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Superconductivity in the generalized periodic Anderson model with strong local attraction
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We study a generalized periodic Anderson model with on-site hybridization between wide- and
narrow-band electrons and strong and local coupling with the lattice deformation. Provided that the
interaction with the lattice is strong enough, the narrow-band electrons will be turned into small po-
larons which interact attractively with each other over short distances, leading to the formation of lo-

cal pairs of narrow-band electrons. This leads to a pinning of the Fermi level which is due to the fact
that narrow-band electrons exist only in pair states. By means of a generalized Schrieffer-WolfT'

transformation we eliminate hybridization and obtain an eftective Hamiltonian which describes a con-
tact interaction between local pairs and wide-band electrons as well as the direct hopping of local
pairs and interparticle Coulomb interactions. In such a system the two types of mechanisms which
can lead to superconductivity have been studied. The first one is due to direct local pair hopping and
involves exclusively the narrow-band subsystem giving rise to a superconductivity analogous to
superfluidity in He. The second one is due to a contact interaction between local pairs and pairs of
wide-band electrons. This leads to a superconducting state involving both subsystems where the local
pairs of the narrow-band subsystem induce Cooper pairing amongst the electrons of the wide-band

subsystem. Consequently, the single-particle spectrum of the wide-band electrons opens up a gap
around the position of the narrow band of electrons in pair states. We study the phase diagrams and
the superconducting properties of two such coupled subsystems involving bosons and fermions as a
function of the position of the narrow band with respect to the wide band (or the relative concentra-
tion of narrow and wide-band electrons). We also show that the critical temperature T, and

T, /Es(0) [Es(0) being the energy gap) follow, in general, a strong and nonmonotonic variation. One
of the most striking features of this system is that the pairs of narrow-band electrons exist in the nor-
mal phase and condense on approaching T, from above. The existence of such a narrow boson band

together with a fermion band in the normal phase leads to characteristic behavior in the specific heat
over temperature variation being very similar to that observed in recent studies of nonclassical super-

conductors.

1. INTRODUCTION

In classical BCS-like (Bardeen-Cooper-Schrieffer —like)
superconductors —describing the majority of known su-
perconducting materials —the formation of pairs of elec-
trons at the critical temperature coincides with the forma-
tion of a coherent macroscopic quantum state describing
superconductivity. It is legitimate to ask the question
whether pairs of electrons could not exist independently
of such a coherent state; that is to say, a superconducting
material which could exhibit pair formation well above
T, . It is known that in the case of strong electron-lattice
coupling the electrons change their characteristics com-
pletely. They become small polarons, i.e., electrons which
carry with them a lattice deformation which is very local
and strong. Such entities have the tendency to pair up in
the form of local pairs simply due to the very local lattice
deformation which provides a short-range attraction be-
tween two small polarons. Such particles having Bose
character can, in principle, condense and form a

superfluid state analogous to He II. ' The macroscopic
coherent quantum state associated with it corresponds to
a phase-locked state of k =0 eigenstates of hard-core bo-
sons on a lattice. As one approaches the critical tempera-
ture this quantum coherent state breaks up into hard-core
boson wave functions on a lattice which are no longer
phase correlated. Thus such superconducting materials
should display electron pairs in the normal phase.

The existence of local pairs is now experimentally well
established. After the initially discovered cases of Ti407
and Na V205, a large number of other compounds joined
their rank. All of those materials for which direct un-
questionable proof exists (as concerns local pairs) have not
yet shown superconductivity. The possible reasons for
this are known. It can be due to the fact that they form
half-filled bands of local pairs and hence show a charge-
ordered ground state as expected from the theory. ' As
examples we quote Ti407, Na V20&, and a large group of
materials in which cations exist in two valence states
differing by 2e: ' diamagnetic compounds of Sb and Tl,
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i.e., Cs2SbC16 and T1Fz., divalent compounds of Ag and
Au, e.g. , CsAgC13 and AgF2,' trivalent compounds of Pd
and Pt, i.e., Pd(NH3)2Br3 and Pt(NH&)zC13. Other
reasons for the nonoccurrence of superconductivity in
local-pair systems can be due to their one-dimensional
characteristics as in KCP, polypyrrole, and po-
lythiophene, or to structural disorder or non-
stoichiometry as in WO3, or simply the localization of
those electrons pairs on impurity centers' as in chal-
cogenide glasses, silicon inversion layers, and amorphous
silicon in which such negative-U centers were initially in-
voked in order to explain their electrical, magnetic, and
optical properties.

With the discovery of the so-called exotic superconduc-
tors (i.e., all those which do not fit in any unequivocal
way to BCS superconductors"' ), superconductivity due
to local pairs rather than Cooper pairs can be envisaged as
a real possibility. In general, these materials are much
more complicated (as far as their electronic structure is
concerned) than ordinary classical superconductors. They
contain invariably several electronic bands, at least one of
which is very narrow and frequently of 3d, 4d, 4f, 5f char-
acter.

Systems in which such local-pair superconductivity can
be envisaged are, among others, A 15, C15, Chevrel

3—&5 the carbides and nitrides &4, &5 and
transition-metal dichalcogenides. ' As specific examples
of such systems we mention V3Si, ' ' ' Nb3Ge and
Nb3A1, PbMo6S& and Eu Mo6S8, NbC and TaC, ' ' and
2HNbSez and 2HTaS2. ' All of these materials have nar-
row electron bands and large values of electron-phonon
coupling which result in poor metallic properties in the
normal state but rather high values of the superconduct-
ing transition temperatures. Similar properties have been
observed in some semiconductors and semimetals, such as
BaBix Pb, ~ 03 ' PbTe(T1) ' ' SrTiO PdH
Li& Tiz 04, ' ' ' etc. , with superconducting behaviors
which are quite different from those of standard BCS
ones. Finally, it cannot be excluded that heavy-fermion
systems and their exotic superconductivity are not due to
local pairing. '

A prerequisite for local pairing is the degree of localiza-
tion of the electronic wave function. For narrow-band
electrons this appears to be feasible provided the common-
ly used dimensionless coupling constant A, ~1." The
theory for narrow-band electrons in the presence of strong
and local electron-lattice coupling is now quite ad-
vanced, predicting many features of the superconducting
state which, in fact, are found in a variety of those exotic
superconducting materials: nonexponential variation of
the specific heat with temperature, large deviations from
2k&T, /Eg(0) =0.57, nonstandard variation of the upper
critical field with temperature, (d H, 2/dT )

~

z. r &0,
nonmonotonic variation of T, with the concentration, ex-
tremely high values for H, 2 and, for the penetration
depth, existence of collective modes of the superfluid
order-parameter fluctuations, strong effects of magnetic as
well as nonmagnetic impurities, etc. All this was derived
previously on the basis of a single narrow band and
suKciently strong coupling of the electrons to the lattice
such that the only quasiparticles are local pairs. '

An attempt has been made to generalize this picture to
the situation where the electron-lattice coupling was of in-
termediate strength, giving rise to coexisting small pola-
rons and a band of resonance states of bipolarons (local
pairs) lying at the Fermi level of the polaronic band. 2'

In the present paper we shall address ourselves to a
much more realistic situation, namely that in which one
has two distinct bands: a wide and a narrow one. Only
the narrow-band electrons are assumed to be strongly in-
teracting with the lattice, such that they are unstable to-
wards small-poIaron formation and eventually local-pair
formation. Moreover, hybridization is assumed to take
place between these two types of electrons. For our
description we start from a generalized periodic Anderson
model plus a strong local interaction of the narrow-band
electrons with the lattice. In Sec. II we shall derive an
effective Hamiltonian in terms of a mixture of local pairs
and wide-band electrons interacting with each other. In
general, there are two contributions giving rise to the su-
perconductivity in the system considered. One is due to
direct motion of the pairs, which is fairly independent of
the wide-band subsystem. The other is due to a coupling
between local pairs and pairs of wide-band electrons,
which leads to a mutual induction of superconductivity in
both subsystems.

In Sec. III we shall set up a mean-field treatment of
this effective Hamiltonian and derive the self-consistent
equations for the various order parameters describing the
superconducting and charge-ordered states for each of the
two subsystems (the local pairs and the wide-band elec-
trons). In Sec. IV we discuss the thermodynamic proper-
ties of the superconducting state as a function of the rela-
tive position of the local pairs level with respect to the
wide band of electrons (or, in other words, as a function
of the relative concentration of particles of the two subsys-
tems) and the various interaction parameters.

The normal-state properties are analyzed in Sec. V,
where we shall show that the corresponding mixture of
two lattice gases, one composed of local pairs forming bo-
sons and the other being composed of wide-band
electrons —fermions —can give rise to some remarkable
features in the temperature variation of the specific heat,
the entropy, and the magnetic susceptibility analogous to
those recently observed in heavy-fermion systems. The
effects of interparticle density-density interactions on the
superconducting and normal phases are briefly discussed
in Sec. VI. In the discussion and outlook in Sec. VII we
review the main features of our system, compare them
with those of standard BCS superconductors, and finally
give a list of materials to which our model could possibly
apply.

II. DERIVATION OF AN EFFECTIVE HAMILTONIAN
IN TERMS OF LOCAL PAIRS

AND ITINERANT ELECTRONS

In this section we present the basic ingredients of the
system which we are going to study: a periodic Anderson
model in which the narrow-band electrons are strongly
and locally coupled to the lattice. We expect that in
such systems the narrow-band electrons will be turned
into small polarons which strongly interact in an attrac-
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H =Hc +Hd +Hcd +Hph+Hd-ph
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ko ij ao'
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(2.1)

i CT ljOCT

Hph=~ogb;b;, Hd~h ———A. gn; (b; +b;),

which denote, in order, the Hamiltonian for the wide-
band electrons, the narrow-band electrons, the hybridiza-
tion and Coulomb interaction between narrow- and wide-
band electrons, the phonons, and, finally, the interaction
of the phonons with the narrow-band electrons. cp and

Ep denote the site energies of wide- and narrow-band elec-
trons, respectively. ck refers to the dispersion of the
wide-band electrons and T;J denotes the hopping integral
of the narrow-band electrons. The wide- and narrow-
band electrons are denoted by the operators c (c ) and d
(d ), respectively. The number operators for these two
types of electrons are denoted n and nJ", where i,j refer

tive way over short distances. This gives rise to the for-
mation of local pairs of narrow-band electrons (bipola-
rons) formed on effective lattice sites. Depending on the
system considered, these effective sites can mean (i) single
atomic sites or cation-ligand complexes. As examples we
note BaBi„Pb& 03, ' PbTe(T1), ' ' ' PbTe(In), '

Pb& Sn Se, In&, Tl, ' CszSbC16, KCP, CsAgC13,
and Pt(NH3)~C13', ' (ii) dimers involving two adjacent
metal atoms, examples of which include Ti407,
Li&+„Tiz 04, ' ' ' Na V&05, and probably other Mag-
nelli phases; (iii) small clusters of metal atoms, examples
of which are Chevrel phases' ' M Mo6S&
(M =Pb, La, . . . , Cd, Eu), consisting of clusters com-
posed of six Mo atoms on an octahedra, MoN (with clus-
ters of Mo atoms arranged on triangles), and MRh4B4
(with clusters of Rh atoms arranged on tetrahedra).

As far as the wide-band electrons are concerned, they
couple to the narrow-band ones by way of hybridization.
We study the effect of the local-pair formation on this hy-
bridization and show that it leads to an effective coupling
between the local pairs and pairs of wide-band electrons
which can give rise to superconducting order involving
both subsystems: the subsystem of narrow-band electrons
and that of wide-band electrons.

Let us start with the basic Hamiltonian written as a
sum of terms-.

to the effective lattice sites and o. to the spin of electrons.
In the Coulomb interaction V;"" between the narrow-band
electrons at sites i and j, we split off the contribution aris-
ing from the on-site interaction V;";"=U, for the sake of
clarity in our further analyses. The Coulomb interaction
between wide-band electrons is denoted VJ" and that be-
tween wide and narrow-band electrons V ". For the hy-
bridization we take the usual on-site hybridization, denot-
ed I. As far as the phonons are concerned, we restrict
ourselves from the outset to an ensemble of independent
Einstein oscillations with frequency cop. In fact, this is

quite realistic since in the case of strong and local cou-
pling mostly the local modes couple to the charge density
of the narrow-band electrons. '

p denotes the chemical
potential.

In the above Hamiltonian we have retained all those
terms which are of importance in infIuencing qualitatively
the physical properties which we shall describe below.
We have neglected in the above Hamiltonian the interac-
tion of wide-band electrons with phonons which would
lead to standard BCS coupling in order to clearly bring
out the novel superconducting mechanism which is intrin-
sic to the model. We shall defer the discussion of such
additional electron-phonon mechanisms to the last sec-
tion.

Given the above starting Hamiltonian, we shall proceed
in the following way. We consider ourselves from the
outset to be in the limit of small-polaron formation.
Hence, as a first step we shall rephrase the above Harnil-
tonian in terms of small polarons.

We shall find, moreover, small polarons arising from
the narrow-band electrons will be unstable to pair forma-
tion (bipolarons) provided the electron-phonon coupling A,

is large enough. Keeping this in mind we shall eliminate
the hybridization between narrow- and wide-band elec-
trons to lowest order by means of a generalized
Schrieffer-Wolff transformation and obtain an effective
coupling between local pairs of narrow-band electrons and

pairs of wide-band electrons. We shall then discuss the
various contributions of the effective Hamiltonian ob-
tained in this way for the subsequent treatment of its
properties in the superconducting and normal phases.

A. The small-polaron representation

In the case of strong electron-lattice interaction we can
eliminate this interaction term to all orders in X by the
standard Lang-Firsov transformation,

H = UHU, U = exp( —S& ),
(2.2)

S, = —(A. /coo) g n, (b, b, ), —
Jo

giving rise to

H =Hc +Hd +Hcd +Hph
r

Hd ——g T; exp
I ~JCr

(p&
—p;) d; dl —(Eo —p, —k lcoo) g n;" +(U —2k lcoo) g n;, n;", + —,

' g Vz"n;" n
Q)p lO I I +JCTCT

(2.3)

H,d
——g I

I CT

exp
COp

d; c; +H. c. . + —,
' g V~"n; n~'~+ —,

' g VJ'n nj'
tJOO IJ O'CT
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where P; =b; b—;. We notice that in the polaron picture the hybridization and narrow-band hopping terms become mul-

tiplied by operators involving the lattice deformation. In a first approximation one takes the average over those operators
over the unperturbed phonon eigenstates of H h. This gives rise to

exp +
COp

+~—=Tr pexp +
p COp

=exp( —g /2),

A A.

exp (P; —PJ ) = exp
o o Cdp

exp
2=e

COO P
(2.4)

g = coth
COo

Cc)p

p =exp( H»—/k~ T)/Tr[exp( H„„—/ks T)] .
2 g T

We observe a strong exponential reduction of the hopping
integral for narrow-band electrons and of the hybridiza-
tion constant,

The canonical transformation U =e which will
—S2

eliminate the hybridization to lowest order is determined
29, 30

T, ~T; = T, exp( —g ), I~I=I exp( —g /2), (2.5) [S~,HO]+H, =0, (2.7)

which in the limit of interest (ks T « coo) are
temperature-independent quantities. Moreover, the center
of the narrow band of electrons is shifted downwards and
the on-site Coulomb interaction between them is reduced,

where we have already set equal to zero the strongly re-
duced narrow-band electron hopping integral.

In Eq. (2.7) we use the notation where

H=HO+H, +Hc, H, =I Q(c; d; +H. c. ),
~E —E E U~ U= U —2', (2.6)

(2.g)
where Ez k /cop is the polaron ionization energy —the
energy necessary to liberate a self-trapped narrow-band
electron from its surrounding lattice deformation.

Provided the electron-phonon interaction is strong
enough that the interpolaron interaction is attractive
(U &0) and

~

U
~

& T~, I polarons are unstable to local-
pair formation. In this case all the single-polaron opera-
tors will disappear from the Hamiltonian, which in the
end will contain only operators designating bound-polaron
pairs.

B. Generalized SchrieÃer-Wolft' transformation

Ho:(Ep —p, ) g n;" + U g n;, n;J + g (EQ+Eo p)cQ ck

H~ denotes all the Coulomb-interaction terms proportion-
al to V ', V ", and V;" (i &j )

The condition (2.7) determines Sq to be equal to

1
S& ——

&
—g [I/(Ek+Eo —e )](ck n; d; e ' —H. c.),t/N

E =Ep+ U, n, =n; for o.=+,
=1—n" for ~=— (2.9)

Qur next aim will be to rephrase the initial
Hamiltonian —the periodic Anderson model in the pres-
ence of a strong local interaction between the narrow-
band electrons and the lattice —in terms of a picture in
which these electrons occur exclusively in the form of
bound states of pairs of them. It is therefore natural to
eliminate the hybridization term to lowest order, which
will give us an effective hybridization between pairs of
narrow- and wide-band electrons. The generalized
Schrieffer-Wolff transformation which will do that is high-
ly reliable in our case. This is because —to a first
approximation —we can take the zero-bandwidth limit for
the narrow-band electrons ( T~ ~0) due to the strong
reduction of the bare hopping integral [T~~T~ && T~,
Eq. (2.5)], and because of the smallness of the renormal-
ized hybridization constant: I~I &&I and T; &&I.

=Ho+He +H2+ [Sz, Hc ]+ (2.10)

The term [S~,Hc] in the effective Hamiltonian (2.10)
amounts to a small correction to the unrenormalized
Coulomb interaction H& and we shall in the following
neglect it. This is justified in the large- U limit:

~

U
~

&& Vc [Vc ——VJ" (i&j), V~", V "], where the terms
arising from the commutator [S2,Hc] have a coupling
strength of the order of IVc/ ~

U
~

which is much smaller
than Vc.

H2 =——,
' [Sz,H, ] can then be written as the following

sum of terms:

After eliminating the hybridization term, to lowest order
we obtain the following Hamiltonian:

ia l g-J, CT

H2 charge +H hopping + direct + exchange

H, h„s, ———Q Io(p; Q; +Q; p; ) ——, g I;, [p; (chic;, +c;„CJ,)+H. c.],
l i+J

H„,~~;„g= g (2Wo+Ion; )n; + g 2W; ~d; dj + —,
' g I; i(n;" +n," )d; d~ (2.11)
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Hd&ee«= 2Wo g nf~ 2Io g (2p;+1)(2Q;+1)
io

W; ~(c; c) +H. c. ) ——,
' g I; J I [(2p', +1)+(2p'+1)]c; c +H. c. I

l WJ~i-'r i', o

Hexchange 0 g (Si iri +Si ir~' +2Si 0'& )+
& g I& &Si (C&ic&i+C&i Cji)+S& (C ic;i+C;ic &)

I l g-J
1 ~ z+Q~ I/ JS/(Chic( i +Cf iCJJCJC(J Circ i )

i~j

The various coupling constants are defined by

1 1
Io ————Q Ik, Wo ———g Wk,

k k

ik. (R, —R )I;,= ——Q Ike
k

ik. (R, —R )

k

(2.12)

of narrow-band electrons.
The third term (Hd;„„,) presents the shift in the site en-

ergy of the wide-band electrons and the longitudinal part
of the charge-charge coupling between the two subsystems
and the hybridization-induced hopping of wide-band elec-
trons.

Finally, the last term (H,„,h, „g,) describes the magnetic
exchange interaction between the two subsystems.

C. The limit of strong local attraction
Ik ——I +

+ co —Ep —U Eo —ck —cp

Wk ———' I
~k+ 0 Ep

pi =d( id,iiQi =ci

ascii

(2.13)

S,+=d; d;, 0.+=c; c;

Si:di')di)7 0 i:ci$cif
The physical meaning of the various terms in H~ [Eq.
(2.11)] is as follows.

The first term (H,h,„g, ) represents the transverse com-
ponent of the charge-charge coupling between the two
subsystems which is crucial for the superconducting
mechanism which we want to study in this paper. It may
be useful to rewrite this term in k space for the narrow-
band electrons,

1
H,h„, g(Ik+I —

k )
2N, .kk

i(k+k') R,X(ck,c k, d;,d;, e '+H. c. ),

from which we notice the superconducting-like coupling
of the local pairs d;,d;, to the Cooper pairs of the wide-
band electrons ck, c

The second term (Hh pp;„g ) represents the shift in the
site energy and renormalization of on-site interaction be-
tween the narrow-band electrons —a contribution which
will be absorbed into Hp. The last two terms of Hh pp' g

represent the hybridization-induced (correlated) hopping

The charge operators p and Q for narrow- and wide-band
electrons, as well as the spin operators S,o. for these two
types of electrons, are defined by

g = —,'(n, +n, —1),

Our main objective here is to study the limit of strong
attraction between polarons formed by the narrow-band
electrons. In this limit we can neglect in the Hamiltonian
(2.11) all terms proportional to I~ (i &j ) being much
smaller than Io (Io &0 for U &0). One can see this from
Eq. (2.12), where one can replace ek+ eo by
eF =Eo+ U/2, provided U

~

&~E0 ~~2D —the band-
width of the wide-band electrons (the energy is measured
from the bottom of the width band). We shall point out
that the pinning of the Fermi energy at Ep + U/2 holds
for any density of narrow-band electrons only in the case
of U&0. For U&0 this pinning at E+ U/2 only occurs
for an exactly half-filled narrow band. '

The same argument as developed above for Ij holds
also for Wj and, hence, the hybridization-induced hop-
ping of wide- and narrow-band electrons is very small.
For wide-band electrons this hybridization-induced hop-
ping can therefore be neglected against the direct hopping
contained in gk Ekck ck . On the contrary, for narrow-
band electrons this contribution presents the lowest-order
non vanishing term for narrow-band electron hopping,
since previously the direct hopping —T; was taken to be
negligibly small compared to the hybridization term -I
[see Eq. (2.5)].

Let us now come to the derivation of the effective Ham-
iltonian which we obtain in the large-negative-U limit in
which all narrow-band electrons are in bound states of
pairs. In this case we can restrict ourselves to the sub-
space of effective sites which are either empty or occupied
by two polarons, i.e., n;", +n;", =0 or 2, and the sites con-
taining single polarons will be excluded. For this purpose
let us rewrite our effective Hamiltonian &, (2. 10), after
the omission of terms discussed above, and regrouping the
remainder, in the following way:

W=H0+Hi+Hii+Hni

Ho=(E0 —p+2W0) g n;" +(U+2I0) g n;, n;,

+(Eo P 2WO) X n + y Ekck ck
l CT ka



36 SUPERCONDUCTIVITY IN THE GENERALIZED PERIODIC. . . 185

IIr ———Q Ip(Q;+p, +H. c. )

——,'Ip g (n,", +n;", )(n, +n, )+IIc, (2. 14)

Hrr= g 28'j(d; dj +H.c.),
1 +J, CT

Hrrr =Io g S 'o'

H,~ ——H,g+H, ~+H,~,
H.rr

= ( eo —)tr ) g n + g ekc r ck
I C7 ko.

gV;n n,
'

igloo'

0,"g (b,o —p) g (2——p';+ 1)
(2. 15)

—g Jjr[ 2 (p& pj +pj pi ) pi pj ]
i+J

+ —,
' g Vijd"(2p';+ 1)(2p,'+1),

i+j

0;g=[ Ip
J g (p+ c;,c. ;, +H. c. )

+ —,
' g Vj(2p', + l l(n', +n', ),

1J

with the following definitions:

co ——co —28'o,

~o=Eo '(
I

U
I
+2

I

I—o I
-)+2lVo,

In the limit of strong on-site attraction ( U & 0,

~

U
~

~~ ~;, , Io, V ', V;;", Vj ), it is sufficient to consider

H~, H» and H»& as perturbations and to work to the
lowest nontrivial order in [Ip/

~

U ~, Wj /
~

U ~, . . . I, i.e.,

to first order in H& and to second order in HI&. The spin
operators S;, involving single-electron occupation of sites,
are eliminated in the subspace considered and H»& does
not contribute to the effective Hamiltonian, which in its
final form is

case Ao measures the relative position of the local-pair lev-
el with respect to the bottom of the band of the wide-band
electrons (see Fig. 1).

Expression (2.15) represents the effective Hamiltonian
in final form, which we shall use in the subsequent analy-
ses of its superconducfing and normal-state properties.
This Hamiltonian was derived step by step from our start-
ing Hamiltonian (2. 1) describing a generalized Anderson
Hamiltonian in the presence of strong coupling between
the narrow-band e1ectrons and the lattice. En this deriva-
tion rather stringent conditions on various parameters
were required. In particular, the applicability of the
Schrieffer-Wolff transformation requires that the initial
bandwidth of narrow-band electrons, —Tj (before this
transformation), must not only be smaller than I but also
smaller than the effective coupling Io which results from
this transformation. Moreover, neglecting all the terms
-Ij in expression (2.11) requires 2D «Ep «

~

U
~

[see
Eq. (2.12)].

We want to stress that these conditions are sufficient
conditions rather than necessary ones and that, in general,
we can expect the structure of the Hamiltonian (2.15) to
hold in a much wider range of parameters and, in particu-
lar, in the case T ~I. That this is true can easily be seen
when treating our starting Hamiltonian (2. 1) in the limit
of zero hybridization, I=O. In that case the Hamiltonian
(2.15) can be derived with J; =2T j /

~

U
~

. ' ' '

Hence, in the following we shall treat the various cou-
pling constants occurring in H,& as parameters permitting
JJ to be either bigger or smaller than Io, which will dis-
tinguish between two distinct physical situations as far as
the superconductivity is concerned.

To conclude this section on the derivation of an
effective Hamiltonian in the large-negative-U limit, a few
comments might be in order to compare this situation
with the one for large positive U. In that case, if one as-
sumes n ~ 1 and takes —Eo and Eo+ U to be larger than
the bandwidth (i.e., the limit in which the Schrieffer-Wolff
transformation is applicable for U&0), the Hamiltonian

V,, =( V,',"+
~
I,

~
)6„+V, (1 —5,, ),

2 8';.

/
U/+2/I,

/

(2.16)
2D ?D— ?D

D

In the subspace in which the Hamiltonian equation
(2.15) is defined, the charge operators Ip; I given by (2.13)
obey the Pauli spin- —,

' commutation relations, i.e.,

UJ

0

LP

[p;,pj+] =(1—2p+p, )5;, = —2p';6;, ,

[p+ i —) p+ ( —)] 0 p+p — p~+ )
(2. 17)

and the following relations are fulfilled:

d d z d d l z
n, , +n, , =2p, +1, n, , n, , =-, +p,

[(n;, n, , ) =0] . —(2.18)

In the following we shall take the bottom of the wide
band to have zero energy, i.e. , min(ek+ep)=0. In that

FICjr. 1. The relative position of the local-pair (LP) level A0
with respect to the bottom of the wide band of electrons in the
absence of any interaction effects. Ao Eo ——'

~

U ~,)M denot——es

the chemical potential. (a) A0 &0. In the ground state only LP
states are occupied. (b) 0 & A0 ——p. In the ground state, both the
single-particle states of wide-band electrons and the local-pair
states are occupied. (c) p &h0. In the ground state only the
single-particle states of wide-band electrons are occupied.
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(2. 1 1) and (2.12) can be reduced to

ff g (Ek+Eo P) krrckcr +Hexqh~nS~+COnSt
ko.

(2. 19)

Po: r &P ) Po= —("2—1)= y &p )
1 I

p"=——y(p, )
' ', p'= —y&p', )

'

l

O= Ck)C k) = Ci)C

/(EF Eo)+.I—/(Eo+ U —EF),

(EF Ep), —
(2.20)

where cF is the Fermi energy.

III. DETERMINATION OF THE FREE ENERGY

In this section we shall treat the eAective Hamiltonian,
Eq. (2.15), within the framework of a mean-field approxi-
mation and determine the corresponding free energy at
finite temperature. Apart from homogeneous solutions
for the mean-field ground state of our system, we also en-
visage symmetry-breaking solutions with a certain periodi-
city on the lattice. For this reason it is advantageous to
introduce the following average values:

where H,„,h is given by the corresponding expression in
(2.10), with S; being spin- —, operators. This is nothing but
the Kondo-lattice Hamiltonian, ' which is the sum of
the usual Kondo Hamiltonians for each site plus extra
terms proportional to J; j which describe correlated
conduction-electron hopping and spin exchange on
difI'erent sites. Contrary to U&0, in the case U&0, the
density of both types of electrons is fixed at
n2 ——(1/%) g, (n;" ) =1, n, =n —1, for any Ep, —
Eo+ U~~2D, and k&T &&D. The appropriate coupling
constants will be of the form

(3.1)
1 g y 1 y q iq-R,xg=——y&ck+g, c „,)=—y&c„c,, )eX cV

C k~&k~ = Ci~CIa
ko. 1CT

iQ.R,ilg ———g (c„g c„)=—g (c, c, )eXk + ' X,.

where Q is half a reciprocal-lattice vector and po and pg
as well as xo and x~ denote the superconducting order
parameters for local pairs and wide-band electrons, re-
spectively. p& and n& are the corresponding charge-order
parameters, and n& and nz denote average densities of
wide- and narrow-band electrons, respectively. In the fol-
lowing we shall restrict ourselves exclusively to the uni-
form and two-sublattice-type orderings. In such a case
the relevant thermal averages are translationally invariant
in each sublattice, from which follows

(p", ) =po+exp(iQ R;)pg,

&p ) =po+exp(iQ. R;)pg,
(3.2)

(c;,c;, ) =xp+exp(iQ R;)xg

g (c; c; ) =n, +exp(iQ R; )n& .

Following the Bogoliubov approach ' and performing
the corresponding factorization of the Hamiltonian (2. 15)
using relations (3.2), we obtain the following mean-field
Hamiltonian:

HMF g +H(d) +H(c)

C/& =Jo(po)'+ Jg(pg)' —Ko(po)' —Kg(pg)' —2 Io
I popo —2

I
Io

I xgpg
—Vp(P0+ —,')ii ~

—VgPgng ——,
'

Vp n i
—

& Vgng —(P —b, o
—Vp —

—,
'

Vpni ),
0o'" = —2X[(Jopo IIo Ixp) —(J—opg+ I

io l~g)e' "']P",
(3.3)

+2+ [(Kopo+ —,
'

Vn p) i(+Kp(i(1+' V&n(1)e ']p'; —2(p —b.p
—Vo ) g p';,

Ho g ekckgckrr+
I
Io IpoX (Cklckt+H'c )+

I
Io Ipg& (C k gick1+H. C. )

ko k k

+( V&p(1+ Vg'ng) g ck+g~ck~ —[p &
Vp(2pp+1) —Vp n, —Eo] g ck ck~

ko. ko.

In Eq. (3.3) the following notation, together with Eq.
(2.16), is used:

Jq ——g J; exp[iq. (R; —R~)],
j (&i)

Kq ——g Ko exp[i q (R; —R~ )], .

Vq ——g Vpexp[iq (R, —R )],

V"= g V; exp[iq. (R; —R, )],
J

J +2/ dd

(3.4)
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where K;~ denotes the effective density-density interaction
for local pairs and Vo [Eq. (2.16)] that between local pairs
and wide-band electrons.

For the sake of simplicity, we shall restrict ourselves
from now on to the study of systems which can be con-

sidered as being composed of two equivalent sublattices
for which we have sk ———ek+Q Q being the reciprocal-
lattice vector linking the two sublattices. After a straight-
forward diagonalization of the mean-field Hamiltonian
(3.3), we obtain the following eigenvalues for Hoid'.

E) ——+6), Eq ——+Aq,

~~i=[P —~o —Vo"—(KoPo+KQPQ) ——'( Vo" i+ Vq"Q)] +[(JoPo
I
Io

I
&o)—(JoPQ+

I
Io

I xq)]

~z=[P —~o —Vo" —(KoPo KQPg) —2(Voni —Vq"Q)] +[(JoPo IIo lxo)+(~oPQ+
~
Iii ~xq)]

and the following eigenvalues for Ho'..

~i ~(k) =+ A i(k), co~ 3(k) =+22(k),
where

Ai p(k)= [ei, +p + Y +X +Xq+2[ek(p +Xq)+p Y +XIX +2pYXXg]'
X =

~
Io

I po Xq=
~ Iq

~ pq, Y= Vqpq+ Vqnq, p=iu —
—,
'

Von2 —Vo'n, Fo —.
We are now in a position to evaluate the free energy, for which we obtain (/3 denoting 1/kz T):

Fo/N = —(2/3) 'in[4 cosh(/3b i)cosh(/3b q)] —(P) ' g in[4 cosh[PA i(k)/2]cosh[/) 32(k)/2] j
k

+P'(+ i +n2) P (P ~o Vo Von i )+~o(po) +~Q(PQ) Ko(PO) KQ(PQ)

(3.5)

(3.6)

2
l
Io

l xopo —2
l
Io Xqpq —Vo(po+ 2

)it i
—Vqpg&q —

—,
' Vo " i

—
—,
' Vqn Q (3.7)

In the remainder of this paper we shall examine the
phase diagram and thermodynamic properties of the mod-
el as a function of b,o (the relative position of the local-
pair level with respect to the bottom of the band of the
wide-band electrons), the total number of particles per site
(n), and the various coupling constants.

IV. HOMOGENEOUS SUPERCONDUCTING PHASE

We shall begin this study with the case of the homo-
geneous superconducting phase for which p~

——x& ——0 and

p&
——n& ——0, which implies absence of charge order. In

this case the eigenvalues of Ho and Ho are given by

(4. 1)

with

= (iu —Ao —Kopo Vo
&

Vo/l i )'+ ( Jopo —
~
Io

~
&o )

3 '(k ) = ( ci, —P )'+ ( Iopo )

iiL =p —Eo —
z Vo(2po+ 1 ) —Vo'n

i

(4.2)

The resulting expression for the free energy then becomes

Fo/N = ——In2 cosh(Pb, ) — g In2 cosh[/3A (k)/2]+p(n, +n2) —p —(p —Ao ——' Vo ——'Von, )
1 2

1 dd
0 1

+ o(po)' —Ko(po)' —
i o l&opo —Vo(po+-,')ni —

—,
'

Vo ni (4.3)

Upon minimizing this free energy with respect to the vari-
ables po, xo, and p, we obtain the following self-consistent
equations:

po: [(Jopo —
~
Io xo)/26]t h(af3n6)

n) —1= —1 ei —P
h

/)A (k)
3 (k) 2

n2 —1 =2po= [(p —b, o Kopo —Vo —
—,
' Von, )/b, ]tan—h(/l5)

1 I
Io

I po /3A (k)
2N „A (k) 2

n =n&+n2,

where

(4.4)
We shall now analyze the superconducting phase in the
absence of any density-density coupling terms. In Sec. VI
we shall show that, provided Kv, VJ, VP «D (D being
the half-bandwidth), their eff'ective does not change the
qualitative features of the superconducting phase.

In order to appreciate the characteristic difference in
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the superconducting properties due to the two distinct
mechanisms involved here, we shall study the ground-
state and finite-temperature phase diagrams first, for each
of the mechanisms Jo&0, Io ——0 and Io&0, Jo ——0 sepa-
rately, and, finally, when they both are at work
(Jo&0 Io&0).

A. Jp&0, Ip ——0

n &
—1 =2po = [(p—Ao) /A]tanh(Pb. ),

n, —1=——g tanh[/3(ek —P)/2] .1

N

(4.5)

with 6 =(p —b,o)'+ Jo(po) .
In the following we make use of a model square density

of states for the wide-band electron states,

1/2D for 0 & Ek+ co & 2D,
Ne= 0 otherwise, (4.6)

with D denoting an effective half-bandwidth.
The self-consistent equations (4.5) can be solved analyti-

In the absence of hybridization our system is described
as an ensemble of nz/2 hard-core bosons and n

&
fermions

on a lattice. This case presents a generalization of a sys-
tem studied earlier in which only bosons exist. ' ' In the
present case the number of bosons is no longer a constant,
but will vary as a function of temperature such that both
fermions and bosons are in thermal equilibrium, their to-
tal number, n being constant.

The self-consistent equations (4.4) then reduce to

Jp
tanh(Pb ),

2

cally at T=O. These results are summarized in Figs. 2—4.
In Fig. 2(a) we plot the ground-state phase diagram for n

versus ho/D for a fixed value of Jo/2D=0. 25. For com-
parison, we plot in Fig. 2(b) the same diagram in the ab-
sence of any superconducting coupling between the local
pairs, JO=O. In Figs. 3(a) —3(c) we plot the ground-state
phase diagrams for Jo/2D versus 60/D for three values of
n, 0.5, 1, and 2. The regions of local-pair superconduc-
tivity are determined by

—(Jo/2D)(n —1) & bo/D & Jo!2D +n .

Finally, in Figs. 4(a) —4(d) we plot the zero-temperature
variation of n& and nz as a function of Ao/D for four
values of n (1, 1.5, 2, and 2.5) and Jo/2D=0. 05. We also
give in the same figure the variation of the superconduct-
ing order parameter po at zero temperature as a function
of Ao/D.

Notice that, for n & 1, po steadily increases upon in-
creasing the number of local pairs, reaching a saturation
value when the number of local pairs has attained its
maximum value: nz ——n. For 1&n &2, po has a max-
imum for nz ——1 (half-filled band of local pairs). Upon in-

creasing nz above unity, po decreases, reaching a satura-
tion value po ———,'&n (2 —n) when n& has become equal to
n.

For n=2, po ——0 when nz reaches the two limiting
values n&

——0 and 2 [Fig. 4(c)]. The reason for this behav-
ior is clear since, indeed, neither for nz ——0 nor for n z ——2
can we have superconductivity. In the first case this is be-
cause there are no local pairs in the system and, in the
second, because all the available sites are occupied by lo-

(a)

4
n
3- EM LPS

Q
-1

LPS EM

I I

ao/o

LPS

(a)

I

hp /D LPS LPS+E EM

4

Q l

-1

LPN

LPN

ho /D

Q

~o
2D

Q.5—

LP

Q s

-1

LPS+ EM

I I

~o /'O

(c)

FIG. 2. Ground-state phase diagram for Jp&0, Ip=O as a
function of the total number of particles n, vs Ap/D for two
characteristic values (a) Jp/2D=0. 25 and (b) Jp/D=O, Nota-
tion: LPS (superconducting state of local pairs), EM (metallic
state of wide-band electrons), and LPN (nonmetallic state of lo-
cal pairs).

FIG. 3. Ground-state phase diagram for Jp&0, Ip ——0 as a
function of Jp/2D, vs Ap/D for three difterent values of n. (a)
n =0.5, (b) n =1, and (c) n =2. The same notation as in Fig. 2
is used, with EN denoting the nonmetallic state of the wide-band
electrons.
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fl) )cl2

0
-1

A2

Xpo
—05

0 25

0
2 g/D

X
Po

0.5

cal pairs and hence they cannot move.
The transition at 50=Jo/2+nD between the supercon-

ducting state with n 2&0 and the nonordered state with
n

&
——n is always second order. The same is true for n =2

at 60= Jp/2 between the superconducting phase and
the nonordered one with n 2

——2. On the other hand, the
transition for n &2 at bo —— (—Jo/2)(n —1) between the
superconducting phase with n z

——n and the superconduct-
ing phase with n2 & n and n» 0 is always of higher order.

Let us consider next the finite-temperature phase dia-
gram. Upon eliminating the chemical potential in the last
of the two equations (4.5), we obtain (within the tempera-
ture regime where the superconducting order is stable) the
following equation determining the temperature depen-
dence of the number of local pairs:

Jp
b, o—2D — (n2 —1)

2

—0.25
1= —ln

1 —exp[ —( n n2 —)PD]

exp[(2 —n +n z )PD] 1—Jp
2

n, . (4.7)

(b)
l

6()/D

From Eq. (4.5) we obtain, for the chemical potential,

Jp
p =b.o+ (n2 —1),

2
(4.8)

02
X

Po

the temperature dependence of which is hence determined
by the variation of n2 with temperature.

The critical temperature T, is obtained by taking the
limit po~O in Eqs. (4.5), yielding

k~T, =Jo[n2(T, ) —1]/lnIn2(T, )/[2 —n2(T,

(c)
0
-1

fl]pfl2

—0.25

6o/ D

0-5

Equation (4.9) together with the solution of Eq. (4.7)
determines T, . In Fig. 5 we plot the numerical solutions
of these equations, i e., T, as a function of hp/D for
several values of n and Jp /2D =0.05. It is interesting to
notice the gradual changeover of the phase diagram as one
departs from n =2 upon decreasing the number of parti-
cles. For n =2 the superconducting region is well
confined between two limiting values of Ap/D:
——,

' Jp & b,p & —,
' Jp+ 2D. For n & 2, on the contrary, the su-

perconducting phase extends over the entire region of
Ap/D &

&
Jp +nD, for suSciently low temperatures. On

the right-hand side of the phase diagram ( —,
' Jo+nD ~ b, o),

h )

2 g/D

0.25 kg Tc

2D

O.02— n= O.5

n= 2.5

f1=2

FIG. 4. Variation of n l (number of wide-band electrons), n 2

(number of narrow-band electrons in local-pair states), and the
superconducting order parameter pp for local pairs as a function
of Ap/D at zero temperature and Jp /2D =O. 05,Ip ——0. (a) n

(=nl+nq)=1, (b) n =1.5, (c) n =2, and (d) n=2. 5.

FIG. 5. The superconducting critical temperature as a func-
tion of Ap/D for five values of n ( =0.5, 1, 1.5, 2, and 2.5) and
Jp/2D =0.05 Ip =0. n denotes the total number of particles.
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T, drops off sharply like

T, — —Jo/inn &(0)

= —Jo/ln[( —,
' Jn+nD —ho)/[( —,

' Jo+D)] )

as Az increases, tending to zero at Ap ———,
' Jz+nD. On the

left-hand side of the phase diagram, T, tends to a satura-
tion value

T,*=Jn(n —1)/ln[n /(2 —n)]

as the number of local pairs tends to a saturation value as
~p/D decreases.

The overall picture of T, which evolves is that upon in-

creasing the number of local pairs (upon decreasing
An/D) T, first sharply rises before it either goes through a
maximum and then decreases towards a finite saturation
value T* (the behavior for n) 1) or continues to increase
and saturates at T,* (the behavior for n & 1). Only for
n =2, T, =0 for any 6[] below ——,

' Jp.

B Jp =0 Ip&0

In the case J[]&0,Ip=0 studied previously, the system
of local pairs was self-sufficient to produce a supercon-

ducting state. In the case Jp ——0, Ip&0, which we are go-
ing to study now, superconductivity can only occur pro-
vided both subsystems (the local pairs and the wide-band
electrons) participate in its formation. This happens in
the following way. Due to hybridization of localized and
wide-band electrons, the pair state of localized electrons
induces pairing of the wide-band electrons on the same
site. This spontaneous creation of wide-band electron
pairs occurs randomly on any individual lattice site. At
any given moment we find that a given site is either empty
or occupied by a pair of electrons which are either local-
ized or wide-band electrons. What leads to an ordered
superconducting state of these pairs is the itinerancy of
the wide-band electrons which lead to effective supercon-
ducting interactions of the form Q,

+
Q~ +H.c. for the

wide-band electrons and p+pj +H.c. for the local pairs.
Superconductivity is then controlled by two order param-
eters, po ——(1/N) g, (p; ) and xo —(1/N) g, (Q+ ), both
of which are finite in the superconducting state and which
jointly tend to zero as the critical temperature is ap-
proached.

As before, we write the free-energy and self-consistent
equations determining the order parameters and the
chemical potential:

Fn/N = —(1//3)ln(2 cosh[/3[(p —5o) +(Ioxo)']'~~
) }

/3N
g ln 2 cosh —[(Ek —P) +(Ioxo)']'

2
+pn —(2p —6n) —2

~

In
~
pnxn

po= —
[ l

Io
l
xo/2[(/ —~n)'+(Ioxn)'1'"jtanh(/3[(/ —~n)'+(Inxn)'])

2N 2 [(
l
Io

l
po}/[(Ek —P) +(Iopo} ]' ]tanh —[(Eq —P)+(Iopo} ]'

2
(4.10)

n, —1=, tanh [/3[(p —bn) + (Inxn ) ]'~' j,
[(V—~o)'+(Ioxo }']'"

T

E —p
n~ —1=——g, tanh —[(p —Ao) +(Iopo) ] ~

[(P—b, n} +(Inpn) ]'

Let us first consider the ground-state properties of this system. Taking the limit T~O in Eqs. (4.10), we obtain, with

the use of the square density of states, Eq. (4.6),

2x ()

I
Io

I po

p —Ap

[(/ an) +(Iopn) ]

Io ixo

2[(p —~o)'+(Ioxo }']'"
2D / + [(2D —

/
)'+—(Iopo)']'"

ln
2D p+[p +(Inpn) ]'

(4. 11)

n) —1=—
2D

[[(2D —
/ )'+(Iopo}']'"—[/ '+(Iopo)']'"],

Fn/N(/3~ oo )=EGs ——[(p —Ao) +(Inxn) ]'~ — J de[(e p) +(Iop—o) ]
~ +pn —(2p —Ao) —2

i
Io

i poxo
2D o
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I &ol

20

0.5—
SUPERCONDU |T.

LPS+ES

0.5
(a]

POilX O)

f11 0.5

0.25 —0.25

Q.25—

Q I !I

—1 0 1 a,/o
FIG. 6. Ground-state phase diagram for n =2, Jo ——0 (n being

the total number of particles), as a function of
~
Io

~

/2D, vs

Ao/D. LPS+ES denotes the superconducting state involving
both local pairs and wide-band electrons. LPN and EN indicate
the nonmetallic states of local pairs and wide-band electrons, re-
spectively.

05—

a,/D

X

(q] Po~l"y

—0.5

—025

The ground-state (GS) chemical potential explicitly reads
0 0

and

D
—1=—cp[[1+Ip(pp/D) rp ]/(1 ——cp')] '

rp= —[1—(2pp) ]' +2 n fo—r n~2,

2

=[1—(2Pp) ][1+(Ip/2D) ] for n =2 .

X

po

I X
XPo &) oI

—0-5

—0.25

Numerical solution of these equations show that the su-
perconducting state is always the ground state for all
values of Ip/D and Ap/D for any value of n except n=2.
For n=2, Eqs. (4.11) indicate second-order phase boun-
daries between the superconducting and normal phases
which are insulating. In Fig. 6 we plot the ground-state
phase diagram as a function of

~
Ip

~

/2D versus b, p/D, for
n=2. In Figs. 7(a) —7(c) we present the zero-temperature
behavior of n&, nz, pp and xp fot

~
Ip

~

/2D=0. 5 and
three diferent values for n.

Let us now investigate the phase diagram at finite tem-
perature. For this purpose we shall evaluate T, as a func-
tion of Ap/D assuming that the phase transition between
the superconducting and the normal phase is second or-
der. From Eq. (4.10) we obtain the following self-
consistent equations for T, =1/kP, and the chemical po-
tential:

n —2 = tanh[P, (P —c3p)]— 1

DP,
cosh [p, (2D —p ) /2]

cosh(P, p/2)
The numerical solutions of these equations are plotted for
T, versus hp/D in Figs. 8(a) and 8(b) for two characteris-
tic values of

~
Ip

~

/2D (0.1, 0.5) and n=0, 5, 1, 1.5, and
2.

Ip pn tanh[(P /2)(e —P )] tanh[P (P —Ap)]
dc =1,

8D p C —P P —Ap

(4. 12)

a&)/ D

FIG. 7. Variation of nl (number of wide-band electrons), nz
(number of narrow-band electrons in local-pair states), and the
superconducting order parameters po and xo for local pairs and
wide-band electrons as a function of Ao/D at zero temperature
and JO=O,

~
Ip

~

/2D =0.5. (a) n (=n, +nz)=0. 5, (b) n =1,
and (c) n =2.

From Figs. 7 and 8, we notice that, except for the case
n =2, for which the superconducting phase is restricted to
a finite interval in Ap/D, for any n &2 the superconduct-
ing state extends over the entire region of the parameter
Ap/D. For large values of Ap/D we find that the number
of local pairs is exponentially small but finite, which leads
to exponentially small superconducting order parameters
pp and xp. Upon decreasing hp/D below some definite
value of Ap/D, the number of local pairs very quickly
changes from infinitesimally small values to finite values
with a corresponding rise of the values for pp and xp. De-
pending on the value of n, we find that, upon decreasing
Ap/D pp either monotonically increases and then satu-
rates at a finite value, or first goes through a maximum
and then saturates at a finite value. The first type of be-
havior occurs for n & 1 and the second for 1 & n & 2 with a
maximum at a value for Ap/D where n

&
-nz.
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It is worthwhile to compare the two cases Jo&0, Io ——0
and Jp=O Ip&0. In the first case superconductivity is
due to coherent hopping of the bosons (local pairs) on the
lattice. The hopping of bosons presents an intrinsic mech-
anism in this case. On the contrary, in the case
Jo =0 Ip&0 direct boson hopping is absent. Bosons now
move via an intermediate state where they have dissociat-
ed into pairs of wide-band electrons. Due to this, a super-
conducting order among the bosons involving coherent
hopping of them induces an analogous coherent state
among the wide-band electrons. Consequently, in the
case Jo ——0, Io&0 a gap opens in the single-particle spec-
trum of the wide-band electrons, being equal to
Es ——2 min[(EI, —P) +(Iopo) ]'

It is instructive to compare Figs. 4,5 and 7,8 far as T,
and the superconducting order parameter for the local
pairs, po, are concerned. The superconducting order pa-
rameter at zero temperature for n =2 shows very similar
behavior in the two cases. Starting from zero at some
value of 60/D for which n becomes zero, po goes through

METAL

(EM)
I

a, /o
FIG. 8. Finite-temperature phase diagram as a function of

ho/D (a) For tw.o values of
~

Ip
~

/2D (0.5, 0.1) and n (total
number of particles)=2; {b) for Io /2D=0. 1 and n =0.5, 1,
and 1.5, The dashed line (which on the scale presented is indis-
tinguishable for all three cases of n) corresponds to T, calculated
by a perturbational approach for Ao 0, see Eq. (4.20).
LPS+ES denotes the superconducting state involving both local
pairs and wide-band electrons. LPN stands for the nonmetallic
state of only local pairs and EM indicates the metallic state of
only wide-band electrons.

a maximum at n
~

——n z
——1 upon increasing Ao/D and

finally decreases to zero at some value of Ao/D for which
nz becomes zero. For n &2 the right-hand parts of Figs.
4 and 7 are rather similar as far as po is concerned, except
that, for Jo&0, Io =0, po sharply drops to zero at
Ao/D-n+Jo/2D, while, for JO=O Ip&0 pp starts to
drop near Ao/D -n, and Ao/D n+ Jo/2D then tends to
zero asymptotically as Ao/D is further increased. Upon
decreasing Ao/D below n, po and nz again show very
similar behavior for both cases Jo&0, Io =0 and
Jo ——0, Io&0, except that for the first case both po and nz
saturate at some given value of Ao/D, while for the
second case this saturation value is approached asymptoti-
cally.

Let us next consider the variation of T, as a function of
Ao/D. For n =2 the behavior of T, for the two cases
Jo&0 Io =0 and Jo ——0, I&0 is very similar and shows a
small reentrance region [cf. Figs. 5 and 8(a)].

For n &2 we shall first discuss the case Jo&0, Io ——0
(see Fig. 5). Upon approaching b,o/D=n +Jo+2D from
below, T, rapidly drops to zero. Upon decreasing 50/D
below Ao/D ~n, T, first goes through a maximum and
then drops and approaches a saturation value below
Ao/D=O provided 1&n &2. For n &1, T, monotonical-
ly increases and approaches a saturation value as Ao/D is
lowered. This behavior can easily be understood. T, is
maximal if the concentration of local pairs is equal to —,

'

(n& ——1). For n & 1 all particles are in states of local pairs
for Ap/D & Jo(n —1)/2. Upon increasing Ao/D above
zero, the number of electrons in the local-pair states is di-
minished, while the nuniber of wide-band electrons is in-
creased. Since here the superconductivity is exclusively
due to the local pairs, T, monotonically decreases as
Ao/D increases from negative to positive values and be-
comes identically zero at 50/D =n +Jo /2D, at which
point the number of local pairs has dropped to zero. The
case 1 & n & 2 is somewhat different. For
5p/D & —Jp(n —1 )/2 there are nz nelectrons ——in pair
states. Upon increasing Ao/D this number of electrons in
pair states decreases, reaching a value of 1 at some Ao/D
between 0 and n, and then further decreases to zero at
Ao/D=n +Jo/2D. Hence, upon increasing 50/D from
values below zero to 60/D =n +Jo/2D, we first notice a
rise in T, until Ao/D reaches the value for which nz ——1

and then drops to zero.
Let us now discuss the behavior of T, for the case

Jo =0, Ip&0 for 0 & n & 2 [see Fig. 8(b)]. Upon approach-
ing 60/D=n, we again find a very rapid drop of T„but
contrary to the case Jo&0, Io ——0, T, only tends to zero
asymptotically as Ao/D is increased. Upon decreasing
Ao/D below n, T, first rises, goes through a maximum,
and then drops off; slowly tending to zero as
~o/D ~—oo

Our mean-field results seem to be quite plausible in the
region 0& Ao/D & n. In contrast, the relative large values
for T, which we obtain for Jp=0 Io&0 and Ao/D &0 are
rather surprising, given the fact that in this regime the
number of wide-band electrons is very small. In order to
test this result we adopt an approach which in this regime
is superior to a mean-field treatment (if

~
Io

~

&&D and is
based on a perturbation approach). The idea is that in
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H=Hp+H],
Ho =(Ao —p) g (2p';+1)+ g (Ez P)c„—.c, (4.13)

this regime of b,o/D all the electrons are in local-pair
states and thus the motion of those pairs can only come
about by their dissociations into a virtual pair of wide-
band electrons with an energy above one of the loca1
pairs.

Let us for this purpose consider our Hamiltonian (2.15)
in the absence of any density-density interparticle interac-
tion as well as of the direct hopping term, and which, for
clarity, we repeat here:

tion is trivially satisfied. This effective Hamiltonian de-
scribes long-range hopping of the local pairs —or, in pseu-
dospin language, an indirect (Rudermann-Kittel-Kasuya-
Yosida —type) interaction.

The essential new feature appearing in the Hamiltonian
(4. 15) is the self-energy correction gz A", which is absent
in the mean-field treatment of the contact interaction [Eq.
(2. 15)] applied in the bulk of this section. We shall see
that this self-energy correction substantially modifies the
behavior of T, as a function of hp/D. For this purpose
we evaluate T, on the basis of a mean-field treatment of
the transformed Hamiltonian (4.15), which yields

~i= I'o
I
&(Q'p +p'0

k~ T, = —Jo(n —1)/ln[n/(2 —n)],
Jo= I'o I'[~~=o —'(0)) .

(4.17)

After the transformation of the Hamiltonian (4.13) one
obtains a series of terms which are, in general, products of
local pair operators p; and wide-band electrons. In the
regime of interest, i.e., Ap/D &0, this rather complicated
form of the transformed Hamiltonian is very much
simplified and finally yields

H =Hp+Hi,
~o ——g(E~ —

S )cl.e~. +2('o —V —
—,'') Xp'

+N(A(0)+b. o
—p),

H7= —,'g '(R;, )(p,+p& +p,+p, )

i+j

1 1

2N W, ——g W„(p, p,-+H. c.), (4. 15)

with

—k-R, -

A(R;, )=—ge
k

2
Ip

N
kp

np+nk+p 1 —2npnk+p
~k ~k+~P '

E.p+ ck+ p
—26p

(4.16)

In this derivation of the effective Hamiltonian we have,
moreover, averaged over the wide-band electron degrees
of freedom, which is justified as long as correlations be-
tween them can be neglected. For Ap/D &0 this condi-

Our aim is to reformulate this Hamiltonian in terms of an
effective hopping of local pairs via virtual excitations into
wide-band states. For this purpose we eliminate, to first
order, the contact interaction Hi between local pairs and
pairs of wide-band electrons. The unitary transformation
which will do this is given by

iq. R
—sU=e, S= g p, c„,cq „—H. c. .

jqp Ep+Eq p
—26p

(4.14)

Evaluating Ak p and

A(R =0)=—gAg
1

N k

with the use of the square density of states for the wide-
band electrons, we obtain

1 ++1 2 XA(0)= —— ln(1+x) — 1+— ln 1+—
D x X 2

Ak p
1

4D
ln(x+1), x=2D/~ b.o ~

(4.18)

A simple numerical analysis of Jp as a function of
Ap/D shows a very sharp drop of Jp as 4p/D is lowered
below zero, giving values for T, well below those predict-
ed by the mean-field treatment of the contact interaction.
In Fig. 8(b) we plot this result (dashed line) for T„which
finally leads to a picture for n &2 which is in fact, very
similar to that obtained for n =2, i.e., a sharp dropoff of
T, as one approaches values of Ap/D where either the
concentration of local pairs or wide-band electrons be-
comes very small.

The ratio of 2T, /Eg(0) is a quantity frequently referred
to in order to show to what extent a system is a classical
BCS superconductor for which this value equals 0.57.
For our system there is no gap in the single-particle exci-
tation spectrum for wide-band electrons for the case
Jp&0, Ip ——0 since they are not superconducting. Hence
the quantity 2T, /E~(0) is infinite. In contrast, for the
case Jo=0, Io~0, 2T, /Eg(0) varies considerably as the
relative proportion of local pairs and wide-band —electron
pairs is varied. We plot this variation of 2T, /E~(0) as a
function of Ap/D in Fig. 9 and notice that its value ap-
proaches the BCS value in the limit of predominantly
wide-band electrons in the system. T, /Es(0) is larger
than the classical value for some intermediate values of
6p/D, where both the number of local pairs and the num-
ber of wide-band electrons are comparable. Finally, the
value for 2T, /Eg(0) drops to zero in the limit of predom-
inantly local pairs.

C. Jp~O, IO~O

%'e shall now discuss the finite-temperature phase dia-
gram for the general case Jp&0, Ip&0. Again, let us sup-
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FIG. 9, 2k&T, /E~(0) as a function of A0/D for J0 ——0 and

two values of
I
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I
/2D (0.5, 0.1) and n =1. Eg(0) denotes the

gap in the single-particle spectrum of the wide-band electrons at

zero temperature.
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pose that the phase transition between the low-
temperature superconducting state and the high-
temperature normal state is of second order. Then, taking
the limits po and xo~0 in the set of Eq. (4.4), we obtain

Io tanh(p, /2 )(ek —p )
Jo+

2 217 ~k —P
tanh[P, (P —b, o) ]

X =1,
P —~p

(4.19)

1 p, (ek —p)
n —2 = tanh[/3, (p —b, o ) ]——g tanh

N ~ 2

Using the square density of states for the wide-band elec-
trons, Eq. (4.19) can be rewritten in the form

Ip '
—J+ S B=1,
2 4D

n —2 = tanh[/3, (p, —bo) ]

LP S+ES

zo/'o

FIG. 10. Finite-temperature phase diagram as a function of
ho/D for total number of particles n = 1, 1.5, and 2, and

Jo/2D =0.05. (a) Io
I
/2D =0.025, (b)

I
Io /2D =0.5.

LPS+ ES denotes the superconducting state involving both local
pairs and wide-band electrons.

pends on n. It is biggest for n =2 and almost disappears,
as n is reduced.

It is worthwhile to study in detail the two limiting cases
Ap/D ~ n and Ap/D 50 with predominantly wide-band

electrons and predominantly local pairs, respectively.
This can be done analytically. In the first case, for

Ap ))nD the chemical potential p =nD. Using the condi-
tions (2D —p, )P, » 1 and pP, » 1, which are trivially

satisfied, we obtain, after some straightforward calcula-
tions,

cosh [P, (2D —p, ) /2]
ln

DP, cosh(P, p/2)
(4.20) =27 50—nD —Jp /2

ks T, = Di/n (2 n) exp—
7T Ip/4D

S= dE
tanh[(P, /2)(E —P ) ) tanh[/3, (P —b o)]B=

p E, —p P —Ap

In general, these equations can only be solved numerically
and we present those results for T, as a function of Ap/D
in Fig. 10 for several values of n ( = 1, 1.5, and 2),
jo/2D =0.05, and (a)

I
Io

I

/2D =0.025 and (b)

I
Io

I

/2D=0. 5.
Vr'e notice a behavior which is clearly a sort of superpo-

sition of the two limiting cases (Jo&0, Io ——0 and

Jp =0 Ip&0). Upon decreasing 6p/D, one first observes
a very rapid increase of T, as one approaches the situa-
tion where the local-pair level becomes populated (i.e., for
Ap/D ~n). Upon further decreasing hp/D, Tp first in-

creases and goes through a maximum before it decreases
and saturates at a finite value (except for n =2) for
Ap/D «0, where only local pairs are present. The size of
this maximum in T, as a function of Ap/D strongly de-

I,
'4.21)

Ip
k~T, = Jp+ - ln1

2D+
I
~o

I~oI
n —1

ln[n /(2 n)]—
(4.22)

with y =e, C =0.577.
This indicates an exponentially sharp dropoff of T, as

hp/D exceeds the characteristic value of Ap ——nD+Jp/2,
where practically all particles exist in the form of wide-

band electrons with only a small number of local pairs
present.

As to the second case, Ap &0 is the opposite limit of
predominantly local pairs and very few wide-band elec-
trons. In this case, for

I
Ao

I
/D «0, we have p=Ao and

nq =n —(T/D) exp( —ho/T). Similarly, as before, we

now have (2D —p)P, »1 and p/3, » 1, from wh—ich we

obtain



36 SUPERCONDUCTIVITY IN THE GENERALIZED PERIODIC . ~ . 195

indicating a slow dropoff of T, towards a saturation value
equal to

Jo(n —1)/[ ln[n /(2 —n)] I

upon diminishing 6p/D.
Setting JO=O in Eq. (4.22), we recognize the remaining

contribution as one of the two contributions (i.e., Aq o)
which we obtained in the more refined treatment using a
perturbational approach [see Eq. (4.18)]. From this it is
evident that the present mean-field approach largely
overestimates the value of T, in the regime Ap/D &0,
where all the electrons are in local-pair states.

Let us conclude this section with some remarks on the
thermodynamic and magnetic properties of the supercon-
ducting state discussed above. A detailed microscopic
description of these quantities necessitates a random-
phase-approximation (RPA) treatment —a work which is
presently in progress. In the following we summarize
some preliminary results.

For the case Jp&0, Ip ——0 the situation is very similar
to the case of a mixture of local pairs and itinerant elec-
trons with properties which are essentially given by the
sum of properties for each of the two subsystems. An
essential feature is a linear spectrum of the collective exci-
tations for the phase fluctuations of the order parameter
of the local-pair subsystem, giving rise to a T law in the
low-temperature specific heat. The wide-band-electron
subsystem, in contrast, contributes a linear term to the
specific heat in the superconducting phase of the mixture
due to the fact that this subsystem remains in the normal
state. From the local-pair subsystem we expect, ' rnore-
over, a large penetration depth in the Meissner effect,
large values for the upper critical fields, and a
d H, 2/dT

~ r r &0 due exclusively to the diamagnetic

coupling of the magnetic field to the charge of the local
pairs. The paramagnetic coupling of the field to the spins
of the wide-band electron will give rise to a Pauli suscepti-
bility.

The situation for Jp ——0, Ip&0 is quite different from
Jp&0 Ip =0 in both the superconducting and normal
phases. Due to the interaction between local pairs and
pairs of wide-band electrons, a gap in the single-particle
spectrum of the wide-band electrons opens up in the su-
perconducting phase. Inside of this gap lies the level of
the localized electrons that are in pair states. The collec-
tive excitation spectrum arising from the phase fluctua-
tions of the order parameters now involving both subsys-
tems is again sound-wave-like, provided certain conditions
on the range of range of the interparticle Coulomb in-
teractions are being satisfied. The consequence of these
excitations is an overall T law for the low-temperature
specific heat. The main effect of a magnetic field will now
be its paramagnetic coupling to the spins of the wide-
band-electron subsystem. H, 2 will be determined by the
field closing the gap in the single-particle spectrum of the
wide-band electrons, implying a simultaneous break up of
the condensate state of the local pairs. The Meissner
effect in this case will be rather like that for standard BCS
su perconductors.

Finally, the case Jp&0, Ip&0 is expected to show a
specific heat proportional to T at low temperatures. As

far as its magnetic behavior is concerned, it ought to show
rather interesting properties since now we have two in-
dependent mechanisms which can give rise to supercon-
ductivity: the direct hopping of local pairs and the con-
tact interaction between local pairs and pairs of wide-band
electrons. This should permit us to suppress supercon-
ductivity in the wide-band-electron subsystem upon ap-
plying a magnetic field. The subsystem of the local pairs
at the same time would continue to be superconducting.

V. THE NORMAL STATE

The most striking characteristics of our superconduct-
ing system studied in this work is the fact that upon the
disappearance of the superconducting order at T, the bo-
sons (i.e., local pairs of narrow-band electrons which have
Bose character) continue to exist in the normal phase up
to a certain temperature (comparable to the binding ener-

gy for the formation of the local-pair state) where they
dissociate into two independent polarons. This picture is
obviously in great contrast with a classical BCS supercon-
ductor, where the break up of the bosons (Cooper pairs) is
tighly linked to the break up of the macroscopic quantum
state describing the superconducting order. In the system
we study here the superconducting order is established in-
dependently of the formation of the local-pair state and is
analogous to superfluidity in He II.

The fact that bosons of generally very narrow band-
width exist in the normal phase ought to show up in quite
characteristic thermodynamic properties. As shown by
Alexandrov et al. , ' the specific heat of a Bose gas on a
lattice in the normal phase shows a temperature variation
quite similar to that of an electron gas with comparable
bandwidth. New interesting features show up in the nor-
mal phase for systems with very narrow bandwidth since
in the experimentally available temperature regime one
can easily sweep through the entire band and beyond,
thus sensing the upper bound of the fermion and boson
band, respectively. The specific heat for both fermions
and bosons on a lattice drops off as 1/T for T much
larger than the band width.

The study of the normal phase is considerably more
complicated than that of the superconducting phase. A
simple mean-field approach as adopted here (fully taking
into account the hard-core character of the bosons and, to
a lesser extent, the interparticle Coulomb interaction) is
unable to treat the motion of hard-core bosons and the
off-diagonal coupling between bosons and fermions and
reduces effectively to the case Jp ——0, Ip ——0. Most of the
physics is hence lost in this approximation. A much more
sensible approximation to make for the study of the
normal-state properties is simply to describe our model by
a mixture of free bosons and electrons on a lattice. This
permits one to take into account the finite bandwidth of
bosons but neglect their hard-core character. For relative-
ly low concentrations of bosons this is a useful and well-
defined limit to be studied, ' for which we shall adopt
the following Hamiltonian:

H= g tabb; b, + g t'(c; c,
-J i~j, o.

—(b, +2@)g b; b;+(eo —p) g c; c; . (5.1)
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This Hamiltonian follows from our initial one, Eqs. (2.15)
and (4.6), used in the preceding sections, upon replacing
the pseudospin operators by boson operators and neglect-
ing all interaction effects. The quantities t[, t2, and 5 are
related to our starting Hamiltonian in the following way:

and a square density of states for the fermions,

1/2t, for 0&v+v, &2t, ,
DI(e)= 0 otherwise. (5.4)

t, = g tt'=D,
l@J

t, = at/: —J—, ,
1+j

b, = —2(hp D) . —

We now calculate the number of bosons per site,

n t= —X b; b )=nq/2,

(5.2)

1/2t2 for 0 & E —6 & 2tq,
Dq e)=

0 otherwise, (5.3)

and the total number of electrons (in wide-band and
local-pair states), n = n

&
+2n 2 .

In order to study the normal-state properties of the
above Hamiltonian, we choose a square density of states
for the bosons,

Having chosen a square density of states for the bosons
will present us with a picture where the Bose condensa-
tion temperature is zero, but which will give us practically
identical results to those we would obtain for a more real-
istic density of states provided T is above T, . The reason
for this is that condensation is exclusively controlled by
the density of states in a narrow regime near the bottom
of the band. For temperatures large compared to this re-
gime (i.e., for T & T, ), the system is in the normal state
described by a large portion of the density of states which
is relatively Hat and which justifies our model square den-
sity for the normal state.

We are interested here mainly in the temperature be-
havior of the specific heat and entropy. In order to evalu-
ate these quantities we must first determine the chemical
potential for this two-Quid system as a function of temper-
ature. In order to do this we first evaluate n 2 and n1, for
which we obtain

2t1
n ~

=2 f de[ exp[/3(E+Ep —t~ —p)]+ 1I =(Pt] ) 2/3tl
2ti 0

exp[P(t ~ + Ep —p)]+ 1

exp[ /3(t I
—e—p+ p)]+ 1

1 2tz exp[/3( —b, + t2 —2p)] —1

n f = f dE[ exp[p(E —b, —tz —2p)] —1I '=(2/3t2) ' —2/3tz+ ln
2t2 0 exp [P( —/b t 2

—2p ) ]——1
(5.5)

Eliminating P/t. in the two expressions (5.5), we obtain, with n 2
——(n —n

&
)/2, the following equation,

n —n1 Pt( P(ni —1)tl 2
—P(b, —t2) Pn l tl

) )1 (e —e ) e —(1 —e )

(e —e )e —(1—e )
Pt1 P(n 1

—1)tl 2
—P(b+t2) Pn

&
t&

(5.6)

which determines the variation of the density of wide-band electrons, n ~, as a function of temperature. n q (T) is then

easily determined as n z (T)= [n n~ (T)]/2—. Equation (5.6) has been solved numerically for a choice of values of the pa-

rameters t, =500 K, t2 ——10 K, n = 1, and three values of b, (1040, 500, and —40 K) which describe three characteristi-

cally different physical situations: predominantly local pairs, a mixture of local pairs and electrons of comparable con-

centration, and, finally, the situation of predominantly electrons. The solutions are given in Fig. 11, where we have plot-

ted the temperature variation of n I and n 2. The temperature dependence of/I is then determined by inverting Eqs. (5.5).

With the knowledge of /t( T) we are then able to evaluate the specific heat and entropy of our system.

The specific heat is a sum of two contributions C, and C2 (coming from the wide-band electrons and bosons) given by

p( t
1 +Kp —(M) pa(pp)

C, =(4Pt& )
' f dx(x+Pp) x+ /3p-

p( —t
1 + cp —p) ap

cosh
X

2

sinh
2

p( —5+ t2 —2p) a(/3/ )
C, =(8Pt, )

' f dx(x+2/3/L) x+2 Pp —P

Similarly, the entropy is the sum of two contributions S, and S, given by
P(t&+Ep ~)

g, = —(}tjt, )
' f dx [f(x) ln[f (x))+ [1—f(x)]»[1—f(x)]I

P( —a+ t, —2p)
S,= —(2/3t, )

'f, dx[n(x) ln[n(x)] —[1+n (x)] ln[1+n (x)]I,
(5.g)
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FIG. 11. The temperature variation of the number of local
pairs per site (n2 ——n2/2) and the number of wide-band elec-
trons per site (n 1 ) for n =n 2 +n &

——I, t&
——500 K, and t2 ——10 K.

The solid lines correspond to 5=1040 K, the dotted to 6=500
K, and the dashed to 5= —40 K.
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FIG. 12. The temperature variation of the specific heat (in

units of 8) in the normal phase for n = I, t&
——500 K, and t2 ——10

K. The solid lines correspond to 6=1040 K, the dotted to
5=500 K, and the dashed to 5= —40 K. The estimated criti-
cal temperature T, for the Bose condensation is indicated for the
various cases. The extension of the normal specific heat below
these values of T, project the specific heat that would be ob-
served if the superconducting order were suppressed.

where f (x) and n (x) denote the Fermi and Bose distribu-
tion function, respectively.

Evaluating the expressions for the specific heat [Eqs.
(5.7)] numerically after having determined the tempera-
ture variation of p(T), we find the following results for
the three cases of b, (1040, 500, and —40 K) which we
plot in Fig. 12. We clearly notice the two distinct contri-
butions coming from the specific heat of the local pairs
and of the electrons with, in general, two separated peaks
and a drop off of C for temperature exceding the band-
width of local pairs and wide-band electrons, respectively.
This drop off of the specific heat at high temperature is a
characteristic feature of systems with small enough band-
width such that the temperature regime can be attained
where kz T is much larger than the bandwidth.

Apart from the anomalous specific-heat behavior for
our two-fluid boson-fermion model, we can easily evaluate
the variation of the entropy with temperature (Fig. 13).
This entropy is predominantly related to the translational
degrees of freedom, which are more and more frozen out
as the temperature is lowered and the quantum nature of
the Fermi and Bose particles, respectively, becomes more
and more manifest. This is quite different from the usual-
ly considered case of the entropy interpreted in terms of
spin degrees of freedom. We want to mention that we
have successfully applied the above two-fluid boson-
fermion model [Eq. (5.1)] in interpreting the specific heat
and magnetic susceptibility of several heavy-fermion sys-

tems and He, for the latter of which we assumed triplet
rather than singlet bosons.

To close this section, let us point out that the transition
temperature of the Bose condensation can easily be es-
timated on the basis of a free Bose gas on a lattice,

T, =0 4~&(n2 .) (5.9)

VI. COMMENTS ON THE COULOMB
INTERACTIONS

Let us now briefly comment on the effects of Coulomb
(density-density) interactions which we neglected during
the analysis of superconducting and normal-state proper-
ties. The density-density interactions are quite essential as
far as the stability of superconducting state and its com-
petition with the charge-density waves is concerned.

We merely give here the results that follow from the

which is valid in the low-density limit and assuming cubic
structure. ' For an arbitrary density of local pairs the
transition temperature of the superconducting state for the
case Jo&0, Io =0 and no density-density interactions
present can be deduced within the RPA treatment of our
Hamiltonian (2.15). The analysis is a generalization of
our previous results' for the pure local-pair superconduc-
tor when determining the number of local pairs and
wide-band electrons self-consistently.
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FIG. 13. The temperature of the entropy (in units of R) in the

normal phase for n =1, tl ——500 K, and t2=10 K. The solid
line corresponds to 6= 1040 K, the dotted to 6=500 K, and the
dashed to 6= —40 K. The estimated critical temperature T, for
the various cases is indicated. The extension of the entropy
curves below these values project the entropy which would be
obtained if the superconducting order were suppressed.

mean-field- (or Hartree-) type treatment of the Coulomb
interactions as related to superconducting and normal-
state properties, leaving a full analysis of that problem to
a separate paper.

In general, three types of the density-density interac-
tions have to be considered (cf. Sec. II). Retaining only
the effective density-density interaction parameters of the
form Vo= g V;, Ko ——g ~~, ~E;~, and Vo" = g V ', we
obtain the following results.

In the normal state, the main effect of Kp and Vp' is to
enlarge the coexistence region of local pairs and wide-
band electrons, and the densities of two types of particles
change smoothly with varying Ap. In contrast, the
influence of the intersubsystem Coulomb interaction Vp is
more drastic as it tends to reduce the coexistence region
and may induce discontinuous changes in the concentra-
tions of the two types of carriers, ni and n2, versus Ap.
For Vp &D, D being the half-bandwidth, changes in n&

and n2 are always smooth, but for Vp &D discontinuous
changes in n~ and nz with variation of temperature and
Ap can take place.

Let us stress that for Vp &D the treatment of the nor-
mal phase within the framework of Hartree approxima-
tion encounters the same problems as in the Falicov-
Kimball model of mixed valence, i.e., it is not yet es-
tablished whether the discontinuous changes in electron
occupancies are an inherent property of the model or if

they are due to the approximation used.
The effects of the short-range Coulomb interactions on

the superconducting state are the following. If
Ip&0 Jp =0, the main influence of Ep is to enhance T, in
the local-pair limit and shift the maximum of T, towards
lower values of Ap. Vp' enhances T, in the predominantly
wide-band-electron regime and also shifts the maximum
of T„but towards the higher values of Ap. These are
simply the consequences of enlarging the coexistence re-
gion of local pairs and width-band electrons by either Ep
or Vp. The effect of Vp is just the opposite; it tends to
reduce T, in both limits without any essential shift of the
maximum T, versus Ap.

If Jp ——0, but Jp&0, Kp enhances T, in the local-pair
limit for n & 1 and lowers it for n & 1. The effect of Vp' is
to enhance T, in the wide-band-electron limit and to ex-
tend the superconducting state towards higher values of

The intersubsystem Coulomb interaction Vp acts
differently in this case, lowering T, only n & 1, in both the
local-pair or wide-band-electron —dominated regimes. For
n & 1, Vp reduces T, only in the wide-band-dominated re-
gime, whereas an enhancement of T, by Vp is observed in
the local-pair regime.

One should stress that all the above conjectures con-
cerning the influence of Coulomb interactions on the su-
perconducting phase diagrams have a restricted range of
validity, first because they are based on a Hartree approxi-
mation and second because they are due to the noncon-
sideration of the charge-density waves (CDW's). For
these reasons we summarized here only some of the most
direct evidence that follows from the Hartree-type
analysis.

As far as the charge ordering is concerned, we know
from previous studies of purely local-pair systems that the
Coulomb interaction K;~ tends to stabilize the mixed
CDW-superconducting ground state of local pairs, for
high enough local-pair density. The superconducting
transition temperature is maximal where the supercon-
ducting phase becomes unstable versus a charge ordered
phase. ' Accordingly, in the model considered here, the
mixed CDW-superconducting state is likely to occur in a
regime dominated by local pairs. For Ip&0, J=0, the in-
tersubsystem Coulomb repulsion ( V&) is able to stabilize
the mixed CDW-superconducting state with the spatial
modulation of charge density in both narrow-band- and
wide-band-electron subsystems.

A more extended analysis of these questions will be the
subject of future work.

VII. DISCUSSION AND OUTLOOK

Systems in which electrons exist in form of locally
bound pairs are now known for a great variety of different
materials ranging from amorphous semiconductors, bipo-
laronic metals, and insulators to polymers.

These local pairs of electrons having Bose character are
thought to be capable of giving rise to a superconducting
ground state. In real physical systems one can expect that
besides those local pairs of electrons there exist fermions
in the form of wide-band electrons. The question we
dealt with in this paper was to show to what extent the
Bose character of the local pairs of one type of (narrow-
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band) electron can induce superconductivity in the other
type of (wide-band) electron. We have studied this ques-
tion on the basis of a generalized periodic Anderson mod-
el with strong local attraction and determined the phase
diagrams as a function of the relative concentration of the
narrow- and wide-band electrons.

We should like to stress that, apart from the hybridiza-
tion mechanism considered here, we can also have a con-
tribution coming from direct charge exchange coupling
between the two types of electrons (in analogy to the
direct spin exchange coupling in the s-d model).

In the present paper the attractive on-site interaction
has been derived from the coupling between the narrow-
band electrons and the local phonon modes. Such a
derivation is in the spirit of other approaches starting with
Anderson' and developed by many others (see, e.g. , Refs.
1, 3, and 42 —44).

Other mechanisms that can also lead to local attraction
in a definite electronic subsystem have been proposed for
example, (i) excitonic mechanisms, ' ' (ii) the coupling
of electrons to other electronic subsystems in a solid or
chemical complex, ' ' ' and (iii) the existence of "inter-
nal coordinates" such as dangling bonds or abnormal
bond configurations in nonsimple metals.

Indeed, the structure of the effective Hamiltonian (2.15)
is independent of the possible microscopic origins of the
local attraction, provided the starting Hamiltonian is of
the form (2.8) and U&0,

~

U
~

&&T~,
~
Ip ~.

Consequently, our findings concerning the limit of
strong attraction remain equally valid for systems with
other mechanisms of local attraction.

Let us now turn to the discussion of predictions con-
cerning the thermodynamic and magnetic properties of
the model studied in this paper, some of which were al-
ready summarized in Sec. IV. First of all, the study of
quantities such as specific heat, the Meissner effect, the
critical fields, and transport coefticients requires detailed
knowledge of the excitation spectrum of our model.
Within the framework of the random-phase approxima-
tion (a work in progress) we can make qualitative assess-
ments on the nature of collective excitations. For simpli-
city we consider the limit Jp »

~
Ip

If the density of the wide-band electrons is large
enough (b, p &0), they can effectively screen the long-range
Coulomb interaction between the charged pairs of
narrow-band electrons. In the superconducting state, the
phase fluctuations of the order parameter lead to a sound-
like collective mode. There will also be a second branch
of collective excitations of plasma type because the wide-
band electrons "sense" the long-range Coulomb interac-
tion.

The single-particle spectrum of localized electrons has a
gap of the order of the binding energy of the pair of local-
ized electrons. This binding energy is considered to be
very large and, consequently, the single-particle spectrum
of narrow-band electrons will lie well above the two
lowest collective modes of our system. Such a picture of
excitations has immediate consequences as regards the
specific-heat- behavior in the superconducting phase. At
low temperatures one has a T contribution resulting
from the sound-wave-like collective mode and an ex-

ponential contribution due to the gap in the single-particle
spectrum of wide-band electrons.

In the regime of predominantly local pairs, the long-
range Coulomb interactions are practically unscreened
and lead to a plasmon mode in the collective excitation
spectrum (as in the charged Bose gas). Due to this, the
low-temperature specific heat will show an exponential be-
havior.

There will be essential differences in the magnitude and
temperature dependence of the upper critical field between
the pure local-pair superconductivity (Ip=0) and the su-
perconductivity of the mixture (Ip&0). For pure local-
pair superconductors the upper critical field at zero tem-
perature is expected to be rather large. However, at
present no reliable theory on this matter exists. In con-
trast, in the superconducting state of the mixture of local
pairs and wide-band electrons, paramagnetic coupling of
the magnetic fields can be easily realized and lead to a H, 2

which is of the order of the gap in the single-particle spec-
trum of the wide-band electrons.

Furthermore, the critical behavior of the system should
depend whether we are in the predominantly local-pair re-
gime or in the opposite regime dominated by wide-band
electrons. In the first case, as for pure bipolaronic super-
conductors, we have a strong analogy with the k transi-
tion in He II with a large Auctuation region, while in the
second case the critical behavior should approach the clas-
sical Ginzburg-Landau type.

For many physical properties the two-Quid picture
developed in this paper shows features which are inter-
mediate between those of pure local-pair superconductors
and those of classical BCS systems. This concerns,
among others, the gap in the single-particle excitation
spectrum, the ratio ks T, /Eg (0), and the coherence
length, as well as the properties of the normal state. Con-
trary to the standard BCS superconductivity, the effects of
structural disorder (nonmagnetic impurities) are expected
to be strong, as in the pure local-pair systems. ' Mag-
netic disorder has only a weak effect on the superconduct-
ing state in the local-pair-dominated regime.

Taking into account the findings of this paper as well as
some of our previous results concerning the case of pure
local-pair systems, one is tempted to classify existing ex-
perimental materials into three classes. This division of
compounds for which the existence of local-pair states has
been established, corresponds to the three different re-
gimes, as regards the relative position of the local-pair lev-
el Ap with respect to the wide-electron band (compare Fig.
1).

(i) hp&0, i.e., the case where the local-pair level lies
below the bottom of the wide band and all the electrons
remain in the local-pair states at T =0 K.

An effective superconducting coupling between the lo-
cal pairs (J~ ) will consist of the direct hopping and the
indirect coupling via the wide-band-electron states.

The density-density interactions (K ) are practically
unscreened and the case K;j »J~ (JJ denoting the off-
diagonal coupling of the charge operators) is most prob-
able. Under such conditions the system can exhibit either
a charge-order, or a mixed, charge-
order —superconducting state (for low enough tempera-
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tures), ' ' or it will stay in the normal phase due to disor-
der or lower dimensionality. '

Possible candidates for this class are Ti407 and
Ti4 V, Oz with [(Ti -Ti +

) (Ti + —Ti + )], Na„V205
[(V +-V +) (V +-V +)], Pb& „In Te[In'+, In +] (Refs.
12 and 44) and Pb, Sn Se, BaBiO3 [Bi +,Bi +], ' and
a large group of materials cited in the Introduction, such
as Cs2SbC16[Sb +,Sb'+],' etc. All of these compounds
exhibit either a charge-ordered state or they remain in the
normal phase. To this group we can also add amorphous
semiconductors and chalcogenide glasses with the impuri-

ty levels situated in the forbidden gap between the valence
and conduction band, ' ' ' and SrTi03.

The local-pair superconductivity for Ao & 0 can be a real
possibility in the low-electron-density limit. Due to an
absence of screening of the Coulomb interactions, the col-
lective excitations in this case will show up in the plasmon

gap and the superconducting properties will be remines-
cent of those of a charged Bose gas. Let us also stress
that little is known in this case as far as the competition
between superconductivity and the Wigner cristallization
is concerned.

(ii) 0&ho&nD, i.e., the systems where the local-pair
level falls into the wide-electron band and both types of
states are partially occupied at T =0 K.

The facts of nonintegral occupation of the local-pair
states, enhancement of J~ due to the contact interaction
between subsystems, and the screening of the Coulomb in-

teraction by wide-band electrons make the appearance of
local-pair superconductivity much more favorable than in

case (i).
The following compounds can be classified in this

group: the superconducting materials BaPbt Bi„03(0.2
&x &0.35)[Bi +,Bi +] ' '' PbT1 Te[T1'+,Tl +],' and

pounds WO3 „, Na„VqOs (x&0.33), and some of the
54, 55

chalcogenide glasses such as As2Te3, a-Ge33As]qSeq5.
Moreover, if the existence of local pairs is ever

confirmed in other nonstandard superconductors men-
tioned in the Introduction, they should also fall into this
class. This concerns some of the Chevrel phases
M, Mo,S„and other clusterlike systems, e.g. , MRh4B4, as
well as 215 (V,Si, Nb, Ge), C15 [(Hfo,zr„,)V,], the car-
bides and nitrides (NbC), " " and the recently discovered

Ba-La-Cu-0 (Ref. 56) system. Let us emphasize that for
this case the standard BCS coupling V ' for wide-band
electrons is always a possibility, and all three mechanisms,
J... I„and V, might contribute to the superconducting
state.

(iii) b.o&Dn (=eF), i.e., the systems where the local-
pair states lie above the Fermi energy and only a virtual
occupation of such states is possible. In such a case su-
perconductivity can be established by the BCS mechanism
for wide-band electrons. An additional superconducting
coupling due to virtual excitations into local-pair states
will be usually much smaller, except for the case ho- cz,
where it can yield strong enhancement of T, and become
an essential factor determining superconducting proper-
ties. As possible candidates to this group we can consider
the following compounds: Na„WO3, ' PdH„,
Pd] „Ag~H, PdD~, ' ' and BaPb] ~Bi~03
(x&02) ' '

We should like to mention that our preliminary phe-
nomenological classification does not include such essen-
tial factors as disorder or restricted dimensionality effects
which certainly need further studies.

As suggested previously, ' the two-fluid model, Eq.
(4.13), studied in this work could possibly apply to the
problem of the intermediary electron-phonon coupling in-
volving only one type of electrons. Retardation effects,
which are expected to be important here, can approxi-
mately be taken care of by assuming that the electrons
can exist in two extreme states: electrons moving in a rig-
id lattice [denoted by the operators c in Eq. (4.13)] and
electrons fully renormalized into small polarons [denoted
by the operators 1 in Eq. (4.13)]. The resulting picture is
one of a band of electrons with a resonant bound state of
two polarons at the Fermi level and a contact interaction
between pairs of polarons (bipolarons) and pairs of elec-
trons (Cooper pairs). Such a picture is capable of produc-
ing high values for T, and could possibly apply to the re-
cently discovered high-temperature superconductors.
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