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Self-consistent trajectories for surface scattering via classical-quantal coupling
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We present a set of coupled Schrodinger-Hamiltonian equations that may be solved to give self-

consistent classical trajectories and quantal wave functions while conserving total energy and
momentum during time-dependent simulations of electronic systems. As a first nontrivial applica-
tion, we examine the collision of an atom with an infinite barrier. Our results clearly demonstrate the

necessity for and importance of classical-quantal coupling in low-energy scattering.

I. INTRODUCTION

The quantum-mechanical calculation of electronic prop-
erties during, and as a result of, time-dependent processes
often involves a parametrization of the motion of the vari-
ous nuclei involved. The motion of these nuclei is usual-
ly treated classically, because of their large mass, and
serves to define all or part of the "external potential" to
which the electronic wave functions respond. Treatments
of the nuclear motion range from the very simple, e.g. , an
assumed set of constant velocities, to the more complex,
e.g. , a classical trajectory derived from an assumed sur-
face potential.

These methods neglect feedback effects from the elec-
tronic wave functions to the nuclear trajectory and there-
fore do not conserve the total system energy or momen-
tum. In this paper we present a method for calculating
nuclear trajectories by incorporating the effects of the elec-
tronic degrees of freedom directly into the equations of
motion for the nuclear coordinates. This allows for a ful-

ly self-consistent coupling between classical and quantal
particles. We call this classical-quantal coupling (CQC).
We expect that CQC will be important in many low-
energy scattering situations (i.e., the "diabatic" regime),
and it is of course crucial in obtaining the correct adiabat-
ic limit of any time-dependent simulation. It also pro-
vides a practical intermediate calculation between fully
wave-mechanical treatments and classical Monte Carlo
calculations.

This paper is organized as follows. In Sec. II we state
the CQC equations and discuss their derivation and for-
mal consequences. Section III details the first application
of'these equations to a nontrivial problem, the scattering
of low-energy atoms from an infinite barrier. In addition
to illustrating the need for CQC in low-energy calcula-
tions, this example also highlights many of the features of
time-dependent surface-scattering simulations. In con-
cluding, we indicate a few of the situations for which we
expect CQC to be fruitfully applied.

any quantum many-body system, we shall frequently use
"electrons" and "nuclei" as shorthand for quantal and
classical particles. In our CQC formulation, the quantal
particles evolve via a Schrodinger-like equation for A elec-
trons and N nuclei
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The simultaneous solution of (1) and (2) gives both t)'t and
the classical coordinates as functions of time. The last
term in Eq. (2b) is the CQC force on the nuclei due to the
instantaneous density distribution of electrons.

An immediate consequence of the CQC equations is
that for velocity-independent potentials we may define the
total energy of the system to be
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The classical coordinates are specified by the Hamiltonian
equations

II. THE CQC EQUATIONS

For convenience, we denote classical coordinates by
capital letters and quantal coordinates by lower-case
letters. Though the CQC equations may be applied to

where H, is the exact electronic Hamiltonian. This quan-
tity is explicitly conserved, as may be seen by
differentiating (3) and substituting (1) and (2). The total
linear and angular momenta are similarly conserved. We
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can thus follow the exchange of energy and momentum
between electronic and nuclear coordinates in a self-
consistent manner.

The CQC equations can be derived or made plausible in
a number of ways. At the level of plausibility one may
simply write down Eq. (3) and require energy conserva-
tion. It is also possible to derive the CQC equations from
a variational principle. We will summarize this derivation
here. The full derivation and a detailed analysis are given
elsewhere.

We begin by noting that the exact (N + A )-body
Schrodinger equation may be derived by first defining an
action

tlv= J dt 4' iR—H4'), —
tp fjt

(4)

4 =P(X, (t), . . . , X„(t),t)e

Xtj'jlx), . . . , xg, Xp, t),
where the electronic wave functions g are correlated to
the initial nuclear coordinates, which we denote collective-
ly as Xo, only. S is parametrized by the possible nuclear
paths and tt is a semiclassical amplitude for the nuclear
paths.

As a practical rnatter, one may seek an alternative to
the A-body Schrodinger Eq. (1). This can be neatly ac-
complished by further restricting the electronic wave func-
tions in (5) to be a set of Slater determinants. Equation
(1) is then replaced by the well-known time-dependent
Hartree-Fock (TDHF) equations which are a set of cou-
pled integro-differential equations for the 3-independent
single-particle orbitals. It can be shown that all of the
conservation principles mentioned above and formulated
with the exact Hamiltonian [e.g. , Eq. (3)] still hold when
the electronic wave functions evolve via the TDHF equa-
tions.

As with any variational calculation, one may state ex-
plicitly the conditions necessary for the evolved wave
functions to remain in the assumed (restricted) subspace.
In our case, these conditions are the usual WKB or eikon-
al condition that the variation of fig is small compared to
that of S and a condition related to the smallness of the
quantal-to-classical mass ratio. These conditions, detailed
elsewhere, must of course be checked a posteriori to any
actual calculation.

There are a number of important and advantageous
reasons for using the form in Eq. (5). A paramount one is
that we recover the semiclassical Born-Oppenheimer ap-
proximation in the adiabatic limit. Another is its direct
transition to eikonal or other high-energy scattering limits.

and then extremizing it over the entire Hilbert space of
nuclear and electronic wave functions. Here H is the full
quantum-mechanical Hamiltonian
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The CQC equations are obtained when the action (4) is
extremized over a restricted set of wave functions of the
form

III. APPLICATION TO HARD-WALL SCATTERING
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FICs. 1. (a) Upper curve: Nuclear trajectory, Z(t). Lower
curve: Average electron coordinate (z ) (t) Calculation usi.ng
CQC for a helium atom incident upon a barrier at Z =0. The
incident energy is Ep =50 eV. The nucleus is pulled away from
the barrier and the electrons exhibit adiabatic behavior. (b) The
same quantities calculated without CQC. The electrons exhibit
nonadiabatic behavior due to their lack of feedback to the nu-
clear trajectory.

We consider the scattering of an atom by an infinite
barrier. The barrier serves as a boundary condition for
the wave-mechanical electrons and as a perfect reflector of
the classical nucleus. The barrier may be thought of as a
crude model of a simple metal surface, since the surface
electrons present a strong, short-range repulsive potential
to the incoming electrons via the Pauli exclusion princi-
ple, and the heavily screened surface ions (surface atoms
minus conduction electrons) present a short-range repul-
sive potential to the nucleus. Through its simplicity, the
barrier model serves to cleanly illustrate the effects of
CQC in an unambiguous manner.

We have calculated the time evolution of the scattered
atom by starting with a Hartree-Fock ground state far
from the barrier, boosting the electronic wave functions to
a velocity vo and giving the same initial velocity to the nu-
cleus. The CQC equations are then solved on a discre-
tized space-time grid for t(t(t) and for X(t), the nuclear po-
sition, at time intervals At. The electronic wave functions
are calculated using a TDHF program previously detailed
in the literature. The classical particle trajectory, Eq. (2),
is calculated to the same order in At as the TDHF equa-
tions to obtain properly self-consistent simultaneous solu-
tions of (1) and (2). In all cases considered, the total ener-

gy of the system remained accurately constant. For sim-
plicity, we restricted the solution to the case of normal in-
cidence.

A typical trajectory is shown in Fig. 1(a), where the po-
sition of a helium nucleus and the average position (z ) of
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the electronic charge density are plotted. The most strik-
ing feature is that for the initial kinetic energy used,
Eo ——50 eV, the nucleus never comes in contact with the
barrier. The distortion of the electron cloud caused by its
contact with the barrier is sufficient to cause a 50-eV exci-
tation of the electrons. Since the total energy of the sys-
tem is conserved, this energy is drained from the nuclear
motion; the nucleus is pulled away from the barrier by the
electrons. The time symmetry of the curves in Fig. 1(a)
are an indication that this is very nearly adiabatic behav-
ior. This was borne out by calculating the adiabatic ener-

gy curve for a helium atom in the presence of an infinite
barrier as a function of the nuclear distance from the bar-
rier. Although we have made no assumption of adiabati-
city in the dynamic simulation, its electronic energy
reproduced the adiabatic result. That would not have
been possible had we parametrized the nuclear motion.
In Fig. 1(b) we show the same quantities as in Fig. 1(a),
also calculated using the TDHF program, but assuming
that the nuclear velocity is unaffected by the electrons (a
common assumption in surface-scattering calculations).
The results clearly show that contact with the barrier has
induced nonadiabatic behavior.

We have made a more detailed study of the case where
hydrogen atoms impinge upon the barrier. For all initial
energies below 10.2 eV, the trajectories are similar to Fig.
1(a) with expanded distance and time scales. Again, cal-
culation of the adiabatic energy curve shows that, similar
to the helium atom, the adiabatic ground state at the
point where the nucleus reaches the barrier is one-half of
a 2p state aligned along the surface normal with an ener-

gy, in this case, 10.2 eV higher than the initial ground
state. The adiabatic regime is thus recovered as the low
energy limit of our simulation. Dramatic visual
confirmation of these results is contained in the time-
dependent electronic density contours, which are shown
in Fig. 2.

In the energy region above Eo ——10 eV, the nucleus is
able to make contact with the barrier and trajectories
similar to Fig. 1(b) are calculated. Here again, CQC is
necessary for the accurate calculation of electronic proper-
ties. The inset on Fig. 3 shows the amount of electronic
excitation found in the asymptotic state of a hydrogen
atom
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FIG. 2. Density contours of the electronic wave function of a
hydrogen atom incident upon a barrier with Eo =10 eV. The al-
ternating light and dark bands are contours of decreasing density
in powers of 10, 10 ', 10, and 10 ' of the central density.
The view shown is a plane perpendicular to the barrier. Time
proceeds from (a) to (e) in equal intervals.
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FIG. 3. The amount of asymptotic electronic excitation vs log
of incident nuclear energy, calculated with CQC equations for
hydrogen incident on an infinite barrier. Shown in the inset are
the asymptotic electronic excitation for low incident energies.
Upper curve: non-CQC trajectory. Middle curve: CQC trajec-
tory. The lower curve is a perturbative calculation.

The excitation was calculated with and without the CQC
force (the middle and upper curves, respectively). The
amount of excitation in the diabatic regime is overestimat-
ed by the calculation that ignores electronic feedback to
the nuclear motion. Even at 25 eV initial energy, 2.5
times the energy at which the adiabaticity begins to give
way, CQC is an important factor. The use of self-
consistent trajectories is evidently necessary in low-energy
time-dependent simulations. If one includes in this simu-
lation a more realistic surface model that allows the sur-
face to respond to the atom, the difference between CQC
and non-CQC trajectories for the calculation of energy
loss and charge transfer should be substantial. Simula-
tions of this type are currently under way.

From the time-dependent quantities that we have calcu-
lated, we can assemble a complete picture of the dynamics
of the hydrogen-barrier collision. This serves to illustrate
many of the features of time-dependent surface-scattering
simulations. In Fig. 4(a), the total and kinetic energy of
the electron are plotted as functions of time for the case of
Eo ——10 eV. The electron moves along the adiabatic ener-

gy surface in this case. As the nucleus approaches the
barrier, the electron's kinetic energy first rises and then
falls dramatically. The peak in kinetic energy is associat-
ed with the point of closest approach of the average elec-
tron coordinate to the barrier (the turning point for (z )
seen clearly in Fig. 1), a distance of about 1.0 A for hy-
drogen at low energies. As the electron cloud recedes
from the barrier, the kinetic energy falls. At the same
time, the density distribution is rapidly expanding, caus-
ing the potential energy to rise; the electronic energy rises
smoothly throughout the nucleus' approach to the barrier.
Asymptotically there is no excitation.

At higher incident energies, such as the 25-eV case il-
lustrated in Fig. 4(b), the electron essentially follows the
adiabatic curve on approach to the barrier with over 90%
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Projection of the time-dependent wave function onto
translating hydrogen-bound states reveals that the first ex-
cited state is coherently mixed with the ground state as
the atom leaves the barrier region. This is responsible for
the definite periodicity of the oscillations in the total ki-
netic energy after the collision in Fig. 4(b). The asymptot-
ic period corresponds to a 10.2-eV separation of these lev-
els. The projection of the asymptotic wave function onto
free-space hydrogenic orbitals is plotted in Fig. 6 versus
the log of the incident nuclear energy. The projection
onto a level n is given by the incoherent sum
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FIG. 4. Electronic kinetic (upper curve) and total (lower
curve) energy as functions of time (a) Eo = 10 eV; (b) Eo ——25 eV,
both for hydrogen.

of the electron density remaining .'n the adiabatic ground
state up to the time when the nucleus is reflected by the
barrier. The sharp, nonelectronically controlled turning
of the nucleus induces transitions to excited states, and
there is asymptotic excitation of the electron (hence, the
asymptotic speed of the nucleus is lower than its initial
velocity). Again, striking visual evidence of these con-
clusions is contained in the time-dependent density con-
tours of Fig. 5. Depending on how fast the nucleus is
traveling, the induced transitions may mix only a few
states above the ground state. The lowest curve in the in-
set of Fig. 3 shows a perturbative calculation of the
asymptotic excitation, assuming that the reflection of the
nucleus mixes the adiabatic ground state with the first ex-
cited state for a short time. It is accurate only at ener-
gies just above adiabatic.

At low energies, the asymptotic state consists of mostly
the ground state and the first two excited levels. The
probability of exciting n =2 or n =3 level orbitals has a
peak in the energy region around a few hundred eV. At
higher incident energy, the excitation has a larger ioniza-
tion component with only a 1s "core" remaining around
the nucleus.

As the incident energy rises to an order of magnitude
above the binding energy, the details of the nuclear
motion become less important; we find that CQC has only
negligible effects for incident energies above a few hun-
dred eV. We note that the asymptotic electronic excita-
tion for the range of incident energies 10 eV to 10 keV,
shown in Fig. 3, exhibits a peak around 1 keV. At higher
energies it is presumably harder to excite the electron be-
cause the atom enters and leaves the region near the bar-
rier in a time interval much shorter than a typical elec-
tronic response time.

IV. CONCLUSION

We have demonstrated in this paper a method for gen-
erating self-consistent nuclear trajectories which are cou-
pled to solutions of the time-dependent Schrodinger equa-
tion. The collision of atoms with an infinite barrier illus-
trates the necessity of this technique for low-energy

I.O

Ireful
6..33I I

//////I//////////////////// // I//// I / ////// I /////////// //Il////////.
(o) (b) (cj

0.

0.

Time

0.2—

0
1.0 1.5 2.0 2.5

log

3.0 3.5 4.0

III I///IIII/II IIIIII IIIIII I II I I II I I III I I I I I I I I I I I I I I II I I II II/I II III I I /i
(d) (ej (&j

FIG. 5. Same as Fig. 2 with Eo =25 eV.

FIG. 6. Asymptotic probabilities for n =1, 2, and 3 levels vs
log of incident nuclear energy for hydrogen incident on an
infinite barrier. The top curve is the sum of the lower three.
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scattering. The fact that our CQC approximation allows
for the conservation of total energy was crucial. The use
of CQC and TDHF methods allows us to calculate all of
the atomic parameters as a function of time across the en-
tire range of incident energies within a single technique.

The conservation of linear and angular momenta within
the CQC scheme may also be important in more realistic
low-energy scattering simulations. There are also many
calculations where initially free intermediate or heavy par-
ticles interact with a system of electrons. Examples in-
clude the recombination of antiprotons via atomic col-
lision and the capture of negative muons by hydrogen.
These calculations have been done either by treating all of
the particles quantum mechanically or classically via
Monte Carlo methods. CQC provides an alternative
whereby all of the important system quantities can be

conserved and the mass ratio of heavy or intermediate
particles to electrons can be efficiently exploited. The re-
sulting mix of classical and quantum-mechanical particles
will include most of the important wave-mechanical
effects and yet be considerably simpler to simulate than
the full-wave mechanical system. Calculations of this
type are also currently under way.
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