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Metallic surfaces in the Thomas —Fermi —von Wei*sacker approach:
Self-consistent solution
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The problem of a metallic surface is studied and solved in the Thomas —Fermi —von Weizsacker ap-
proach. The analysis of the asymptotic solutions shows that the electronic density n (x) approaches
its bulk value no in the metal interior exponentially, oscillating about it. This behavior is found to be
an effect of the von Weizsacker term, rather than of the exchange-correlation interaction, as one may
have thought. The Euler equation is solved for a slab geometry, calculating work functions and sur-
face energies of several simple metals. The case of the pseudojellium model, recently introduced, is

also considered here. The results are compared with those of the exact Lang-Kohn theory and with
those of Smith.

INTRODUCTION

The problem of a metallic surface has been studied us-
ing a variety of approaches over the years. The progress
that we have witnessed in recent years has been made
largely possible by the density-functional theory' (DFT).
In considering a given problem within the DFT, one can
choose to solve the Kohn-Sham equations for the system,
an approach that was pioneered by Lang and Kohn for
metallic surfaces. The other approach available consists
in solving the Euler equation for the electronic density.
In the last case one needs to have accurate expressions for
the kinetic-energy functional. An alternative method has
been to use the variational principle; for the problem of
metallic surfaces this was first done by Smith, who mini-
mized the energy with respect to variations of the elec-
tronic density within a one-parameter family of functions.
The Euler equation was solved by Warner for a cesium
slab. However, his discussion of this subject was incom-
plete, and has remained unnoticed by most workers in the
field. This work is organized as follows. In Sec. I the
mathematical problem is set up, and some exact results
concerning the nature of the asymptotic solutions are dis-
cussed. Section II is devoted to the discussion of the nu-
merical approach, boundary conditions, and stability.
Numerical results are presented and discussed in Sec. III.

I. STATEMENT OF THE PROBLEM

Consider the jellium model of a metallic surface. The
energy functional is

E [n] = T, [n]+E„,+ —,
' fP(x)[n (x)—n+(x)]dx . (1)

Here n (x) is the electronic density and n+(x) denotes the
density of the ionic background. The kinetic-energy func-
tional is taken as the Thomas-Fermi term plus the first
gradient correction (the von Weizsacker term),

T, [n]= f [3(3m. n) i 10+A(dn/ndx) /8]n dx (2)

with A, =—,'. The exchange-correlation energy E„,[n] is, in

the local-density approximation (LDA),

E„,[n]= fn(x)e„,(n)dx . (3)

Here e„,(n) is given by the Wigner interpolation formula
(in atomic units),

e„,(n) = 0 458—/r, .—0.440/(7. 8+r, ) . (4)

= —,'(3m. n) + V„,(n)+P(x) —p . (6)

It is convenient to write this equation in terms of the
new independent variable u (x)= [n (x)]'

(A, /2)d u (x)/dx =[—,'(3' n) + V„,(n)

+P(x) —p]u (x) .

Consider now the semi-infinite metal, then n+(x) is

n+(x)=noe( —x) . (8)

Here no is the bulk density of the metal.
Now study the asymptotic behavior of the solution,

both inside and outside the metal. First, discuss the be-
havior outside the metal. From Eq. (6) it is seen that if
one assumes that n (x) = Ae for large x & 0, then

(A, /8)co =P( oo ) —p=@, (9)

where N is the work function and where charge neutrality
has been assumed. Note that the exact solution u (x) has
a behavior that divers from the behavior of the Thomas-
Fermi solution, which decays only with a power law.
Mathematically, this is due to the fact that the gradient

The last term in (1) represents the electrostatic energy
of the system, where P(x) satisfies Poisson's equation,

2p
=4m[n+(x. ) —n (x)] .

dx

To solve the minimization problem posed by the func-
tional (1), write the Euler equation,

(A, 4/)[d(d nn/dx)/dx+ —,'(dn/n dx) ]
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d 2P

dx
where the constants a and p are given by

(lob)

correction is a singular perturbation term; each new gra-
dient correction term adds higher-order derivatives to the
corresponding Euler equation.

In the metal interior n (x) must approach np, therefore,
we write n (x)=np(1+Q), and linearize Eqs. (6) and (7),
obtaining

(A. /4)d Q/dx =aQ+Q —p, (loa)

Metal

Li
Na
K
Rb
Cs

rs

(a.u. )

3.28
3.99
4.96
5.23
5.63

2kf
(a.u. )

1.170
0.962
0.774
0.734
0.682

k„
(a.u. )

1 ~ 146
0.924
0.716
0.671
0.611

k;
(a.u. )

0.661
0.671
0.740
0.767
0.806

TABLE I. Values of the decay constants for several simple
metals, as a function of the density parameter r, . Values were
obtained for A. = —', and Wigner exchange-correlation energy.

a= ,'kf+—npd V„,(np)/dn,

p=47rnp .

(1 la)

(1 lb)

From Eqs. (10a) and (10b) it is seen that, for large x in-
side the metal, both P(x) —p and Q(x) behave as e",
with k given by

dQ =U
dx

= (2 /k) [ 1 /2( 3mn) ./ + V„,+]]]]—p]u,
dx

(14a)

(14b)

(A, /4)k —ak +P=O . (12) dP = LU

dx
(14c)

Table I shows the values of the real and imaginary part
of k for the alkali metals; it is seen that it is a complex
number in all cases; this means that the electronic density
n (x) oscillates,

n (x)=np[l+ Ae " cos(k;x+5)] . (13)

These oscillations are similar in structure to the Friedel
oscillations found in the self-consistent solution of Lang
and Kohn. This is a largely unknown fact for the
Thomas —Fermi —von Weizsacker (TFW) function. One
must point out, however, that these oscillations are not
Friedel osciHations, since their wave number is not 2kf
and their decay is exponential. The constants 2 and 5
cannot be determined from the present, linear analysis. It
is also interesting to observe that the constant k is also
complex even in the absence of exchange and correlation,
e„=O, as shown in Table II. This is an unexpected re-
sult, since one would expect that the oscillations would be
driven precisely by the exchange-correlation interaction;
the only possible explanation is that they are driven by the
gradient correction. Note also that the exact solution of
the semi-infinite surface problem satisfies the Budd-
Vannimenus theorem, a fact that could be used in a nu-
merical approach as a test on self-consistency.

de
=4rr[n+(x) —n (x)] .

dx
(14d)

n+(x)= .np if x E( L,L), —
0 otherwise . (15)

Observe that the value of the chemical potential p can
be chosen as zero; if the integration is started from a point
x =R (in the asymptotic region) inwards, then

(R )
] /2 —elf(x —xP )/2

(16a)

v(R)= —p]u (R),
P(R) =P( ~ ) —]r[u (R)/p]]

w(R)=2iru (R)/p] .

(16b)

(16c)

(16d)

Note that p] and ])]( pp ) are related by Eq. (9), with the
choice p=0. From the symmetry of the slab one has

du (x =0) =0,
dx

(17a)

Consider now the boundary conditions that must be
imposed upon the solution. Let us consider the case of a
jellium slab of width 2L, with ionic density profile

II. NUMERICAL APPROACH

At first glance it may seem that solving the system un-
der study would hardly pose any difficulty. This, howev-

er, is not the case, since the system of equations is not
stable. The nature of this instability is mainly electrostat-
ic, since it is only for the correct solution that one satisfies
the charge neutrality requirement. Aside from this very
important point, it is common knowledge that the system
is most easily solved if one uses the dependent variable
u (x) previously defined, instead of n (x), since the system
becomes somehow less unstable.

To solve our system, it is preferable to write it as a sys-
tern of first-order differential equations; in this way one
can use a Runge-Kutta integration method. The system
is

Metal (a.u. )

2kf
(a.u. )

k„
(a.u. )

k;
(a.u. )

Al
Pb
Zn
Li
Na
K
Rb
Cs

2.07
2.30
2.65
3.28
3.99
4.96
5.23
5.63

1.854
1.669
1.448
1.170
0.962
0.774
0.734
0.682

2.367
2.251
1.810
1.769
1.365
0.959
0.916
0.859

0.666
0.944
0.361
0.989
0.955
0.146
0.175
0.201

TABLE II. Decay parameters of jellium, for e„,(n) =0. The
values of the decay constants for Al and Pb are real, therefore
the two real solutions are given
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TABLE III. Work functions for the alkali metals.

Metal

Li
Na
K
Rb
Cs

(a.u. )

3.28
4.00
4.96
5.23
5.63

Present'
(eVj

3.32
2.60
2.38
2.33
2.25

Present
(eV)

2.87
2.59
2.29
2.22

Ref. 4
(eV)

3.11
2.93
2.76
2.71
2.64

Ref. 3
(eV)

3 ~ 37
3.06
2.74
2.63
2.49

'Jellium model.
Pseudojellium model.

dtt(x =0)
dx

(17b)

Condition (17b) is equivalent to charge neutrality.
Given co and xo, a solution is uniquely determined. To
find the proper solution one must satisfy Eqs. (17), which
constitute a system of nonlinear equations. Define

du (x =0)
F(ro, xo) =

dx

dP(x =0)
G co, xp

dx

(18)

(19)

To obtain the solution that we seek, we must find the
roots of (18) and (19). This is done by Newton's method,
which converges rapidly once a reasonable starting point
is found. Observe that one must make sure that a true
minimum of the functional has been found. NormaHy, it
is enough to require that the function u (x) has no nodes.

III. RESULTS

The method described above has been applied to study
the electronic properties of alkali-metal slabs, in particu-
lar, the work function and surface energy as a function of
slab width. The results obtained can be described as fol-
lows: Concerning the work function it is found that, for
the metals studied, it approaches its bulk value very rapid-
ly; for example, a slab of sodium of size 5.0 a.u. already
has a work function that corresponds to the semi-infinite
surface. The calculated values for the work function are
presented in Table III, third column. A comparison with
the work functions obtained by Smith and the present
work shows that they are quite close, within 0.2 eV, and
within 0.5 eV of Lang and Kohn's.

For the surface energy the situation is more complex.
To describe it properly, the surface energy can be split
into its Thomas-Fermi (TF), gradient (gr), electrostatic

(es), and exchange-correlation components (xc). If one
looks at the total surface energy as a function of the slab
width, it is observed that up to a length of up to 10 a.u. it
has not yet converged to its bulk value (it oscillates). The
bulk of the contribution to this variation comes from the
Thomas-Fermi and the exchange-correlation parts, which
are always larger than the gradient and electrostatic parts.
The reason of this oscillation can be understood as fol-
lows: The density at the center of the slab, n(L), is an
oscillatory function of L, and it correlates very well with
the (surface) energy oscillations; these oscillations will per-
sist as long as n (L) has not settled to no. This situation
reminds one of similar oscillations in the case of small
metallic particles. The oscillations in surface energy
represent a variation of the order of 10% of the total, so it
may be said that the surface energy will remain within
these bounds. With this proviso one can take the values
given in Table IV as the surface energy of a metal in the
TFW approximation.

To compare with Warner's results, a calculation was
made for a cesium slab of width 5.1 a.u. The difference
between the two solutions is impossible to notice visually,
in spite of the fact that the solutions satisfy different
boundary conditions. The boundary condition used by
Warner was to require the density to vanish at a large
(but finite) distance from the metal surface. The present
solution, instead, has the correct asymptotic behavior far
from the slab. This difference could account for the slight
difference between Warner's work function, 8'=2.24 eV,
and the present, 8'=2.25 eV. Surface energies were not
reported in Warner's work; here o. =48 erg/cm, to be
compared with Lang and Kohn's o =70 erg/cm .

In a recent article, a model has been introduced to cal-
culate the electronic properties of inhomogeneous metallic
systems. It was found that this model, the pseudojellium
model, is able to describe very accurately the surface ener-

gy of simple metals. The procedure here is to modify the

TABLE IV. Components of the surface energy for the alkali metals (jellium model; energies in
erg/cm ).

Metal

Li
Na
K
Rb
Cs

—396
—150
—41
—26
—22

&gr

94
53
28
24
20

Oes

45
12

3
3
2

xc

369
187
68
47
48

112
101
59
48
48

Ref. 4

132
111
69

Ref. 3

210
160
100
85
70
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TABLE V. Surface energies in the pseudojellium model, as calculated with the TFW approach.

Metal oTF ogr &xc O axc

Li
Na
K
Rb

—411
—142
—61
—44

107
52
25
21

30
12

5
3

420
171
104
80

55
—3

—13
—11

200
90
90
50

exchange-correlation energy by the addition of an extra
term, b,E„,(n), inside of the metal, which amounts to
modifying the chemical potential of the jellium to obtain
that of the real metal, by adding a correction Ap. With
this, the calculated surface energy can be directly com-
pared with experimental data. This was done in Ref. 8 by
solving the Kohn-Sham equations, with good results.
Here the same procedure is applied, except that the elec-
tronic density is directly computed from the solution of
the Euler equation (6). The fourth column of Table III
shows the results obtained for the work function, again in
good order of magnitude agreement with the results of
Lang and Kohn. Note, however, that pseudojellium work
functions have a tendency to be smaller than their jellium
counterparts. This is contrary to what happens when one
does a full Lang-Kohn calculation with pseudojellium
correction, as it was done in Ref. 8. The reason for this is
not clear presently. The surface energy was also studied,
with the results shown in Table V. To present the results,
the surface energy 0. was split as before, but with an addi-
tional Axc component. The behavior as a function of slab
size was found to be the same as that the pure jellium
case. The surface energies are again in reasonable agree-
ment with experiment.

The shape of the solution for the electronic density
n (x) is not very diff'erent from the Thomas-Fermi solu-

tion, since the oscillations that, according to Eq. (13)
should be present, are not seen. This could be attributed
to the fact that the equations have been solved only for a
slab, and not for the semi-infinite surface. However, it
seems more likely that the oscillations are of very small
amplitude, since they must decay exponentially. In con-
clusion, the test of the TFW approach that is reported
here shows that one can obtain good estimates of the elec-
tronic properties of metallic surfaces. The major difficulty
here seems to lie in the fact that the equations to be solved
are unstable. A solution for this may already have been
found. In a recent article, Levy, Perdew, and Sahni pro-
posed an exact equation to treat any system with an ex-
plicitly known kinetic-energy functional, such as those
proposed by Ma and Sahni. ' It remains to be seen if the
instability problem is avoided with that procedure.
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