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Critical behavior of vicinal surfaces of He
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At a temperature below the roughening temperature of a facet on a crystal, the junction between
the smooth planar facet and the adjacent "rough" rounded surface should show a characteristic criti-
cal behavior, which has been calculated for several different models of surface structure. This paper
presents an experimental investigation of such junction regions in hcp He crystals next to the c
facets (0001). It was found that the rough surface curves away from the plane of the facet as x~,
where P=1.55+0.06. This result agree with the predictions of various terrace-step-link types of
model, but disagrees with the mean-field model of Andreev.

INTRODUCTION SHAPES OF VICINAL SURFACES

The experimental discovery of roughening transitions
on several materials, and the intense theoretical work on
these transition, which both preceded and followed the ex-
periments, has led to several models for the microscopic
structure of equilibrium crystal surfaces. ' A few ma-
terials have proved themselves amenable to experimental
investigations which are capable of distinguishing between
the proposed models. Among them, hcp He (Refs. 5 and
6) is the one on which the most detailed work has been
carried out so far. In this paper we present experimental
results pertaining to the structure of crystalline surfaces
with orientations arbitrarily close to a high-symmetry
direction, the so-called "vicinal surfaces, " at temperatures
below the uppermost roughening temperature of hcp He.

The model which today has the strongest experimental
and theoretical support for its applicability to He surfaces
is the planar XY model, as it is used to describe the
thermal fluctuations of a faceted crystal surface through
the SOS (solid-on-solid) (Refs. 7 and 8) or discrete Gauss-
ian models. This follows from the work of Balibar and
his colleagues on the growth rate of the crystals. Other
models include the two-dimensional (2D) Ising model,
which can describe fluctuations limited to a single layer of
adatoms on a facet, and mean-field models, which ignore
fluctuations, but which can describe the complete thermal
evolution of crystal shapes. ' In hcp He three roughening
transitions have been observed so far, on different
facets. ' ' As in most theoretical studies of phase transi-
tions, the models make well-defined predictions about the
behavior of the system close to a critical point.

Microscopic metal crystals, which like helium achieve
thermal equilibrium within a reasonably short time, have
also provided useful information through the study of de-
tails of their equilibrium shape. Here the agreement with
one particular surface-structure model is not so clear, and
of the three metals so far investigated, Pb (Ref. 13) and In
(Ref. 14) appear to behave differently from Au (Ref. 15).
In addition, metals have not yet shown clear evidence of
roughening transitions. The work described in this paper
applies the method used in these studies to the case of
4He.

The structure of the vicinal surfaces is mirrored in the
details of the transition region between a facet (macros-
copically plane surface) and an adjacent rounded (atomi-
cally rough) surface. Microscopically, the vicinal surface
can be pictured as a facet with more-or-less regularly
spaced atomic steps of height a on it, the angle between
the surface and the facet being proportional to the linear
density of steps. It is useful to consider the steps as ele-
mentary excitations on the facet, with a creation energy
(the step energy) and a certain energy of interaction be-
tween them. The surface free energy of the vicinal surface
can then be written in a form which includes the surface
free energy of the facet, the energies of the steps, their in-
teractions, and their entropy. In general, the interaction
may be repulsive (positive) or attractive (negative).

The form of the surface free energy of the vicinal sur-
faces has been described by several authors. ' ' ' The
most comprehensive description is that of Jayaprakash
et al. , which is analogous to the calculation of
Pokrovskii and Talapov, ' who discuss the structure of a
monolayer deposited on a periodic substrate incommensu-
rate with the periodicity of the monolayer itself. The
steps occurring on the vicinal surface play the role of the
grain boundaries separating individual commensurate re-
gions in the latter model. Jayaprakash et al. investigate
stepped surfaces with slope s with respect to the facet
(s =0). The Hamiltonian is described in terms of a step-
creation operator a~ for which the Pauli principle
[(al ) =0] prevents the steps from crossing, but allowsf2=
them other deformations. The solution of the resulting
fermion problem gives the following dependence of free
energy on the slope:

y( )=sy(0)+( resc~ +b
~

s
~

)/0, .

Here, A is the area of the unit cell on the surface, cr is the
energy per unit length of a step,
b =(tr /6)ks T exp( —I /ks T), and I is the energy of
creation of a kink in a step. This is the same form as was
found by Gruber and Mullins. ' The bs term arises from
the entropy of the kinks and from the effective repulsion,
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which prevents the steps from overlapping. There is no s
term. Use of the Wulff construction on y(s) of Eq. (1)
gives an equilibrium shape y (x) in the vicinity of the facet
edge (xo,yo):

[y (x)—yo]/zo = 3 [(x —xo)/zo] + (2)

y(x) —yo

ZQ

x —xp

ZQ

3/2

ZQ

2

+ ~ ~ ~ (3)

This formula applies to a crystal of large zp. If the crystal
is small, both the elastic energy and dependence of y on
the radius of curvature give corrections depending on
1/zp. ' This indicates an advantage in using crystals as
large as possible for an investigation. Furthermore, the
coefficient 2 is inversely proportional to the coherence
length gR on the crystal surface. This is itself inversely
proportional to o, the step energy, which has a charac-
teristic variation near T~ according to the XY model:

o.—exp( —c/t ' ), (4)

where t=(TR —T)/TR. Thus the coefficient A ap-
proaches zero in the same manner as (4). In order to in-
vestigate the validity of the —, power law per se, it is there-
fore advisable to work at temperatures not too close to
TR. On the other hand, investigation of the dependence
of this coefficient on T will provide additional
confirmation of the model. Jayaprakash and Saam have
also shown that the coefficient of [(x—xo)/zo] is not
temperature dependent, so that the vicinal surface ap-
proaches a cylindrical or toroidal shape as T~ is ap-
proached.

In contrast, a mean-field approach to the problem by
Andreev' employs a Landau-type expansion of the free
energy near the transition, in which s is considered an or-
der parameter. This expansion seems to have no micro-
scopic justification. It gives a critical dependence on t'
instead of Eq. (4), and an expansion for the vicinal sur-
face, which can be written

(' '2
y(x) —yo x —xo=C + ~ ~ ~ (5)

ZQ ZQ

where zp is the distance between the center of symmetry
of the crystal and the facet and A is a constant. Inclusion
of an interaction between steps with a range shorter than
the distance a /s between the steps gives rise to an s term
in Eq. (1) and this gives a further term D [(x—xo)/zo] in
Eq. (2). Marchenko and Parshin' show that elastic in-
teractions between the steps depend on ga /x, where g is
a positive constant. To add this to (1) we replace b by
b+Hg/3, but the leading exponent —,'in (2) is unchanged.
Dipolar interactions, which can occur in metals, could
lead to negative g and a discontinuity in s at the facet
edge.

Jayaprakash and Saam have obtained similar results
for the body-centered SOS model. They derive an expan-
sion for the profile of the vicinal surface, which meets the
facet at (xo,yo):

This square-law dependence contrasts the —,
' power in Eq.

(2), which is the signature of the square-law effective in-
teraction between steps.

The purpose of this work is to investigate the validity of
Eq. (2) or (3) experimentally in large helium crystals. The
experiments of Rottman et al. ' showed that the profiles
of microscopic Pb crystals were consistent with the —,

'

power law. However, a later analysis of the same data by
Saenz and Garcia suggests that the addition of a term
linear in x —xp improves the fit to the experimental data,
although the physical origin of this term is not clear.
Metois et al. ' found the transition from facet to rounded
surface in Au to be discontinuous, implying either a linear
x —xp term again, or attractive interactions between steps,
and recently they have reported experiments in In (Ref.
14) which confirm behavior similar to Pb. In all these ex-
periments on metals, the crystals had typical dimensions
of a few micrometers, which made curvature corrections
significant. Analysis of the shape of large He crystals has
recently been reported by Babkin et al. ,

' who found
agreement with Andreev's mean field theory [Eq. (5)].
However, the crystal profiles investigated in these experi-
ments were in a vertical plane, and the differences in grav-
itational potential energy between points along the crystal
profile is larger than the expected difference in the surface
free energy for the same points resulting from the range of
crystal orientations being investigated. It thus seems pos-
sible that gravity could affect such details of the crystal
profile significantly. In our experiments, the crystal
profile being investigated is in a horizontal plane, so all
points investigated have the same gravitational potential,
and the above uncertainty does not apply.

'I

EXPERIMENTAL PROCEDURE

The experimental system consists of a disklike cell, 11
mm diameter and 3.6 mm high. The base of the cylinder
is a beryllium copper mirror, and the cell is observed from
above by reflected light. Crystals with random orienta-
tions are grown in the cell by pressurizing standard-
quality He. Out of the many crystals grown, only the
few with their b axis (1210) within 2 of the vertical were
chosen for investigation. The crystal orientation is clear
from the shape of the profile and symmetry of the facets
observed during growth. The above orientation gives
crystals exhibiting two c facets (0001) and a facets (1010)
(Fig. 1). The crystals have lateral dimensions as large as a
few millimeters, and thickness in the vertical direction ap-
proximately equal to the capillary length, 1.4 mm. In or-
der to investigate the exponent 13 for surfaces vicinal to
(0001) the temperature was stabilized below TR (1.28 K)
to an accuracy of 0.002 K. At such temperatures, Wolf
et al. have shown that the equilibrium time for the facet
is very long. The crystals are therefore not true equilibri-
um crystals. However, the details that interest us are
those of the vicinal surface, which should equilibrate as a
rough surface, i.e., with time constants shorter than 20
s. In other words, although the crystals are not in glo-
bal equilibrium, we expect the part of interest to us to be
in local equilibrium. We waited for equilibration times of
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FIG. 1. Example of the profile of a crystal grown with (1210)
vertical.

FICx. 2. A crystal profile (crosses) along the arc up to 90'
from the facet, showing the fit to the vicinal region. Notice the
relationship between the crystal size and the vicinal retion.

the order of 10 min. The large sizes of the nonequilibri-
um facets are useful in determining their orientations ac-
curately.

The crystal profiles were photographed and magnified
prints were digitized. The illumination used for the pho-
tography was from a He-Ne laser. This led to interfer-
ence fringes which sometimes made the photographs
difficult to analyze and, in retrospect, it might have been
better to have used incoherent light. However, a sufficient
number of good photographs were available. The limit of
accuracy of the process was the sharpness and grain of the
photographs, and was about 10 pm. About 200 points
were digitized along the profile in a region containing the
facet and vicinal surface up to 20 from it. Where a
sufficient portion of the crystal was visible, the distance
between the facets, 2zQ, was also measured. The
magnification of the photographs was about 15, but its ex-
act value is not important in the analysis.

RESULTS

Eq. (3) was investigated for several photographs, D being
another free parameter. Its addition made a negligible
difference to the best values of A and P, but made it pos-
sible to extend the region of fit to a longer arc of the
curved surface. Some further remarks on the analysis of
the data are presented in the Appendix.

Figures 2 and 3 show examples of the profiles investi-
gated. It is important to notice that what seems to be
only a relatively small region close to the junction can be
fitted to Eq. (6), but this is indeed in accordance with the
definition of the vicinal region. Jayaprakash and Saam
note that this region is limited to [(x —xo)/zo] «1. For
the examples in Figs. 2 and 3 (in the latter the vicinal re-
gion is shown expanded), the fit was made for values of
the above parameter up to 0.15. Both the digitized crystal
shape and the fit according to Eq. (6) are displayed. We
have analyzed 13 photographs, corresponding to four
crystals at various temperatures. The values obtained for
P and A are given in Table I. The coefficient 3 could
only be obtained for crystals of which a sufficient part was
visible for direct determination of the center of symmetry

A straight line was first fitted to the part of the crystal
profile corresponding to the c facet. Following this, the
axes were rotated and translated so that the facet coincid-
ed with the x axis. Then, for an estimated location (xo, O)
for the end of the facet, the curved part (x &xo), was
fitted to the equation

0. 8-
+

+
++

y (x)
zo

P
X —XQ

(6)
.+ ++&

V ++ .
/

't'1 $ "I 8'.1 y, + ' 1'+~ W''+~ ++ '+

where 2/z&~& and P were considered free parameters. The
fit was made for a range of values of xQ around the es-
timated position. The final values accepted for 3 and /3

were those which gave the minimum mean-square error
per point. The facet and curved region were each
represented by at least 50 digitized points. The possibility
of improving the fit by including the quadratic term in

I
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FIG. 3. An expanded view of the vicinal region of a crystal
profile at 0.90 K. The crosses represent the digitized profile and
the curve is the fit to Eq. (6), with f)=1.55. Notice the occasion-
al disturbance caused by fringes crossing the profile.
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TABLE I ~ Parameters for the crystals measured.

T (K) I90-
0.895
0.900
0.920
0.920
0.920
0.920
0.920
1.130
1.130
0.660
0.800
0.810
0.970

0.201

0.200

0.202
0.141

1.52
1.50
1.58
1.58
1.49
1 ~ 54
1.56
1.59
1.59
1.56
1 ~ 52
1.65
1.49

l.70—

1.55

I.40-

I.25

I. IO—

and the dimension zo to be possible. This has precluded a
serious test of 3 (T), although the general tendency for A

to approach zero with increasing temperature is there.
The value of P, which best represents the data summa-

rized above, is

P= l. 55+0.06,

9.2
l a ~ s I ~ a s I a I

9,5 I O.O IO. 5
{mm)

FICJ. 4. Contours of the mean-square error, 10 g, (y —y;) /n,
in the xo-P plane, for one crystal profile.

this corresponding to vicinal surfaces up to 0.1 rad from
the facet orientation. The stated limits'of error represent
the standard error of the set of estimates of P calculated
from the 13 photographs. We have been informed that a
similar study of He crystals carried out in Paris by Gal-
let gave a value of P= 1.7+0.2.
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APPENDIX

The most difficult point in the analysis of the data is to
judge xo, the exact point of intersection between the facet

and the rounded surface. The existence of weak interfer-
ence fringes on some of the photographs does not make
this task any easier. It is clear from the form of Eq. (6)
that if we were to choose a value of xo arbitrarily, we
should always be able to find the value of P, which best
represents the profile of the "rounded part" of the crystal,
defined as x ~xo. In general, if xo is chosen too close to
the center of the facet, the value of P will be larger, since
the "rounded part" appears to begin more gently, and
vice versa. To illustrate the interdependence of xo and p
for one particular crystal, we show in Fig. 4 a plot, in the
form of a contour map, of the mean-square error
g; (y —y; ) In, where y; is the ordinate of a digitized point
and y the value according to Eq. (6). The best global
value of p is that for which the mean-square error is least.
One can see from the figure that an error in xo strongly
affects the value of p, but that the optima of both can be
determined. Our final value of P best represents all the
crystal profiles analyzed, for which the individual values
of p are tabulated in Table I.
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