) we find

Clearly, the dimensionless action s is only a function of
the parameters u and 0 but independent of the barrier
height. Furthermore, we introduce a dimensionless zero-
mode normalization factor

Here, qp is the tunneling length which is related to the
barrier height through

g =30 g n R„.
n =1

(6.24)

Vb ——2Mcopq p/27 . (6.13)

Furthermore, we consider the case of frequency-
independent or Ohmic damping characterized by the di-
mensionless parameter

A =p/2cop (6.14)

Most of the analysis in the following sections can in fact
be extended to the general case but some of the pertinent
formulas become already quite lengthy in the special case
discussed here.

The Fourier series (5.12) of the bounce trajectory may
be rewritten as

g(7) =qp8 Yp+ v 2 g Y„cos(v„r)
n =]

(6.25)

The expressions (6.22) and (6.24) are readily evaluated
once a solution of (6.17) is found.

To study the eigenvalues of the fluctuation modes about
the bounce trajectory we first note that the operator I ~
introduced in (6.3) commutes with the parity operator
p[/(r)]=/( —i.) provided we choose a bounce with the
symmetry qii (r ) =qii ( r) as —we have done above.
Hence, the eigenfunctions of I.g are simultaneous eigen-
functions of the parity operator. Now, an eigenfunction
with even parity is conveniently expanded as

qii(&) =qb+ —,'qp g R„exp(iv„r), (6.15) and the corresponding eigenvalue problem Lii [g(r)]
=kg(r) =ace@'(i.) may be written as

k (r) =(M) /fif3) g ~
v„~ exp(iv„r)

n = —oo

(6.16)

and the equation of motion (3.2) satisfied by the bounce
may now be written as

where the R„are dimensionless Fourier coefficients. For
Ohmic damping the Fourier representation (2.6) of the
influence kernel is given by

A„Y =a Y„
m =1

(6.26)

where a is the dimensionless eigenvalue and where the
matrix coefficients A„are readily determined from (6.3)
using the Fourier representations (6.15) and (6.16) of the
bounce and the influence kernel as well as the form (6.12)
of the potential. This yields

+ oo
b2VnRn = g Rn+mR —m ) (6.17)

A p p = —(1+Rp),
Ao, .= A.,o= —v'2R. , (6.27)

where the dimensionless coefficients

p„=n~8 +2a
~

n
~

8—1 (6.18)

S=2~kg T/Asap . (6.19)

are given as functions of the damping parameter a and
the dimensionless temperature

bAnm= Am, n =,pn6n, m(Rn —m +Rn+m )

g'(i ) =qp8&2 g Z„sin(v„r)
n =1

(6.28)

where n, m =1,2, . . . . Likewise, an eigenfunction with
odd parity may be expanded as
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and the eigenvalue problem now takes the form

B„Z =bZ„,
m =1

(6.29)

where b is again a dimensionless eigenvalue and where the
matrix coefficients read

pend on o,' and 0 only.
At the end of this section we shortly summarize the re-

sults of the preceding sections specialized to a system with
a cubic potential and Ohmic dissipation. The result (6.34)
is valid for temperatures below the crossover region (5.24).
In dimensionless units (6.19) the crossover temperature is
given by

b
+n, m ~m, n Pn ~nm , (+n —m +n +m ) (6.30)

So= 2~km To/~o = (a + 1)' —a . (6.35)

7= 27rcv& /(cvp+v ) (6.31)

Using (6.8) this factor can be expressed in terms of the
normalization factor (6.24) and the eigenvalues a„and b„
of the matrices (6.27) and (6.30) as

for n, m =1,2, . . . . The equations (6.26) and (6.29) are
standard eigenvalue problems for real symmetric matrices.
Hence, the matrices A„and B„have real eigenvalues
a„, n =0, 1,2, . . . and b„, n =1,2, . . . , respectively. The
eigenvalue ap is negative and b~ is vanishing. The eigen-
functions associated with ap and 6 ~ are the unstable mode
and the zero mode.

To proceed it is convenient to introduce a dimension-
less prefactor g which is related to the preexponential fac-
tor rv~ of the rate (6.7) by

The crossover region is now characterized by the condi-
tion

l
Sp —0

l
&(ru)

where

r = 12rrSo '( 1+48o) '( 1+a )( 1+28o) .

(6.36)

(6.37)

COp
I = Sof exp( —2nu/8),

2~ (6.38)

This condition can immediately be derived from (5.24) by
virtue of (5.9) specified to the present case. In terms of
the dimensionless quantities introduced in this section the
decay rate (4.9) above the crossover region may be written
as

&=2~(g/l«
l

~~)'"uo~ g v'(~. b. )
'"

n =2
(6.32) where f~ is the quantum correction factor given by [cf.

(4.14)]

Here, the

p„=n 0+2aln l8+1 (6.33)

I (1 —pg /8)r(1 —pb /8)
r(1 —~+ /0) r(1 —po- /0)

(6.39)

are the dimensionless eigenvalues of the fluctuation modes
about the metastable minimum for the case of Ohmic dis-
sipation [cf. (4.3)]. By virtue of (6.21) and (6.31) the
quantum rate formula (6.7) may now be cast into the
form

with

p+ +( 2+ 1)1/2

po = —a+(a —1)+ 2 1/2
(6.40)

COp
I = Vu g exp( —us)

2~
(6.34)

in which the dependence upon the barrier height is shown
explicitly since the dimensionless functions s and Y de-

Now, since p& ——Op, one of the I functions diverges as
the crossover temperature Op is approached. Within the
crossover region (6.36) we have to use the expression
(5.23) for the decay rate. For Ohmic damping and a cu-
bic potential, (5.23) gives

I = (nru) Sp erfc[(rv) (8—8p)]exp[ —2nu/8+rv(8 —Sp) ] .2
I (1 pb /So)— 1/2 2

2~ r(1 —~+ /0. )r(1 —p.- /8, )
(6.41)

This result smoothly interpolates between the high-
temperature formula (6.38) and the low-temperature for-
mula (6.34). Now all quantities which determine the tem-
perature and damping dependence of the decay rate are
explicitly known except for the dimensionless action s and
the dimensionless prefactor P in the quantum regime.
The remainder of this paper will be concerned with the
determination of these quantities as functions of a and 0.

Finally, we remark that both in the classical and the
quantum regime the exponent of the rate is proportional
to the barrier height U. However, while the classical ex-
ponent is independent of damping the quantum exponent
strongly changes as a function of a. The high-
temperature prefactor is independent of the barrier height (rv) ' '«So . (6.42)

except in the region of extremely small damping where
the present theory does not apply. On the other hand, the
quantum preexponential factor is proportional to U

'

The smooth matching between these prefactors occurs in
the crossover region where the high-temperature prefactor
follows roughly a (0—Op) '

type singularity until it
reaches values of order v' and is regularized by the erfc
function in (6.41). Accordingly, the crossover region is of
order U

' and hence very narrow in the semiclassical
limit. In fact, the condition of weak metastability can be
related to the condition that the crossover be narrow on
the scale set by the crossover temperature, i.e.,



36 QUANTUM DECAY RATES FOR DISSIPATIVE SYSTEMS AT. . . 1943

For instance, requiring (ru) ' &0.10p, we find
Vb )Mi)p for weakly damped systems (a « 1 ) and
Vb ) Siripip/a for strongly damped systems (a )) 1 ). As a
consequence, the barrier can be much lower when the sys-
tem is heavily damped.

where

K2 =—2a8o ——", + (1 —a8o)

+ (3 —4a8p) '+ 3(2—3a8p)

+ —'„'(5 —8a8p) '+ —,'(5 —8a8o) (6.51)

C. Expansion about the crossover temperature

In this section we shall calculate the exponent s of the
quantum rate formula for temperatures near To up to
terms of third order in the expansion parameter

g =38oKpe[1 K3—e+O(e )]

where

(6.52)

Furthermore, the expansion of the dimensionless zero-
mode normalization factor (6.24) is found as

e = ( Tp —T) /Tp = (Op —0) /O~p (6.43)

and the prefactor g of the rate up to terms of first order in
e. We first note that in the equation of motion (6.17)
satisfied by the bounce trajectory the temperature and
damping dependence arises through the coefficients p„
which in terms of e may be written as

p„=[n —2n (n —1)aOp —1]
—E2n [n —(2n —I) a8]p+e n (1 —2a8p) . (6.44)

R
&
= (eKo) [1+—,~Ki +0 (~ ) 1 (6.45)

where

Kp =4( 1 —aOp)( 3 —4aOp) /( 5 —8aOp ) (6.46)

This form immediately suggests a perturbative solution of
(6.17) as a power series in e'~ . It can be shown self-
consistently that the coefficients R„are of order
e' '+ " '

~ when we seek for a solution with the sym-
metry R„=R,. Hence, the perturbative solution of
(6.17) is easily obtained by means of an iterative pro-
cedure. The largest Fourier coefficient is

K3 — aOp+ 4 + g
(5 —8aOp) —'8 (5 —8aOp)

——,'(2 —3a8p) ' ——,
' (1 —a8p) (6.53)

The relations (6.50) and (6.52) extend the results (5.14)
and (5.28) to higher orders in e for the case of a cubic po-
tential with Ohmic damping.

Next we calculate the eigenvalues of fluctuations about
the bounce for small e. The matrices A„and B„ in-
troduced in (6.27) and (6.30) are already diagonal for @=0
so that the determination of their eigenvalues for small e
is a standard problem of perturbation theory. It is con-
venient to treat the terms proportional to the Fourier
coefficients R„as the perturbative part of the matrices

and B„.Then, the perturbation is at least of order
e' and second-order perturbation theory is sufficient to
calculate the eigenvalues up to terms of first order in e.
However, the eigenvalue a~ which is itself of order e,
must be calculated up to terms of order e which means
fourth-order perturbation theory. This way we find for
n) 1

and

Ki =(5—8aOp) '+(3 —4a8p) '+ —'(1 —aOp)

Kp[p 2+ 3( 1 ——1/p 3)/2p 2]/(2p 2
—1) (6.47)

a„=p„'—(Ro+R2)+ g' (R„+R„+ )'/(p'„—p' )
m =1

+2R„ /(p"„—pt)

in which

P „=n —2n (n —1)aOp —1 (6.48)
=p„+eKp { 1 —(2n 8o+ I) '+ [2(n —1)8o+ 1] ' I,

is the coefficient p„" at the crossover temperature. The
Fourier coefficients of the next two orders in e'' are

Rp ———R ]
—(R

&
/2)[1+1/2(p 2) ],

R~ ——R
~ /2pp+ [R ] /2(p 2) ][(1/p p)+( I/p 3)], (6 49)

R3=R]/2p ~ 3 .

(6.54)

b„=a„+O(e ) . (6.55)

where the second line follows by virtue of (6.44) and the
expansions (6.45) and (6.49) of the Fourier coefficients R„.
Likewise, one obtains for n ) 1

277

Q~
Kp(1 —a8o)e [I+K2E+O(e )]

Q~o
(6.50)

All higher Fourier coefficients are at least of order e and
can be disregarded in the considered approximation.
Now, from (6.22) we readily obtain for the dimensionless
action

and

ap= —1 —Rp+2 g R /(pp p")—
m =1

(6.56)

The lowest eigenvalue b~ of the matrix B„vanishes.
The remaining eigenvalues are given by
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R11R lsRstRtl—2+'
s t P lsP 1 t

R 1,R
2 2

—X'
s r 9 lsP lr

2R lt R lt rs slai=pt+Rii+ g' + g'
t Plt s t 9

]tails 2R 1 ]R 1, R 1 „R„,R„R,1—X', +X'
t Alt rs t

+g'
r Plt

(6.57)

a~ =4(1—a8p)@[1—K3e+O(e )], (6.58)

To write this result of fourth-order perturbation theory we
introduced the abbreviations p„~ =p„"—p~ and
R„=R„+ +R„.After some algebra (6.57) yields

Since both the zero-mode factor g and the eigenvalue al
are proportional to e, one factor of e cancels in the expres-
sion (6.32). Therefore g and a~ have to be inserted with
accuracy e to obtain 7 in order e. The resulting expres-
sion for the prefactor reads as

where

K3 = —3aOp+ —", ——", (5 —8aOp) '+ —", (5 —SaOp)

+ —,(2 —3aOp) ' ——,'(1 —a8p) ' —(3 —4aOp)

(6.59)

X=So[1+Be+0(e )],
where

1 /2
3 —4aOp

7p ——4~ 30p
5 —8aOp

(6.60)

The above results may now be inserted into the expression
(6.32) for the dimensionless quantum prefactor P. The
products arising in the intermediate results can be evalu-
ated using the product representation of the I function.

I

and

)& I (2 —6„)/1 (2 —& +)I (2—6' ) (6.61)

B =5aOp ——", ——", (5 —SaOp) '+ —", (5 —8a8p) + —,'(2 —3a8p)

+—', (3 —4a8o)+0'(1)+ —1 4 +1 +R o+%(2 —h o+)+R o 4'(2 —6 o )
Q~ Q~

(6.62)

with

hb = [—a —(a + 1)' ]/8p,
& p =[—a+(a —1)' ]/8p .

The dependence of the quantities gp and B on the damp-
ing strength n is shown in Fig. 6. Note that gp is the pre-
factor of the semiclassical approximation to the quantum
decay rate extrapolated to the crossover temperature.
This must be distinguished from the true prefactor at Tp
since the semiclassical approximation is not valid in the
vicinity of Tp. In fact, as is readily seen from (5.23) the
true prefactor at the crossover temperature is Xp/2. This
difference is also seen in Fig. 5, where both the semiclassi-
cal approximation and the rate in the crossover region are

shown. The results of this section will be discussed fur-
ther in connection with the numerical results presented in
Sec. VII.

D. Expansion about zero temperature

For temperatures well below the crossover temperature
analytical results on the parameter dependence of the ex-
ponent s and the prefactor 7 are only known in limiting
cases. The behavior of the quantum decay rate at zero
temperature was studied in detail by Caldeira and Leg-
gett. " Since they have given an extended presentation of
their calculations we quote here only their results written
in terms of the dimensionless quantities used above. For
small damping they find for the zero-temperature action

13 0.50
s= 1+ a+O(a )

36 45'(3)
5 773

(6.63)

m10

-0.50-

where g(3) = 1.202. . . is a Riemann number. Here and in
the sequel zero-temperature quantities are marked by an
overbar. The prefactor is given by

5
a

10 5

a
10

FICs. 6. The prefactor (6.61) and the 1ogarithmic derivative

(6.62) of the prefactor at the crossover temperature are shown as
functions of a.

X=12&6~ .

On the other hand, for very large damping one has

1s=6~a 1+ +O(a )
4e

and

(6.64)

(6.65)
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X= 16m-V'6a [1+0(a lna)], (6.66)

s =s ——,'crap(0) [0 crO~—+O(O )], (6.68)

where s is the zero-temperature action and

cT = 4a — —5a p(0) —a1 2
p"(0) c)p(0)

10 p(0) Ba
(6.69)

The fourth-order term was obtained by extending our pre-
vious result. ' The leading-order change of the action is
proportional to 0 and the associated numerical
coefficient depends on p(0) which is a dimensionless mea-
sure of the length of the zero-temperature bounce. Now,
the Fourier transform p(co) is not known for arbitrary
strength of the damping. However, for vanishing damp-
ing one obtains from the equation of motion (2.5)

p(co) =2'/sinh(vrco) (6.70)

and for strong damping, where the kinetic term may be
disregarded, one has

p(co) =—', a exp( —2a
~

co
~

) . (6.71)

where the latter result is due to Larkin and Ovchinni-
kov' who also showed that it remains valid up to Oo for
a »1. Recently, there have been attempts to determine
the prefactor more precisely. For weak damping one
has X=12&6m.[1+ca+ ], where Freidkin et al. '

find c=2.86 while Ovchinnikov and Barone obtain
c=4.076. Our numerical results presented below indi-
cate that the correct value is near c=2.8. On the other
hand, for large damping the expansion of the prefactor
reads I= 16z+6a ~ [1+2a lna+da + ],
where d =ln2+ —,

' —%(1)/2=1. 107. . .

At finite temperatures the tunneling rate is enhanced by
thermal fluctuations. As was shown in a previous work,
the exponent of the rate follows a power law for low tem-
peratures. The expansion of the bounce action about zero
temperature was presented elsewhere' in detail for arbi-
trary forms of the metastable potential and arbitrary fre-
quency dependence of the damping coefficient. Hence it is
sufficient to give here only the result specified to the
present problem. The expansion coefficients depend on
the Fourier transform

1 +~
q (co) = dr qs(r)exp( icur)—=qop(co/coo)/coo

277 oo

(6.67)
of the zero-temperature bounce trajectory near co =0,
where p(co) is a dimensionless Fourier transform. For
frequency-independent damping and a cubic potential one
finds in terms of the dimensionless parameters introduced
above

while combining (6.65) and (6.68), we find for low temper-
atures and strong damping

s =6~a[1—
—,'a 0 +O(a ')] . (6.73)

It has been shown by Larkin and Ovchinnikov' that this
high damping result remains valid up to the crossover
temperature Oo which for a»1 is given by 00——1/2a.
There is one further analytical result for an intermediate
damping value chosen in such a way that a p(co) of the
form p(co) =(a +b

~

co
~

)exp( —c
~

co
~

) becomes an exact
solution of the equation of motion. This way Risebor-
ough et al. ' find

s =25.2 for u = 1.175 . (6.74)

For most regions of the (a, O) plane, analytical results are
not available and the quantum decay rate has to be calcu-
lated by numerical methods which will be the subject of
Sec. VII.

VII. NUMERICAL CALCULATION
OF QUANTUM DECAY RATES

A. The bounce action

The calculation of the exponent of the rate starts out
from the equation of motion (6.17) for the bounce which
in view of R„=R „may also be written as

(n 0 +2anO —1)R„=2 g R„+ R + g R„R

In this section we present the results of a numerical cal-
culation of the exponent s and the prefactor g of the
quantum rate formula (6.34) covering a wide range of
temperatures and damping coefficients namely, dimen-
sionless temperatures between 0=0.10o and 0=0.950o
and damping parameters between a =0 and a = 10. This
basically exhausts the parameter space since for tempera-
tures below 0.10O the changes of s and 7 are below 1%,
and for 0 near Oo the rate matches onto the analytical re-
sult given in Sec. VI C. Furthermore for a = 10 the nu-
merical results agree already with the asymptotic analyti-
cal results for large a within an accuracy of 1% for s and
4% for 7. The present work extends a calculation by
Chang and Chakravarty' aiming at a determination of
the zero-temperature rate. However, the discretization
used by these authors introduces an effective temperature
which is of the order of the lowest temperature explored
here. In fact, our results for 0/Oo ——0.1 are in good
agreement with those of Chang and Chakravarty' except
for some differences in the prefactors for high damping
where our calculations are more precise. Parts of our
finite-temperature results were already given elsewhere.

Hence, combining (6.63) and (6.68) we obtain for small
temperatures and weak damping

m =1

(7.1)

36 45$(3) 5

5 ~3 2m

aO +O(a, aO )
12

(6.72)

A numerical solution of this equation can easily be ob-
tained by successive iterations starting for instance with a
zeroth-order approximation of the form R„~exp( —n).
However, as already noted by Chang and Chakravarty, '

a straightforward iteration of (7.1) drives the solution ei-
ther to zero or infinity because of an unstable direction of
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the iteration. This difficulty is avoided by solving the
stable iteration

p(0)= —([4+(3—4ir/3) a ]'i +3aI (7.4)

(n 8 +2an8 —1)R„'

=(1/Ro) 2 g R„'+ R' + g R„' R' (7.2)
m =1 m =1

the solution of which immediately yields a solution

R~ =R~ /R 0 (7.3)

of the problem (7.1). The coefficients R„rapidly decay
for larger n. The largest vectors are needed for a=10
and 8/80 ——0. 1 where the sum in (7.2) can be truncated
at N=500. No change of the results was observed for
larger N. In the entire range of parameters the iteration
converges within less than 100 steps except for 0 between
0.9900 and Oo. Since near Oo the rate is known analyti-
cally, this latter region was not explored numerically.

By virtue of (6.22) and (6.24) the dimensionless bounce
action s and the zero-mode factor g are simple sums over
the Fourier coefficients R„. The numerical values for
these quantities obtained from the iterative solution of
(7.1) have a relative error of less than O. l%%uo. Sample nu-
merical results for s are summarized in Table I. The
value for 0=80 is supplemented using (6.50). The re-
sults for g are not given explicitly here but are needed for
the calculation of the prefactor 7 discussed in the follow-
ing section. The temperature dependence of the action is
also shown in Fig. 7 for three different values of a. The
numerical values are compared with the analytical result
(6.50) for high temperatures and with the 0 approxima-
tion for the low-temperature action. For this purpose we
have retained the first two terms of (6.68) and used the
approximation

for the bounce length which is a very good interpolation
between the low damping value p(0) =(2+3a)/ir and the
high damping value p(0)=4a/3. Clearly, the action fol-
lows the 0 law very accurately up to quite high tempera-
tures. For instance, for 0=0.500 the deviations of the
first two terms of (6.68) from the correct numerical value
are less than 0.5 percent for all damping values. For high
damping the 0 law holds for all temperatures up to Oo.
Furthermore, the numerical values for s agree with the ex-
pansion (6.50) about the crossover temperature down to
0=0.800 with an accuracy of 1% and approach the
analytical result for 0~00.

+98 g' (p„—p ) '(R„+R„+ )

m=0

b„=p „—30(R p
—R p„)

(7.5)

+98 g' (p"„—p ) '(R„—R„+
m =1

where g' means, as usual, the sum over all values except

B. Eigenvalues and the preexponential factor

To determine the preexponential factor of the quantum
decay rate we have to determine the eigenvalues a, and
b„of the matrices A„and 8„ introduced in (6.27) and
(6.30). Since the Fourier coefficients R„decay for large n,
the eigen values a, and b, approach p", in this limit.
Hence, the large eigenvalues can be calculated perturba-
tively. Second-order perturbation theory gives

a„=p„—30(R0+R p„)

TABLE I. Data of the exponent s of the decay rate as function of 0/Oo and 0.'.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.80
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

0.1

7.20
7.83
8.49
9.15
9.84

10.5
1 1.2
12.7
14.2
15.8
18.9
22.2
39.7
57.8
76.3
94.9

113.0
132.0
151.0
170.0
188.0

0.2

7.20
7.83
8.47
9.13
9.80

10.5
1 1.2
12.6
14.1

15.6
18.8
22.0
39.3
57.3
75.5
93.9

112.0
131.0
149.0
168.0
186.0

0.3

7.20
7.81
8.44
9.08
9.73

10.4
1 1.1

12.5
13.9
15.4
18.5
21.7
38.6
56.3
74.2
92,3

110.0
129.0
147.0
165.0
183.0

0.4

7.20
7.79
8.39
9.01
9.64

10.3
10.9
12.3
13.7
15.1

18.1

21.2
37.7
55.0
72 ~ 5
90.1

108.0
126.0
143.0
161.0
179.0

0.5

7.20
7.75
8.32
8.91
9.51

10.1

10.7
12.0
13.4
14.7
17.6
20.6
36.5
53.2
70.2
87.2

104.0
122,0
139.0
156.0
173.0

7.19
7.70
8.23
8.78
9.34
9.91

10.5
11.7
13.0
14.3
17.0
19.8
35.1

51.1

67.4
83.8

100.0
117.0
133.0
150.0
166.0

0.7

7.14
7.61
8.09
8.59
9.10
9.63

10.2
1 1.3
12.5
13.7
16.2
18.9
33.4
48.6
64.0
79.6
95.3

111.0
127.0
142.0
158.0

0.8

7.03
7.44
7.87
8.31
8.78
9.25
9.74

10.8
11.8
13.0
153
17.8
31.4
45.7
60.2
74.9
89.6

104.0
119.0
134.0
149.0

0.9

6.77
7.13
7.51
7.90
8.31
8.74
9.18

10.1

11.1
12.1

14.3
16.6
29. 1

42.4
55.9
69.5
83 ~ 1

96.8
111.0
124.0
138.0

0.95

6.56
6.90
7.26
7.63
8.02
8.42
8.84
9.72

10.7
11.6
13.7
15.9
27.9
40.6
53.5
66.5
79.6
92.7

106.0
119.0
132.0

1.0

6.28
6.61
6.94
7.30
7.66
8,05
8.44
9.28

10.2
1 1.1
13.1
15.2
26.6
38.7
51.0
63.5
75.9
88.4

101.0
113.0
126.0



36 QUANTUM DECAY RATES FOR DISSIPATIVE SYSTEMS AT. . . 1947

7.50 200

6.50-

+

20- 160-

1206 15
0 0.50 1 0 0.50 1 0 0.50

o/e, o/o, o/o,
FIG. 7. The action as a function of temperature is shown for three different values of a. The solid and dashed lines show low- and

high-temperature approximations (see text).

a„=b„=p„"—3ORO . (7.6)

Since with this approximation the infinite product can be
expressed in terms of gamma functions, we can determine
a cutoff nb such that the infinite product from n =nb to
n = oo gives a factor of 1 within a relative error of 10
This yields a cutoff nb between 10 and 10 depending on
a and 0. For the remaining product between n =n, +1
and n =nb the eigenvalues are determined from (7.5) in

n =m. For small n the eigenvalues a„and b, can be cal-
culated numerically by diagonalizing truncated N &N ma-
trices A„and B„.We have chosen N so that at least
ten consecutive eigenvalues coincide with the perturbative
result (7.5) with an error less than 10 . In the parame-
ter range explored the largest N needed was N=250. Be-
cause of the effect of finite matrix size, the agreement be-
tween the numerical diagonalization and (7.5) is best for
n =n„which is a few tens below N. The two methods to
calculate the eigenvalues have been matched at n =n, .
The temperature dependence of the lowest eigenvalues is
shown in Fig. 8.

The numerical results can now be inserted into the for-
mula (6.32) for the prefactor X. The infinite product is
split into three factors. To evaluate the product from
n =2 to n =n, we use the eigenvalues from the numerical
diagonalization. These are about 200 factors each of
which has a relative error well below 10 so that this
part of the product has an error smaller than 10 . For
very large n the eigenvalues are given by

double precision (15 digits) assuring that despite the large
number of factors the relative error of the product is again
below 10 . Since the zero-mode factor g is calculated
with an error of less than 10 by the method explained
in the preceding section, we obtain numerical results for
the prefactor (6.32) with an estimated error of about
0.1%. Sample numerical results are summarized in Table
II. Again the extrapolated value to 0=00 is supplement-
ed using the analytic result (6.61). Table II shows that
below 00 the temperature dependence of the prefactor is
rather weak. As a consequence, the change of the prefac-
tor in the quantum regime is hardly noticeable when the
decay rate is depicted on a logarithmic scale as it is widely
done. Figure 9 shows the quantum prefactor as a func-
tion of 0/Oo for three different values of the damping and
compares the numerical values with the analytical result
(6.60) valid near Oo. Note the different scale of the ordi-
nates, which, for instance, blows up the change of 1.5%
of the prefactor for a = 10 between 0=0 and 0=00.
This completes the numerical calculation of the rate in the
quantum regime. Within the accuracy of the numerical
calculation the results agree with the available analytical
results discussed in Sec. VI.

VIII. CONCLUSIONS

The imaginary-time functional-integral approach to re-
action rates which we have presented here has provided a

16
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10-

c
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/ v'
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0.50
e/e,

0.50
o/o,

0.50
o/e,

FICr. 8. The eigenvalues ao, . . . , a4 are shown as functions of 0 for different values of o, . The dashed lines show the analytical re-
sults for temperatures near Oo derived in Sec. VI C.
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complete description of the quantum statistical decay of a
metastable state extending from the classical regime where
the rate follows an Arrhenius law down to very low tem-
peratures where the system tunnels from its ground state.
The main features of our results are summarized in the
Arrhenius plot shown in Fig. 10. In this rate diagram the
classical result is represented by a falling straight line.
Because of quantum effects the rate does not decrease
with a constant slope as T is lowered but Aattens off to-
wards a finite value at T=O. For an undamped system
(a=O) the transition between the classical and the quan-
tum regime is rather sharp. In the presence of damping
the classical rate is reduced only slightly because the at-
tempt frequency is diminished by the factor co~/cob. On
the other hand, damping causes an exponentially strong
suppression of the zero-temperature tunneling rate.
Furthermore, the crossover temperature is lowered and
the transition between thermally activated and tunneling
processes becomes more gradual for strong damping. For
a damped system there is a large region where thermal
and quantum Auctuations interplay. The low-temperature
behavior of the rate is now governed by the power law

(6.68) which dominates the rate since the preexponential
factor depends only weakly on T. The range of validity of
this behavior is shown in Fig. 11.

The theory presented here is applicable to the
phenomenon of macroscopic quantum tunneling in
Josephson devices. ' ' These systems can be fabricated
for a range of parameters so that they allow for a sys-
tematic study of the parameter dependence of the rate.
Many of the theoretical predictions have indeed been
confirmed by recent experiments. ' This application will
be discussed in greater detail elsewhere.

The interplay between thermal and quantum Auctua-
tions is also observed in many molecular processes in
physical and chemical systems. Often a little a priori in-
formation about the potential shape and the environmen-
tal coupling is available and one hopes to extract this in-
formation from the parameter dependence of the mea-
sured rate. In this context it is important to be aware of
the approximations inherent in a given rate formula.
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FIG. 10. Arrhenius plot of the decay rate for a system with a
cubic potential ( V& =5Acop) and frequency-independent damping
y=2copa for various values of a.

FIG. 11. The logarithm of the ratio of the finite temperature
and the zero-temperature decay rate in[I (0)/I (0)] is shown as
a function of the squared temperature ratio T/Tp=O/Op for a
system with a cubic potential of barrier height Vb ——5Acop and
various values of damping.
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While we have given explicit results mainly for systems
with a cubic potential and Ohmic dissipation the methods
presented here can mostly be used also for systems with
other forms of the potential and more complicated damp-
ing kernels. However, there are certain limitations of the
approach which we shall shortly outline again.

Firstly, the process must occur under conditions of
quasiequilibrium. This will be the case whenever the time
scale of the decay is much larger than the relevant relaxa-
tion times determining the approach to the equilibrium
distribution within the metastable well. This condition
excludes highly underdamped systems where the relaxa-
tion processes within the well are not fast enough to bal-
ance the leakage across the barrier. ' For temperatures
above To the relevant condition is y(catt )lcoq k~T/Vb.
In the quantum regime the theory extends to even weaker
damping because the tunneling rate remains finite for zero
damping while the thermal hopping rate vanishes.

Secondly, the barrier height Vb must be large compared
with other relevant energy scales. This is necessary be-
cause the functional integral for the partition function was
evaluated in the semiclassical approximation. In the
quantum regime the relevant condition is K »1 where ~ is
defined in (5.9), which amounts effectively to Vb ~ Mcus.
In the classical regime the analogous condition reads
Vb ~ 10+kg T.

Thirdly, we have assumed that the dynamic decay pro-
cess can be described by one single rate. This condition
can break down for low temperatures in cases where the
potential has another well of comparable depth. Then the
system may tunnel coherently between these wells. How-
ever, coherent oscillations are easily destroyed by environ-
mental influences and finite temperatures so that this
complication arises only for systems tunneling between
two almost degenerate states and parameters within a
small corner of the a-T plane. ' For the most part, the
dynamics of a damped double-well system can be de-

scribed by a forward and a backward rate which may
both be calculated by the method presented here. Final-
ly, the theory was based on the assumptions of linear dis-
sipation and smooth potential shapes. Naturally, particu-
lar phenomena may arise from nonlinear couplings to the
environment.

Langer's ImF approach is basically a thermodynamic
method avoiding a fully dynamical investigation of the ki-
netic process. Clearly, there are a number of questions,
such as the response to microwaves and nonequilibrium
eff'ects that cannot be investigated within such a theory.
A comprehensive description of the kinetic process can be
based on the Feynman-Vernon theory. This real time
functional integral technique for damped systems has al-
ready been applied to particular problems in the theory of
dissipative quantum tunneling ' and is expected to allow
for further extensions of the theory in the future.
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