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Bipartition model of ion transport: An outline of new range theory for light ions
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Extending the bipartition model of electron transport to the case of light-ion transport, the approx-
irnate solution for the light-ion distribution function under the continuously-slowing-down approxi-
mation has been developed so as to go a step further in obtaining the light-ion-range profile and other

transport quantities [Luo Zhengming, Phys. Rev. B 32, 812 (1985); 32, 824 (1985)j. The comparison
with existing theories and experiments shows that the new theory not only has the precision which
can match with that of the current-transport theory, but is far more flexible in describing the trans-
port process of energetic ions in matter.

I. INTRODUCTION

In recent years the Monte Carlo method has achieved
remarkable results in research on ion-beam injection. A
vast amount of research has provided important and in-
teresting new results on how to apply the Monte Carlo
method for obtaining ion range, energy deposition,
reflection coefficients, sputtering yields, etc. In compar-
ison, the standard analytical transport theory, despite its
success in calculating the ion range in infinite homogene-
ous amorphous solids, meets with some essential
difficulties when applied to ion transport in solids with
boundaries which often occur in practical investigation.
Such difficulties are inherent in the moment method. As
a result, no effective means can be easily found within the
frame of the moment method to overcome them. It seems
inevitable for us to try to solve the Boltzmann equation of
ion transport at a new angle. '

A set of studies starting with the present paper is a
sample of such an endeavor, in which we shall develop a
new theory for ion transport —the bipartition model of
ion transport. The theory, is actually the direct extension
of the bipartition model of electron transport in ion trans-
port. The bipartition model of electron transport has been
demonstrated to be successful, with high precision,
sufficient flexibility, and high calculating efficiency. The
model was introduced almost simultaneously with the
range theory developed by Lindhard et al. It was
only recently that the importance of bipartition model to
ion transport studies came to be understood. As the
multiple-scattering process of electrons in matter has
properties very similar to those of the multiple-collision
process of ion in solids, it can be expected that this exten-
sion will succeed. The basic idea of the ion bipartition
model is that the ions entering into the solid are subjected
to multiple elastic and inelastic collisions. The former

alters the direction and energy of the ions, while the latter
generally reduces the energy of ions but does not change
the direction greatly. Because of collision, a portion of
ions is scattered to the large-angle directions. Their trans-
port behavior is similar to diffusion. We separate these
ions from the original ion beam and make them an in-
dependent group, called diffusion ions. Since their angu-
lar distribution is comparatively closer to isotropy, their
transport behavior can be better described in terms of the
spherical harmonic method, namely the P„approxima-
tion. The ions that still remain in the original ion beam
are necessarily those which only deflect small angles from
the original direction, and we call them straightforward
ions. Their behavior can be well described in terms of
small-angle approximation. The summation of the two
groups of ions becomes the general process of ion trans-
port. In order to separate large-angle scattered ions from
collided straightforward ions by a suitable means, the par-
tition condition, i.e., the key factor in a bipartition model,
will be introduced. The introduction of this condition
makes it possible to give an accurate but simple descrip-
tion of charged-particle transport.

The present paper will discuss a comparatively simple
case, i.e, the case where light ions are injected into the
solid with large atomic weight. This is a very important
ion-injection condition. The interaction, for example, be-
tween the fusion plasma and the first wall of fusion reac-
tors is one of such conditions. Under this case the
Boltzmann equation will be simplified. The paper is di-
vided into five sections: the first is the introduction, the
second section studies the various approximations for the
Boltzmann equation of ion transport, the third deals with
scattering parameters and parameters of stopping power,
the fourth gives a bipartition solution of the Boltzmann
equation of ion transport under the continuously
slowing-down (CSD) approximation, while the fifth is the
results and discussions.
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II. TRANSPORT EQUATION OF IONS
AND ITS VARIOUS APPROXIMATIONS

Although Lindhard et al. have done succinct work in
introducing a new type of the Boltzmann equation for
ion-range distribution, the ordinary ion-transport equation
is still used as the starting point of our research because,
apart from the final state of ion collision such as ion-range
distribution, we are more interested in the actual process
of energetic ions in solids. The Boltzmann equation men-

tioned above that uses the initial energy and initial direc-
tion of incident ions as variables is inconvenient for us.
In addition, the distribution function we use is not analo-
gous to the ion density distribution. Let f(r, u, E)
represent the ion distribution function which is also called
the ion diA'erential fluence in angle and energy, then
f (r, u, E)du dE represents the ion fluence at point r, with
direction between u and u+du and with energy between
E and E+dE. According to the statistical balance princi-
ple, we have

pu Vf — =N f du' f dE'o„(E',E'. E;u.—u')f (r, u', E')
BE

f (r, u, E—)f f o.„(E,T;u u')dT du'+S(r, u, E),
4w 0

where N is the number of solid atoms in unit volume. 5 is an ion-source term. p, is electronic stopping power.
y=4M|M2/(Mi+Mq) . Mi and Mq are the atomic weight of incident ions and the atomic weight of solid atoms, re-
spectively. From the conservation of energy and momentum, we have

u u'=(M, +M2)(1 —T/E)'i /2M, +(M, —M~)(1 —T/E) ' /2M, ;

thus the elastic scattering cross section is
1/2

M] +M2 E T M1 —M2
cr„(E,T;u u')=cr„(E, T)5 u u'—

2M1 E 2M]

1/2

277 .

(2)

Under our condition we have Mi «M2. Consequently, in each collision an ion can transfer only a small portion of en-
ergy to the solid atoms or even less energy to electrons in the solid. The slowing-down process may be considered a con-
tinuous one, i.e., the CSD approximation (CSDA) is valid. Expanding the collision integral under the condition of small
energy transfer, we have a light-ion —transport equation as follows:

u. Vf (p, +p„)f=— +N du'[f (r, u', E) f (r, u, E)]cr„(E—, 2E(1 —u'. u)M&/M2)+S(r, u, E),a a'nf
BE '

2BE 4

Q=N T cr„E,T dT .
0

(4)

Equation (4) involves energy-loss straggling. The ion-energy-loss straggling is usually small; therefore the term of the
collision integral higher than the first order can be neglected. Thus we have the transport equation for light ions,

u. Vf (p, +p„)f=N f—du'[f (r, u', E) f (r, u, E)Jo„(E,—2E(1 —u' u)M, /Mz)+S(r, u, E) .
4n

Introducing a scaling transformation

t =R0 ' P, +P„—'dE',
0

y=r/Ro

then the energy variable can be transformed into relative residual path length t. R0 is the total path length of the in-
cident ion. Under the scaling transformation the distribution function and ion-source term become

f(y, u, t)=f(r, u, E)(p, +p )Rp,

S(y, u, t)=S(r, u, E)(p, +p„)Ro . (9)

The CSDA ion-transport equation is

u. V„f =NRO f du'[f(y, u', t) —f(y, u, t)]cr„(E(t), 2E(t)(1——u u')Mi/M2)+S(y, u, t) .
Bt

'
4~

(10)
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III. FITTING PARAMETERS
OF ELASTIC SCATTERING CROSS SECTION

AND STOPPING POWER

The terms in the ion-transport equation (10) are related
to two parameters. One of them is the elastic scattering
cross section, and the other, the stopping power of ions.
The elastic scattering cross section developed by Lindhard
et al. has been studied extensively, so the present paper
will use newest data of elastic scattering cross section.
For ease of calculation, the power function approximation
of the cross section formula has been used. The parame-
ters k and m~ used in the approximation will be deter-
mined by means of least-squares (LS) fitting:

6 3 35 —'"' 1+ 6 7z'"' '"' —'"
'] dE=O,

z =EpE (Mp /M ] )(a /2Z &Z2e )

where

X(1—u u')

+5(x)5(1—t)5(1 —p )/2~, (14)

K =NA2 a (Z(Z2e /a) 'Ro/4EO

p is the cosine of the angle between the direction of ions
and the X axis. According to the bipartition model the
distribution function f (x,p, t) is divided into two parts:

suppose that the left half-space is composed of a matter
identical with that of the solid. Later we shall investigate
the case when the left half-space is vacuum. That is a
case very often seen in the ion injection. We set up an X
axis along the inner normal line direction of the surface.
By so doing the ion-transport equation under the CSDA
1s

af af+p =Kt ' du'[f (x,p', t) f (x,p—, t)]Bt Bx 4m

a =0 8853(Z2~~+Z~~3) ~~2ao
f(x,p, t)=f, (x,p, t)+fd(x, p, t) . (16)

ao is the Bohr radius. 6EO=0.001EO. For the ion stop-
ping power the Ziegler-Anderson table may be used for
proton and helium ions. " The stopping power of other
ions can be found in Refs. 12 and 13. From the stopping
power it is easy to obtain the relation between the average
path length and energy of ions. The total stopping power
1S

(12)pt =pe+pn

Nna [2M~M2/(M~+Mq) ]E ln(1+e)
(e +0.1072e' '

)

e=32.53MzE/[Z~Z2(M&+Mq)(Z +Z ~ )'~ ],
(12')pn =

(12")

where p„ is nuclear stopping power. The path length of
ions of energy E is

R (E)= f dE'/p, (E') . (6')
0

We assume that the fitted formula of the energy path
length is

E/Ep = [R (E)/R (Ep )] (13)

IV. BIPARTITION SOLUTION OF THE CSDA
EQUATION OF ION TRANSPORT

A. Range distribution of ions
in an infinite homogeneous medium

where t is the relative residual path length. By using LS
fitting, we have

5 f (E/Ep —t ) dE=0 . (13')

Thus the parameter v can be determined.

f, and fq satisfy the following equations, respectively:

af. af. z,.+p =Kt ' du'[f, (x,p', t) f, (x,p, t)]-
Bt 3x 4rr

X (1—u'. u) ' —Sd

+5(x)5(1—t)5(1 —p )/2', (17)

afd afd
+p =Kt ' du'[fd(xp', t) fd(xp, t))—

at Bx 477

X(1—u'. u) ' +Sd .

(18)

Physically, the collision term represents a scattering
source. According to the bipartition model we deduct the
large-angle scattering source from the collision term in the
straightforward ion-transport equation (17) by means of
subtracting Sd(x, p, , t). Consequently, the scattering pro-
cess generating large-angle ions no longer exists in the
straightforward ion-transport equation. Hence its distri-
bution function should describe the transport of small-
angle ions only.

B. Partition condition and diffusion ion source

In order to remove large-angle ions from the straight-
forward ion group and bring them into the di6'usion ion
group, the following partition condition has been intro-
duced:

Sd(x, p;, t) =Cf(x,p;, t)

=Kt ' f du'[f, (x,p', t) f, (x,p;,t)]-
4vr

Now we are to discuss a most commonly seen problem
of ion transport. An ion beam of energy Eo is normally
incident on the right half of a semi-infinite solid. Let us

X(1—u'. u;)

i =0, 1, . . . , m . (19)
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f, = g (21+1)P((p, ) A((x, t)/4~,
(=0

(20)

fd = g (21+1)P((p)N((x, t)I4w,
l=O

(21)

The condition shows that all the large-angle scattered ions
in a straightforward ion group are regarded as the secon-
dary diffusion ion source Sd. To determine the intensity
of this diffusion source, we require that the intensity of
the diffusion source comprising the first m +1 spherical
harmonic components at the m +1 large-angle directions
be exactly equal to the values of collision integral at the
same directions. Expanding the distribution function into
a Legendre polynomial series, we have

In the Appendix we shall give a proof of the formula (25).
The partition condition becomes

—2m~v 2l + 1Kt —' g rt(P((p; ) A((x, t)
(=0 4

P((p;)S((x, t) .
2l +1

(=0
(26)

For g(, we have the following recurrent formula:

(1 + 1 —m(, )rl(+ (
—(I + 1+m(. )rl( —4~2 =0, rip ——0 .

(25)

Sd = g P((p)S((x, t) .
2l +1

( 0 4~
(22)

Therefore,

S((x,t) = Kt ' —q( A((x, t)

2n 1 —P( p 1 —p dp.—1

(24)

Thus, the collision integral is

Cf = —K(Eo/E) g rl(P((p) A((x, t), (23)2m~ 2l +1
(=0 4~

—2m g1'
Kt rl( D(( A( (x, t) .

I'=m +1
(27)

By definition, the bipartition coefficient D(( is
(21'+ l )6(( /(2l + 1)b,, where

po ' ' ' P( —&(po)

p( P( —((p()

P((po) P (po)

P (p()
po ' ' ' P( —&(po)

p( P( —((p()

P( (pp) P (pp)

P((p&) . . P (p()

(28)

p P( &(p ) P((p ) . P (p ) p P( ((p ) P((p ) P (p )

C. Straightforward ion group

As the large-angle ions being generated due to elastic collision have been eliminated from the straightforward ion

group, only the ions that deflect from the incident direction less than a given smallest angle 0 can still remain in the
straightforward ion group. - The 0 is the smallest angle in the m + 1 large-angle directions. Since I9 is generally small,
the small-angle property of straightforward ions can be held. Now we may use the small-angle approximation to solve

Eq. (17). The so-called small-angle approximation is to substitute p, (Bf, /Bx) for p((3f, /(3x) in Eq. (17),

af, @". . . " 2l+1
rl(P((p) A((x, t) ——Sd +5(x)5(1—p)5(1 —t)/2',

at "'a (=. 4 (29)

where p, is the average direction cosine of straightforward ion group. This approximation is reasonable, because

p —p, «p for p=1. The main advantage of this approximation is to remove the coupling between A(, the angular
spherical harmonic moment of the straightforward ion distribution function. By definition, the average direction cosine
1S

p, ~,p, t dx dp

J '
J

' f, (x,p, t)dx dp
(30)

Thus we have

—2m' v
Kt rl(D(( A((x, t)+5(x)5(1 —t), l & m

+p — ('=m +1
Bt ' Bx

Kt ' g(A((x, t)+5(x)5(—1 t), 1)m . —

(31)

(32)
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Introducing the Fourier transformation,

B((p, t)= f A((x, t)e' "dx, A((x, t)= f B((p, t)e '
dp .

oo 277 oc

For l ~ m, we have

dBI —2mgv

dt
+ip, (t)pB(=Kt ' ri(B( —5(1—t),

B((p, t) =exp —f [Kt' '
g( ip—, (t')p]dt'

t

A((x, t) =5 x —f p, (t')dt' exp[ Kg(—(1 —t )/(1 —2m(, v)] .

(33)

(34)

(35)

(36)

For l &m, we have

+p. (t)

Let y(=y(", +, D((, i.e.,

I'=m +1
D((

aAI aAI
+p, , —5(1 —t)5(x) +5(1—t)5(x) .

Bt
'

Bx
(37)

1 po ' ' g (21'+ l )P('(po)
I'=m +1

P(+((po) P (pp)

1

(21 + 1)b.

p( g (2i'+1)P((p()
I'=m +1

P(+((p() . . P (p()
(38)

1 p, y (2i'+1)P((p ) P(/1(pm) Pm(pm)
I'=m +1

Using the following formula,

5(p —p, ) = g (i+ ,
' )P((p)P((p; )—.

I =0

For p=l, we have

(39)

a((t) = — g D((exp
I'=m +1

1 —2m&v—Kg((1 —t )

1 —2m~v

Correspondingly, the diffusion ion source is

S((x, t) =5 x —f p, ,dt'
l

(45)

I'=m +1
(&'+ ,')P((p, , )= —g—(&'+,')P((p;) . —

I'=0
(40) —2m' v

X —Kt glal

Therefore,

yl= —1 .

Introducing the following Z function, its definition is

(41)

—2m' v
Kt r)( D(( a(

I'=m +1

l=0, 1, . . . , m . (46)

Z(= A(+ g D(( A( .
l'=m +1

Thus, we have

az, az,
+p~ 0

Z((x, t) =0 when t = 1,
Z((x, t)=0 at x =0 and x =1 .

Equation (43) has only a zero solution, then

A((x, t) = — g D(( A( (x, t)
I'=m +1

(42)

(43)

D. Dift'usion ion group

Having calculated the diffusion ion source, it is possible
to calculate the distribution function of diffusion ions.
Since the angular distribution of diffusion ions is com-
paratively isotropic, its spherical harmonic moments can-
not be decoupled. The cutting-off method is commonly
used to decouple it forcibly, that is, we implement the P„
approximation. The so-called P, approximation is to as-
sume N((x, t) =0 if 1 & n Thus we. have the following set
of hyperbolic partial-differential equations,

(3N( 1 ()N(+, (3N(

=a((t)5 x —f p. (t')dt' (44) = —Knelt cVI+Sl, l =0, 1, . . . , n . (47)
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This set of equations may have analytical solutions under
special conditions, but to treat more complex problems,
the numerical method is more desirable. When the nu-
merical method is used to solve the set of equations, care
should be taken with the stability of the discrete scheme.
In the present work the Lax-Wendroff scheme with

second-order precision has been used. This scheme has
good stability as well as rather high accuracy. ' For the
sake of convenience the set of the equations is often
rewritten into a symmetrical form. The following trans-
formation is therefore introduced:

Mt(x, t) = (21 + 1)'i Ni(x, t), (48)

C}t

l+1 aMl+ I

V(21 + 1)(2l +3)

l ~M» —2m, '
KTt, t —' M, +(21+1)'~'S,, l =0, 1, . . . , n .

(21 + 1)(21 —1)
(47')

Such a symmetrical form is advantageous to using Lax-
Wendroff scheme.

E. The boundary condition for the semi-infinite medium

As mentioned above, that is often the case with the in-
cidence of ions on the surface of semi-infinite solid. Al-
though, within the frame of moment method, some
researchers have made efforts to evaluate the influence of
boundary on ion transport, such efforts do not seem quite
successful. ' ' We shall account for the condition for the
bipartition theory being applied to the semi-infinite surface
of solid. As the left half-space is vacuum, excepting the
incident ions, only the ions reflected from the solid sur-
face to the left-hand-side vacuum may exist on the bound-
ary x =0. Therefore, the boundary condition on the sur-
face x =0 should be as follows:

fd(O, p, t)=0, p, &0 . (49)

Although the condition (49) is exact, within the finite
series of the P, approximation it cannot be totally and ex-
actly satisfied for determining the distribution function of
diffusion ions. Based on it, Mark and Marshak proposed
two important types of boundary conditions, respectively,
i.e., the Mark condition and the Marshak condition. ' '
The Mark condition is

Equation (50) treats the left-hand-side vacuum as black-
body, i.e., the ions leaving the solid surface no longer re-
turn to the solid. The Marshak condition is

f 'fd(o, p, t)p'" 'dp=O, @ =1,2, . . . , (n+1)I2 .

(51j

Its merit is to ensure that no diffusion ion current is in-
cident upon the solid surface from the vacuum. General-
ly, when n & 5, the Mark condition is better than the
Marshak condition. Therefore, the Mark condition is
used in our computation.

As far as the. calculation of the hyperbolic equation (48)
in the step-by-step method is concerned, such boundary
conditions are not sufficient for determining the n +1

fd(O, p;, t) =0, P„i(p+;)=0, p; & 0,
t =1,2, . . . , (n +1)I2 . (50)

spherical harmonic moments Nt(x, t) There.fore some ad-
ditional conditions should be given. Actually we have the
additional condition as follows:

Bfd dfd
=p; +Kt ' g (2l+1)rt(P((p; )N((O, t)I4~,

dt 0x 1=0

P„+(pt,;)=0, p; &0, i =(n +3)/2, . . . , n +1 .

(52)

Thus, the n + 1 boundary conditions altogether can deter-
mine the values of the n +1 spherical harmonic moments
on the surface. The step-by-step computation is made
close in this way. Because the above-mentioned boundary
conditions are introduced, the bipartition model of ion
transport may easily be extended to dealing with the com-
plex problems concerning ion transport in multilayer.

V. COMPUTATIONAL RESULTS

On the basis of the above-mentioned bipartition model
of ion transport we have worked out a new program of
ion transport, BIMIT-CSDA. This program can compute
the light-ion —range distribution, the energy deposition,
the radiation damage, the reflection coefficients, and so
on under the condition that the ions of lower dose are
injected into an infinite or semi-infinite solid or multilay-
er. Some typical results will be given below and com-
pared with experimental data. More extensive results
will be presented in another paper. '

A. The range distribution of light ions

The ion-range distribution R (x) is actually the distribu-
tion of ion flux in solid when the energy of ions is near
zero. Because of divergence of the scattering cross section
when E =0, it is difficult to calculate the flux of ions with
zero energy. However, considering the fact that it is due
to the enlargement of scattering cross section that the
transport of low-energy ions becomes local, there is no
notable difference between the ion-range distribution when
energy is near zero and the ion-range distribution when
energy is zero. Hence we use No(x, t =0.01) to represent
R (x). Obviously, No(x, t) satisfies the conservation of
particle number, and in fact we have
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Qr

2

) I I ) IItll
1()

BXP 1

6(1 N( )
Bt Bx

Integrating Eq. {53),we have

np(t)= f Np(x, t)dx =1 .

For semi-infinite solid, we have

np= f ™
Xp(x, O)dx,

0

R„=—f X, (O, t)dt,
0

np+R„= 1 .

(53)

(54)

(55)

(56)

(57)

Equation (57) means that the particle number m the right
half-space is equal to the total number of incident parti-

That is exactly what the conservation law of particle num-

C

] ()()()(,4 )
O

I'; t r g c t I)c [t t l1 ( rE )

FICJ. 1. Hydrogen profile implanted at 1 keV. The solid line
is our computational results. C is the result measured by De-
mond et al. (Ref. 20).

Hvd r&igen oner gy (Pg 9 )

FICs. 3. Mean projected range as a function of ion energy.
is our result. 0,~ represent the data of Demond et al. ; ~,

Marcinkowski et al. (Ref. 23);, Ligeon and CJuivarc'h (Ref.
22); 2, Chu et al. (Ref. 21).

ber needs. Figures 1 —3 give the range distributions ofH+
ions of 1 and 20 keV in Si. From these results and the
corresponding experimental data it m y

I

a be observed that
the bipartition model gives satisfactory results.

B. The reflection of ions from a surface of so i

R„=—f X, (O, t)dt,
0

R, = —f X, (O, t)E(t)dt .
0

(59)

It is easy to evaluate these transport quantities using the
bipartition model. %e have calculated the reflection
coefficients for hydrogen ions that are normally incident
into gold. The energy interval of ions is from 0.01 keV to
1 MeV. This energy interval is one that concerns
nuclear-fusion and nuclear-analysis techniques. Figure 4

Vh-gives the number reflection coefficients of 0.1 —20 e y-
drogen ions being incident upon a gold target. At the
same imtime it gives the experimental data and t e onte

Fi . 4itmaCarlo computational results as well. From ig. i may
be seen that the computational results based on the bipar-
tition model agree with the experimental results in a wider

24 —29energy interval.

The research in the reflection of ions from a surface of
solid is essential for the understanding interaction between
ions and surface. The most important parameters describ-
ing reflection are numerical reflection coefficients and en-
ergy reflection coefficients, and next are the angular distri-
bution and the energy spectrum of reflected particles. By
definition, the former two parameters R„,R, are as fol-
lows:

C. Computational efticiency

4 0()()( A )
'I;trge t DeI)( t} (A)

FICJ. 2. Hydrogen profile implanted at 20 keV. The solid line
is our result. o is the result measured by Demond et al. (Ref.
20).

As stated above, we have already shown that the bipar-
tition model is characterized by its high precision and
sufFicient flexibility. Here another important merit of the
model is mentioned, i.e., it needs using only far less
storage and central-processing-unit (CPU) time of com-
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Briefly, in the present paper we have shown that the bi-
partition model has successfully treated the transport
problems of light ions in solids. Its precision is not lower
than that of standard transport theory, yet it is capable of
treating many important problems on ion injection for
which the standard transport theory is invalid. Compared
with the Monte Carlo method, it has much higher cornpu-
tational efticiency which makes its possible to link a mi-
crocomputer with an experimental facility as a high-speed
analyzing system. In order to develop the potential of the
bipartition model, we plan to deal with the transport
problems of the ions with arbitrary atomic weight in a fu-
ture article. '

E/1E'. ] g l' ( P ]/ )

FIG. 4. Number-backscattering coefficients of H+ ions in-
cident on the gold target as a function of incident energy.
denotes our computational result. c, Eckstein and Verbeek
(Ref. 25); E, Sidenius and Lenskjaer (Ref. 26);, S@rensen (Ref.
27); 6, Verbeek et al. (Ref. 28); X, Eckstein and Biersack (Ref.
29); +, Eckstein and Verbeek (Ref. 25).

puters. In other words, it is far more economical than the
Monte Carlo method. In order to make a direct compar-
ison of the model with the Monte Carlo method, we have
used the Monte Carlo program TCIS, an improved code of
the Monte Carlo TRIM program. When using a
FACOM-M 340-S computer at the computer center at
Sichuan University for calculating the same problem of
ion transport, for example, an ion beam of 1 keV is nor-
mally incident to Si, their CPU times are, respectively, 8 s
for the bipartition model and 850 s for the TCIS pro-
gram. To ensure the statistical precision, we require
that the number of samples is 5000. This requirement is
not too rigorous. Therefore the comparison shows that
the computational e%ciency of the bipartition model is
about 100 times higher than the Monte Carlo method.
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APPENDIX

Let us give a proof of the formula (25). From the re-
current formula of Legendre polynomials, we have

pP/'+](p) P/'(p) =(l—+1)P/+](p),
P/'+] (p) pP/'(p) =(—l +1)P/(p) .

(A1)

(A2)

Therefore

P/(p) —P/+](p) =(1—p)[P/'~] (p)+P/'(p)]/(1+1) .

(A3)

Thus
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thors submitted to the Material Science Branch of the Na-
tional Science Foundation of China. Their financial sup-
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and

Pl p —Pl+1 p & p dp= Pl p +P&+1 p l+1 '
1 —p—1

—m/. (1+1) ' f [P/(p)+P/+](p)](1 —p) ' dp—1
(A4)

1 —mg l+1 '
1 —PI+1 p 1 —p dp=2 ~ l+1—1

+ 1+my l+1 '
1 —P( p 1 —p

' dp.—1

Then, we have

(A5)

(l +1—m/, )g/+] —(l +1+m/ )q/ 4rr2 =0 . — (25)
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