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in anisotropic type-II superconductors
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The bulk pinning force density F~ and the critical current j, of a dirty type-II superconductor,
with spatially varying electron mean free path 1 along a given direction, are calculated using the
Ginzburg-Landau-Abrikosov theory. In high fields the critical force density F, is proportional to
(1 —B/B, 2) (B/B,2), where 0&m & 1, but depends also on the size and form of inhomogeneity

(grain boundary, dislocation wall, etc. ) which causes the change of l. This may explain deviations
from straight lines in the "Kramer plots" of j,' B' versus B/B, 2 and the approximate scaling of F,
when the temperature is changed.

I. INTRODUCTION

Although "considerable progress has recently been
made concerning the long-standing problem of the sum-
mation of forces exerted by individual pinning centers
(pins) on the flux line lattice of a type-II superconductor
in the mixed state, "' theory is still based on phenorneno-
logical theories dealing with elastic and plastic behavior of
the vortex lattice. These theories may give different ex-
planations for experimental findings as, for example, in
the case of saturation in high fields, when the bulk pin-
ning force density Fz is independent of the pinning pa-
rameters. Its dependence on the reduced magnetic flux
density B/B, 2, empirically known to obey the formula '

Fp cc (1 B/B,2) (B—/B, 2)'

is explained as due to the plastic shearing deformation of
the vortex lattice in Kramer's model, while in the model
of Matsushita et al. the explanation is based on the oc-
currence of catastrophic flux flow caused by local plastic
deformations. In the nonsaturation region of lower fields,
the knowledge of the elementary vortex-pin interaction is
necessary. However, it is not easy to make a simple mod-
el of pinning, even if the nature of the pins is known
(dislocation clusters, particles of another phase, . . . ) since
various physical mechanisms may contribute. Accord-
ingly, for a microscopic approach, which may provide a
better understanding of pinning phenomena, one needs
simple model systems, with a well-determined spatial
repartition of pins and a well-understood origin of pin-
ning. In the last few years, several model systems with
regular distributions of inhomogeneity have been prepared
and studied experimentally: thin films with periodically
varying thickness, superconducting alloys with periodical-
ly modulated impurity concentration, lamellar supercon-
ductors including compounds, eutectics, and quite recent-
ly, superconducting superlattices. These "regularly inho-
mogeneous" superconductors exhibit novel physical phe-
nomena due to the spatial variation of various quantities
of the conduction electrons, such as the density of states,
the diffusion coefficient, the attractive interaction responsi-
ble for superconductivity, and so on.

One of the first microscopic models of pinning by regu-
lar inhomogeneity distribution was formulated theoretical-
ly by Ami and Maki. The authors considered a dirty su-
perconductor in the vicinity of H, q, with periodic varia-
tion of the electron mean free path l and, consequently, of
the diffusion coefficient D =vF1/3 along a given direction.
In the present work, we generalize this approach to treat
various kinds of spatial variation D(r). In Sec. II, we
present our model of an inhomogeneous superconductor
in the framework of the Ginzburg-Landau (GL) theory of
dirty superconductors. In Sec. III, we calculate the free
energy of the vortex lattice as a function of the inhomo-
geneity characteristics. Section IV deals with some typi-
cal examples of inhomogeneity distribution, for which F~
and the critical current density (the maximum external
current density which may flow without dissipation) are
calculated as function of B and temperature T. The re-
sulting formula

Fp cc (1 B/B,2)'(B/—B,2) D(B/B, p),

where m is 0 or —,', is similar to (1), except for the factor
D, which reflects the shape of inhomogeneity. In Sec. V,
possible applications of the model are discussed.

II. THE MODEL

When the presence of an inhomogeneity does not lead
to a variation of the superconducting transition ternpera-
ture T„ the variation of the free energy is connected with
gradients of the order parameter 6 and with the change of
the local magnetic field h(r). The spatial variation of
l =1(r) and, accordingly, of D (r) = —,

'
VF1 (r) provides such

an example. Physically, it may be realized with pinning
on dislocations, grain boundaries, on the inhomogeneous
impurity distribution within superconducting layers and
so on.

Assuming that T, and the electronic density of states at
the Fermi level N (0) are not changed, we write the
Ginzburg-Landau (GL) free energy, which applies ' in
the vicinity of T, to a dirty superconductor with a given
spatial variation D (r) =D, [ I +D ~ (r) ],
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where A is the vector potential and g(3) is Riemann's
zeta function. We notice that since in the dirty limit '

the coherence length varies as D', and the magnetic
penetration depth as D ' both these characteristic
lengths vary locally with respect to their values gp and A, p

in the absence of the perturbation. The free energy can be
expressed in a more convenient dimensionless form if one
introduces reduced units in the same way ' as in the
homogeneous case with D =Dp.

Vs„=f dv —,
' — b,

l
+ —,

'

+h'+D (r) —A.
lKp

(3')

and the diffusion coefficient by Dp. The spatial distribu-
tion of b, (r) and h(r) can be determined from the corre-
sponding GL equations

where Kp is the GL parameter of the homogeneous super-
conductor with l =lp and A,p is the unit of length. The
magnetic field, the vector potential, and the current densi-
ty are measured in units of &2H„V'2H, A, p, and
&2H, /4rrl. p, respectively. The order parameter is scaled
by

1/2
8(~T, ) (1—T/T, )

7g(3)

y =yp, decreasing to zero when Iy —yp I
~co. Even in

the case of uniaxial modulation of D~, the complete solu-
tion of Eqs. (6) and (7) appears to be a considerable task.
However, close to the upper critical field H, 2, many prop-
erties of the mixed state may be obtained without con-
structing detailed solution of the GL equations, as was
shown by Abrikosov ' in the homogeneous case. We ap-
ply the same approach to the regularly inhomogeneous su-
perconductors.

III SOLUTION NEAR H, p

In the presence of inhomogeneity, the structure of indi-
vidual vortices and the global vortex configuration are
changed. " The equilibrium structure, position, and orien-
tation of the vortex lattice with respect to inhomogeneity
are to be determined by minimizing the free energy densi-
ty F =2/f d V. To evaluate F, we proceed by a generali-
zation of the Abrikosov solution, based on the perturba-
tive method. Close to H, 2, where 6=0, the order pararn-
eter increases but is still small and can be expanded in a
series of orthonormalized functions, b, =Xc„g„. A suit-
able choice of P„ is the set of Eilenberger's functions,
where Pp is the solution of the linearized first GL equation
for the homogeneous superconductor with K=Kp. The ex-
plicit form of this function, which represents a generaliza-
tion of the Abrikosov solution at H =H, 2, is given in Sec.
IV.

The microscopic field can be expressed as

IKp
—A. D(r) —A. —1+

I

6
I

' b, =0,
1Kp

(4)

j= ,' D ( r ) b, * —A—b,+c.c.
1Kp

together with relation h=rotA.
From these expressions one can deduce, as in the

homogeneous case, two coupled equations dealing with

I
b,

I
and h. Putting

1

, (V'D V)f+, (Vh&) f =0, —1 2

Kp
(9)

h =Kp+h2+h4+. . .

where the corrections h 2, h 4, . . . are of the order off,f, . . . , respectively, since Eqs. (6) and (7) contain
only even powers of f =

I

b,
I

. Inserting the expression
for h in Eqs. (6) and (7) the conditions to all orders in f
are obtained as

5=fe'~, A'=M —VX/~ p

and assuming that h=he, is parallel to the applied field
H, directed along the z axis, one obtains

V(Df ) Vhp
apDf Vhp+ — =0,

D 2

2Vh 2. V'h4 +f'=0,

(10)

(VD V)f+ =f —f', —1 (Vh)
2

Kp
3

(6) V(Df ) Vh4
Df hp —V h4+ =0 .

2
(12)

2

where h =h (x,y). In the inhomogeneous case, h(r) will
be parallel to H if the inhomogeneity distribution varies in
the x-y plane only, i.e., when D~(r)=D~(x, y). In the fol-
lowing, we restrict our attention to the uniaxial variation
D& =D~(y —yp), where D& may be a periodic function, as
it is the case in superconducting superlattices and in
periodically modulated alloys, or may be centered at some

In analogy with the homogeneous case, where the contri-
bution to the microscopic field due to the supercurrents is
proportional to f, we take

hz = — Df'+5+5p,
2Kp

where 5=5(r) and 5p is a constant. This yields two equa-
tions for 5 and f, instead of (9) and (10), which in the gen-
eral case can be solved only numerically. The situation is
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F = , , (-f-'&-+ &h'), (14)

where the angular brackets denote the space average.
Taking h =a.o+hq, where h2 is given by Eq. (13), and
B = (h ), we get

F = —,'+B zP g ( 2irp —1 —a'+ 2y')
4Kp

where

(a.o B—+5o—)

much simpler in the case of small perturbation Di, which
we consider in the following. To first order in D~, the or-
der parameter can be approximated by 6=C (Po+ eP i ),
where pi = —(2/iroB)' Bpp/By, B is the average flux den-
sity, and C is a normalization constant. (For the deter-
mination of e, see the Appendix). As for the field varia-
tion, we do not calculate it explicitly at the moment, but
proceed with the evaluation of the free energy density F.
With the help of Eqs. (3') and (4), F can be written in the
same compact form as in the homogeneous case

and

P„)=2&5f'& .
Kp

2Kp

5p(1+a/2)

Pg (1+a' —2iro —y')
(16)

The condition B = (h ), written explicitly, provides a
second relation between

~

C
~

and 5p,

~

C
~

5o+ko —B
2ko 1+(a —y )/2

As in the homogeneous case, the factor p~= (f )/((f ) ) depends on the lattice geometry, whereas
the coefFicients a, a', y', and y, of the order of Di,
characterize the inhuence of inhomogeneity. The
coefficient y, defined via (

~

C
~

/2irp)y =2(5), enters into
the expression for the normalization constant C. The
latter can be suitably obtained in terms of 5p from the
higher-order equations (11) and (12)

P~
~

C ~'a'=2&Dif'&, From Eqs. (15)—(17) one obtains

F=-,'+B'— (ap —B) (1+a/2)
a —y2'+2 p~ y'—

1+ (1+a/2) —pq(1+a' —2K@—y')
2

1+ (1+a/2) —p~ (1+a'—2Ko —p )
2

(ap —B) a(2irp —1)+a'
J +B2 1+P~

1+Pg (2i~o —1) 1+Pg (2iro —1)
(18)

where in the second line on the right-hand side the terms
of the order of D i and higher order have been neglected.

Within the present approximation, the field correction 6
does not appear in the free-energy variation, expressed
via only two coefficients, a=2(Di

~ Pp
~

) and a'
=2(Di

~ po ~
)/p~. Since the first of them is multiplied

by the factor (2K@—1), large when Kp » 1, a further
simplification is possible in this case:

()F (i~p —B)(1+a)0 —— —B+
2 BB 1+p„(2ir~—1)

(19)

and, with the same accuracy, the magnetization curve

(i~p —B) (1+a)F=—,'+B
1+Pg (21'= 1)

(18')

Accordingly, the minimum energy configuration is ob-
tained when P q is minimum, but at the same time a ( & 0)
should attain its maximum value. Leaving the calculation
of a (for chosen typical examples) for Sec. IV we conclude
this section evaluating the inhomogeneity-induced change
in the magnetization curve. The equilibrium relation be-
tween B and the applied field H, obtained from Eq. (20'),
is given by

FIG. 1. Relative position of the vortex lattice (reference frame
XY) and inhomogeneity, centered at yo in the xy reference frame.
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shows the change in the slope near H, z,

(vo —H)(1+a)
H —B=

Pg (21ro —1)
(20)

IV. PINNING AND CRITICAL CURRENT

The pinning energy density in a uniaxially modulated
superconductor is a function of yo, the center of inhomo-

geneity distribution in the reference frame of the vortex
lattice (Fig. 1). By definition, the pinning energy density
is the energy difference AF =F(y p) —Fo, where F(yo) is
the energy density of the actual vortex configuration, op-
timally rotated with respect to y axis, and Fo corresponds
to the homogeneous superconductor with K=lcp (i.e., D
=Do). To obtain F(yo) from Eq. (18'), where a=a(yo),
we observe that the coefficients a and Pq depend on the
vortex configuration via tt o,

+ oo 2

Po(r) =(2i)/d )' exp[ —(rr/rI) Y ] g exp —(2rr/d)pY+ pXi+
2 (gi —t))

P = —oo
d d2

This function describes, in the X-Y reference frame, a
two-dimensional lattice with unit flux quantum per ele-
mentary cell, mapped on the basis vectors rt ——(d, 0),
r2=(g/d, r)/d), where t) is the unit-cell area (in reduced
units) and 2'/t)=boa (Fig. 1). To calculate F(yo) explic-
itly, we consider three types of variations of D~, shown in
Fig. 2:

(a)

D„la

,—Iy- y, I

(a) Dt even: D~ ——ae

(b) D i odd: D
&

ab (y ———yo )e

(c) D~ harmonic: D~ =a cos[qo(y —yo)], qo=27rb .

In cases (a) and (b) we assume that D t is defined within
the interval of the length L ~~b ', much larger than the
vortex spacing as well. In case (c), also considered in Ref.
7, the period b ' is of the order of d, and the vortex lat-
tice can be commensurate with the inhomogeneity distri-
bution. In each case, we first calculate a and then mini-
mize F in order to obtain the lattice structure (i.e., the
equilibrium relations between d, g, and i)), together with
the optimum lattice orientation 0. To calculate o;, we in-
troduce the Fourier series representation

(b)

(y-y,

0„/a
05—

-y, =b(y-y, )

D~(y —yo)/a =g D(q)e

where

D(q) = —f dyD) (y)eL

In terms of the Fourier coefficients D(q), a is expressed
via

(c)

0, /a

a=2a g ( —1)" f(q„)D(q„)exp[—(rIq„ /8ir)]
qn, m

X 5(q„d sin0, 2n-m ) cos(y-y, )

2~b(y-y, )

I

X 6 q„sin&+ ~sin6, 2irn (21)

where

f(q)= . cos(qyo) for D~ even,
—i sin(qyo) for D~ odd,

FIG. 2. Three types of spatial variation of the diffusion
coefficient D =Do(1+D~), where D~ =af(y —yo): (a) D~/a
even; (b) Dl /a odd; (c) Dl /a harmonic.
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6(a, b) is the Kronecker symbol and m and n are integers.
In both cases (a) and (b), the lowest energy configuration
corresponds to a maximum, while Pq can be minimized
independently. This gives O=O, m =0, and

1/2
4m

q„=nqi =n
v'3 (22)

where

(Kp —B)
a(yp),

I+Ps (2Ko —1)
(23)

The equilibrium lattice consists, as in the homogeneous
case, of equilateral triangles of side d [g/d =d /2,
il/d =(d~/3)/2, pq ——pq =1.16]. In the first order of
the inhomogeneity-induced perturbation, the ground-state
lattice structure is unchanged, but its orientation is
strongly determined by the uniaxial modulation. (Notice
that beside the stable configuration with O=O, there is one
metastable, with O=ir/2. ) The corresponding energy gain
(pinning energy density) is

OAF
Fp —— ey

Byo
(29)

pushing the vortex lattice back to the equilibrium position.
When an external transport current of density j is sup-

plied along the x direction into the specimen, its Lorentz
driving force FL ——2j X 8 produces a supplementary shift
along the y axis. The new position of the vortex lattice re-
sults from the balance between F~ and FL. The critical
current density, i.e., the maximum nondissipative current
density corresponds to the maximum of the pinning force
density

/

F,
[

=
/ Fz

/

come equivalent to harmonically distorted triangular lat-
tices with position-independent energy, and unpinned in
this sense. ' '

In the above expressions yo is still undetermined. Its
equilibrium value yo in the ground state is obtained, in all
cases, from the requirement that a ~ 0 is maximum.
When yo differs from yo, there arises a pinning force of
the density

2j, &B+F,=0 . (30)
a =2a g f (q„)D(q„)exp[—(i)q„ /87r)] (24)

for case (b). In case (c), D(q)= —,'[5(qp —q)+6(qp+q)],
and a is dift'erent from zero only when the vortex lattice is
commensurate with periodic modulation of D, i.e., when

with q„given by Eq. (22). In particular, for case (a) we
have

D(q)= 2 1

Lb 1+q b

and

D(q)= . exp[ —(q /4b )]
v'Yr q
2i

a=2a D(0)+2D
V3

exp( —ir /v'3 )

At the same time, the translated vortex lattice has still
to be pinned: the energy gain

~

bF(yp)
~

decreases with
translation from its maximum value

~

b.F(y p)
~

and even-
tually vanishes at some critical distance yo. Both yo and
yo depend on the sign of the perturbation amplitude a, as
shown below for case (a). The physical reason for this is
evident, since a ~0 corresponds to the increase of the
electron mean free path 1 and to the decrease of ~, while
for a &0 the situation is opposite. Keeping only the lead-
ing terms in the rapidly converging series for a and
Fz ~ Ba/Byp [Eqs. (24) and (29)], we get

qod sinO= 2~m,

qo

d
(i) cosO+j sin8) =2irn,

(25)

(26)
icos

1/2

yo (31)

and

a =2a exp[ —(qp/4KpB)]cos(qpyp) (27)

where m and n are integers. In this case, the lattice con-
sists of isosceles triangles of vortices, with g/d =d/2,
while /3& varies with B, slightly deviating from Pz. For
the commensurate (C) lattice we get'

and

(Kp —B) 4'
3

1+Pg (2Kp —1)

1/2

1/2

(Kp B) (1+a) —(Kp —B)AF=—
2 +

1+f3' (2Kp —1) 1+P~ (2Kp —1)

& 4aD 4n—KpB exp( —ir/i/3 )

In the domain of 8 where the C lattice is stable, AF &0,
the energy gain is linear in modulation amplitude a.
When hF &0, the unpinned lattice of equilateral triangles
is more favorable. The present linear theory does not give
the pinning eEects of order of a or higher, nor the transi-
tion to weakly incommensurate (I) configurations, with
large C domains separated by solitonic walls. ' However,
the range of stability of weakly pinned I structures is very
narrow. ' With increasing density of solitons, they be-

Q sin
4ir

3

1/2

yo (32)

According to Eqs. (23) and (31), the energy gain in case
(a) is largest when a cosqiyp ——

~

o
~

. Thus for a & 0 yp
=0, i.e., the lattice is centered at the inhomogeneity, with
a row of vortices along the line D =D '". The pinning
force is maximum, and AF =0 when the distance yo
reaches the critical value
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oH, 2/lr p
—2a ———1 e Dv'3

1/2

4'

X cos
4~—ir pB yp —aD(0), (33)

which shows that the smallest decrease of H, 2 (for a & 0)
or the largest increase (for a & 0) are obtained with

1/2

Q cos
4~—irpB

Whereas in the ground state, where Fz ——0 and b, =cPp,
the lattice structure is essentially unchanged, this is not so
for translated lattice. When yp&y p, 6=c (pp+ E'$1),
where e [given by Eq. (A4) in the Appendix] increases
with translation reaching maximum, together with F~, at
yp ——yp. Thus, pinning is clearly related to the distorsion
of 6 and corresponding change of h. In the critical state,
the current density j, =F, /2B is obtained from

1/2

(kp B) —Irp—Bv'3
F, =

1+f3' (2a.p —1)

8
~

a
~

exp( 2rli/3)—

Lb 1+
b2

(34)

for case (a), and from

F, = (ap —B)
2 a

~
qpexp( —qp/2KpB) (35)

1+f3~ (2ap —1)

for case (c). Similarly, for case (b) we find

(i~p —B) —lr pB
4~

1+Pg (2i~p() —1) Lb 2
F =

Xexp — —,+1
b2

(36)

—1/2
4~ hyp= ——

2 v'3 4

where h =di/3/2 is the vortex triangle height. For a & 0,
yp ——h/2, the vortices are symmetrically placed to avoid
the minimum of D and the critical distance is yp ——h/4.
Actually, the above choice of equilibrium position yp gives
the largest value of the upper critical field H, 2. The inho-
mogeneity induced change 6H, 2/Kp=H 2/Kp —1 can be
approximated by the expression (see the Appendix)

1/2 '

will discuss in more detail, since it could be relevant to
the pinning by grain boundaries. As shown first by
Zerweck, ' the electron scattering at the grain boundary is
an important source of flux pinning, causing reduction of
the electron mean free path with respect to its bulk value.
Its spatial variation, which is not strictly local but spreads
over a long distance from the boundary, can be approxi-
mated by

~

a
~

(B,2) (1 B/Bc—2)F =
rrL 1+P~ —1)

1/2
B

Bc2

1+I B
B,2

e

(34')

where
2

1 = -B,2(T) .
4' b
v'3 gp( T)

The vortex lattice orientation 0=0 is implicit in the
above result. The grain-boundary imposed orientation,
also predicted by Thuneberg' in a quasiclassical theory of
pinning due to the electron scattering, is observed by
small-angle neutron scattering in Nb bicrystals. ' The
linear dependence of F, on the inverse grain size 1/L, ex-
plicit in Eq. (34'), has been often observed experimental-
ly. ' ' Another nice feature of Eq. (34') is that the tem-
perature dependence (at given B) is completely determined
by B,2(T) in the first factor; the term in parenthesis is

temperature independent. At given B/B,2, F, is only
approximately proportional to H, H,'2 ', this is also ob-
served in Pb/Bi alloys, ' while in 315 superconductors '

one finds that F, ~ (H, 2) . The temperature dependence
of I could explain why the reduced pinning force F„rel-
ative to its value at a given reduced field Bp/B, 2, does not
appear to be a universal function of B/B, 2 when tempera-
ture is changed. '

The B dependence of F, or j, is usually discussed in
terms of the so-called "Kramer plots" of J,' B' versus
B. ' ' In many cases one finds that while the form of
Kramer's scaling relation (which implies a linear varia-
tion) is obeyed, the detailed predictions are not. En 315
superconductors, for example, a small amount of impuri-
ties may cause a downward curvature. ' These devia-
tions, for which various reasons may be invoked, appear
quite naturally in our theory, reflecting the inhomogeneity
shape. For the profile assumed in case (a) one gets

1/I p =D /D p = 1 —
~

a
~

e

in a region of size L. The resulting critical force density
(in physical units) is given by

V. DISCUSSION

In the above formulas, the first factor gives the familiar
B dependence, F, cc(1—'B/B, 2)"(B/B,2), where n =2
and m is between 0 and 1, while the second factor reflects
the form of inhomogeneity. The temperature dependence
becomes explicit when F, is expressed in physical units.
This is done below for the case (a) with a &0 which we

1/2 1 ra ( 1 B /B, 2)—
cx 1/2

1+r B
Bc2

Another theory of grain-boundary flux pinning based
on the electron scattering mechanism was developed by
Yetter, Thomas, and Kramer (YTK) and applied to pin-
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ning in Pb/Bi alloys by Yetter and Kramer. ' Assuming
a rigid vortex lattice, without perturbation of 6 or h, the
authors calculated the change of the Ginzburg-Landau
energy as due only to the modification of ~. In the high
field limit, the result of YTK is similar to ours: the main
difference is linear, versus quadratic in our case, depen-
dence of F, on (1 B/B—,q). The comparison with experi-
ment' shows that the specific pinning force (per unit area
of grain boundary) f =LF, is, in the case of YTK, com-
parable to the experimental value f,„„„ofthe order of 10
N/m . However, this agreement may be fortuitous, since
in calculation one assumes a small variation of I~ (or I),
even though in reality it may be quite large. ' In this
sense, our result is more acceptable: for the above sys-
tem, '9 Eq. (34') gives (with I -1)f / a

~

-f,„„„i.e. , the
experimental results would correspond to the pinning
strength

~

a
~

—1.
Another example of pinning corresponding to our case

(a) can be found in lamellar eutectics: due to the variation
of concentration of the one-phase atoms within the other
phase layers, D& has presumably a Lorentzian shape.
In the case of periodic inhomogeneity distribution, case
(c), large peaks on the j, (B) curve, characteristic of the
commensurability effect, have been observed experimen-
tally in superconducting alloys with periodically modulat-
ed composition and in some superconducting super lat-
tices. In the latter case, however, the origin of pinning
may be quite different from the present one. The present
pinning mechanism could be relevant, beside the modulat-
ed alloys, to the "hard" superconductors with a cellular
structure of dislocations. The density of dislocations in
the "walls" of cells being higher than inside the cells, I
and D vary periodically. However, a commensurate lat-
tice can be formed only if the period of the cellular struc-
ture is comparable to the vortex spacing d. For large
periods, the pinning at cell walls ' could be described as
above. As an example, we apply case (a) with L —1 pm
and I -0. 1 to the surface pinning by cell walls in the
Pb/Tl superconductor. Neglecting the B dependence of
the factor 1/1+ I (B/B,2) in Eq. (34') and taking the bulk
characteristics from Ref. 27, we get, in units (10 A/cm ),
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APPENDIX: EVALUATION OF THE UPPER
CRITICAL FIELD H, 2

Similar to the homogeneous case, H, 2 is determined
from the linearized first GL equation [here Eq. (4)], which
can be put into the form

(II~II,g, =a (A 1)

where Ilp=V'/imp Mp, —Ap —— Bye„, —and b, =cP. To
obtain H, 2, one can solve (1.1) variationally, looking for
the lowest eigenvalue Ep of

(II~IIp)y=Epy . (A2)

By definition, the condition Ep ——1 determines H, ~. Ex-
panding P in terms of Eilenberger's functions,
+eP~, where Pp is given Pp by Eq. (23) and

By

we find

and

(D
~
Ilpg

~

')
( )

(1+ (D)
~ P)

~
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p

1 2

4 xpB

1/2

(&Di
I W~ I

'&+a/2),
Byp

(A4)

where a is given by Eq. (24). The variation of the upper
critical field, calculated explicitly, is given by

chosen to work with the one-dimensional case, since it
takes into account the anisotropy present in many experi-
mental situations.

F,Bj, /~ a
~

= —10(j, ),„,a

= 10 4. 51(1 B /B, 2)2—
B,2

—1/2

6H, p

kp

=a g (q„rI/4n 1)exp[ —(q„g/S—rr)]

This would imply a pinning strength an order of magni-
tude smaller than for the grain-boundary pinning, ' since
we reproduce the experimental result with

I
a

~

—0. 1.
To conclude, we have developed a theory of pinning by

uniaxial variation of the mean free path in dirty supercon-
ductors near H, 2. The method could be easily applied to
the case of two-dimensional variation; however, we have

XD(q. )f(q. ), (A5)

where we have put 0=0 and q, =nq&. Keeping only
the leadin~ terms in Eq. (A5), we obtain, with q &

=[(4w/&3)&pB]' and f(q)=cosqyp, the result for case
(a) given by Eq. (33) in the text.

'R. Wordenweber, P. H. Kes, and C. C. Tsuei, Phys. Rev. B 33,
3172 (1986).

T. Matsushita, M. Itoh, A. Kikitsu, and Y. Miyamoto, Phys.
Rev. B 33, 3134 (1986).

T. Luhman, C. S. Pande, and D. Dew-Hughes, J. Appl. Phys.
47, 1459 (1976); E. J. Kramer, ibid. 44, 1360 (1973).

A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34,
409 (1979).



1906 LJ. DOBROSA VLJEVIC-GRU JIC 36

~R. P. Huebener, Magnetic Flux Structures in Superconductors
(Springer, Berlin, 1979).

S. T. Ruggiero and M. R. Beasly, in Synthetic Modulated Struc-
tures, edited by L. Chang and B. C. Giessen (Academic, New
York, 1984).

~S. Ami and K. Maki, Prog. Theor. Phys. 53, 1 (1975).
~L. P. Cxor'kov, Zh. Eksp. Teor. Fiz. 37, 1407 (1960) [Soviet.

Phys. —JETP 10, 998 (1960)];N. R. Werthamer, in Supercon
ductivity, edited by R. D. Parks {Dekker, New York, 1969).

D. Saint James and G. Sarma, Type II Superconductivity (Per-
gamon, New York, 1969).

toA. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Soviet
Phys. —JETP 5, 1174 (1957)].

Z. Radovic, S. Radojev, and L. Dobrosavljevic, J. Low Temp.
Phys. 54, 107 (1984); J. Low Temp. Phys. (to be published) ~

Note that expression (13) with 5 =0, used in Ref. 7, satisfies
Eqs. (9) and (10) (in first order in D&) only when qo =2~O. In
this case, our results coincide with those obtained in the Ref.
7.
V. L. Pokrovsky and A. L. Talapov, Zh. Eksp. Teor. Fiz. 78,
269 (1980) [Sov. Phys. —JETP 51, 134 (1980)]; Z. Radovic
and L. Dobrosavljevic (unpublished).
L. Dobrosavljevic and Z. Radovic, Phys. Rev. B 25, 6026
(1982).

~~G. Zerweck, J. Low Temp. Phys. 42, 1 (1981).
t~E. V. Thuneberg, in Proceedings of the International Symposi

um on Flux Pinning and Electromagnetic Propertis in Super-
conductors, edited by T. Matsushita, K. Yamafuji, and F. Irie
(Matsukuma, Tokyo, 1985), p. 26.

H. R. Kerchner, D. K. Christen, E. M. Lee, A. Das Gupta, B.
C. Cai, and Y. T. Chou, in Proceedings of the International
Symposium on Flux Pinning and Electromagnetic Properties in
Superconductors, Ref. 16, p. 38.

~8K. Kajiyana, T. Matsushita, K. Yamafuji, K. Hamasaki and T.
Komata, in Proceedings of the International Symposium of
Flux Pinning and Electromagnetic Properties in Superconduc-
tors, Ref. 16, p. 130.
W. E. Yetter and E. J. Kramer, Philos. Mag. B 46, 221 (1982).
At low temperature, this result is slightly modified due to the
temperature dependence of parameters k ] {T) and k q ( t), which
we have neglected, taking for simplicity k] =k2 =ko.

'D. O. Welsh, M. Suenaga, C. L. Snead, Jr. , and R. D.
Hatchner, in Proceedings of the International Symposium on
Flux Pinning and Electromagnetic Properties in Superconduc-
tors, Ref. 16, p. 30.
W. E. Yetter, D. A. Thomas, and E. J. Kramer, Philos. Mag.
B 46, 523 (1982).

J. M. Dupart, J. Baixeras, and G. Fournet, Rev. Phys. Appl. 8,
443 (1973), J. M. Dupart, Ph. D. thesis, Paris University, 1976.

24H. Raffy, J. C. Renard, and E. Guyon, Solid State Commun.
11, 1679 (1972); 14, 431 (1974); H. Raffy, Ph. D. thesis, Paris
University, 1980.

2~H. Raffy, C. R. Acad. Sc. Paris 284, 559 (1977); H. Raffy and
E. Guyon, J. Phys. (Paris) Colloq. 39, C6-648 (1978).
A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 119 (1972).
T. Matsushita, T. Tanaka, and K. Yamafugi, J. Phys. Soc. Jpn.
46, 756 (1979).


