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In a classic paper Hohenberg and Kohn wrote the energy of an electron gas as a functional of

the charge density n(r): E[n]=

gas of almost constant density,

f v(rn(rdr+ 5

n(r)=nqy+#(r)
Glnl=Glnol+ [ K(r—r)a(na(r)drdr’ + - - .

J [n(n()/|r—r'|Jdrdr' +G[n]. For a
with #(r)/np<<1 they expanded

The kernel K (r) may be written as a sum of ki-

netic, exchange, and correlation terms, K (r)=K,(r)+K,(r)+K.(r). We present here graphs of K,(r)
and K, (r) which are exact to within our numerical accuracy.

In a classic paper Hohenberg and Kohn'! wrote the en-
ergy of an electron gas as a functional of the charge densi-

ty
r)n(r')

E[n]= [ vn(rdr+1L [ ""r_r‘ drdr' +Gn] .
(1)

For a gas of almost constant density

n(r)=ny+#a(r) )
with

A(r)/ng<<1, (3)
they expanded G[n]:

Gln]=Glnol+ [ K(r—r)a(pa(r)drdr . ()

Now K(r) may be separated into its component parts,
K(r)=K(r)+ K, (r)+ K. (1) , (5)

where K (r) is the kinetic energy kernel for noninteracting
Kohn-Sham? eigenfunctions, K, (r) is the exchange energy
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where
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kernel, and K, (r) is the correlation energy kernel. Al-
though K (k) and K,(k) have been known for a long
time, no one seems to have been curious enough to
Fourier transform them in order to see what they look
like in real space. In this Brief Report we display graphs
of K (r) and K, (r) which are exact to within our compu-
tational accuracy.
It was shown in Ref. 1 that

K (k)=1/2X,(k) , (6)
where Xy(k) is the RPA susceptibility,
kg 2 k 2+«
Xolk)= 2 2+ <2 In 7w (7)

We work with dimensionless quantities k=k/kr and
R=r/ar, where kp=1/ar, and a=(4/97)!/3. Noting
that Xo~k~2 for large k we expanded 1/2X(«) in that
limit to obtain
2
K> o0)= 2T (242 2
F

Noting that d *k /(2m)*=k2d *k/(27)* we have
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A, =k? lim

a—0

(10)

9a(a2—R2)_ 3a
2a®+RYH*  10(a?+RM? |

We have used the standard trick of including a convergence factor e ~“ with @—0 in the integrand. We then subtract
and add K (k— o« ) from K («) and Fourier-transform to obtain

k3 -!
K- [

R
The integral was numerically integrated up to k=10 at which point the magnitude of the integrand is less than 0.000 03.
With K, defined as K, —A,, the dimensionless quantities (ar;)?K,(R) and (ar;)?RK,(R)=ar,rK,(R) are displayed in Fig.
1. Note that A, vanishes except at R =0 where it is infinite. Therefore we rewrite Eq. (4) as follows:

Gln1=Glnol+ [ K,(|r—r' Da(na(r)drdr +J[r], (12)

2 _k 2+k
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K (R)= 175
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where, expanding r and r’ about 7,

1 N _ 39 _
Jo=ki® [ A(R) ﬁ(r+)+—2~k7R-Vn(r+)+%(2kp) ZZRijmn(r+)
L]
_ 1 _ ~ 39
X n(r+)—Ek—F_R-Vn(r+)+%(2kp) 2§R;ijn(r+) dr . dR (13)

[

with r, =X(r+r') and R/kp=r—r'. Taking advantage K (R), they would, of course, have reproduced the

of the inherent symmetry we have Lindhard function. Herring® performed a calculation
., _ 2 _— 5 similar to ours. His formulation was different, resulting
Js=kr f AR [A(r )] —3(R/2kp)[VA(r, )] in a different coefficient for the 7 term and a different

K, (R); these differences presumably cancel in a total ki-

- 2
+3(R/2kpPR(r )VPA(E ) netic energy calculation.

+O(R*)}47R%dR dr, . (14)

After some tedious integration we find, noting that terms
of order R* and higher all integrate to zero, and integrat-
ing by parts to eliminate the V27 term,

_ar
e

3
16k}

Jy — Z[A(0)]*+ [Va(r)]? |dr . (15)
If i=e®" e this yields the first two terms of Eq.
(8) for K;(k— o0 ) as it must. For very rapidly oscillating
n(r) the K, integral in (12) becomes vanishing small; thus
in that limit G[n] assumes a form that looks exactly like a
gradient expansion (with, of course, different coefficients
than the long-wavelength expansion).

Jones® has derived a result similar to ours. The first
two terms of his Eq. (3) are identical to our Eq. (15).
However, his third term (which appears to be a factor of 2
too large) corresponds to replacing our ar,rK,(R) curve
by its R =0 limit, — 127 /175. Thus our result is new, in
that it is valid for any « whereas his is meant to be valid
only in the k— o limit. Jones and Young* calculated the
linear-response function using the x—0 gradient expan-
sion coefficient for the 7 term and the k— co limit for the
Vn term coefficient. Thus is agrees in both limits, but not
for intermediate «, with the exact Lindhard response func-
tion. Had they used the k— o0 value for the 7 coefficient,
they would have extended the large-«x range of validity of
the approximate response function at the expense of the FIG. 1. Graphs of the dimensionless quantities (ar,)’K, and
small-« result. Had they also included contributions from ar,rK, as functions of the dimensionless distance R.
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We have recently calcul::ltede’7
Gi[n]=Gx[no]l— K2 En

where Q is a normallzatxon volume. F,(k) for O<k<4
and (27k*/8)F, (k) for 4 <x < « are displayed in Figs. 1
and 2 of Ref. 7. This G, [n] represents the exchange ener-
gy of Kohn-Sham eigenfunctions and is exact to within
the numerical accuracy with which F, (k) was calculated.
No exact Hartree-Fock F, (k) has ever been calculated (its
expansion about k=0 is singular®~'%), but even if it could
be, it would not represent the exchange energy alone; it
would, of necessity, have to contain the difference between
the kinetic energy of Hartree-Fock eigenfunctions and

K)F ()f(—x) , (16)

k
KX(R)=—-%——F—
3 R

Subtracting (17) from K, («), numerically Fourier trans-
forming, and adding (18) we obtained the graphs
displayed in Fig. 2 for the dimensionless quantities
—arK,(R) and $y(R)= —rK,(R). Although it may not
be a useful concept, one may consider the 7 (r) contribu-
tion to the exchange energy to be an antiscreened
Coulomb interaction

B, =y [ AR o gy (19)

|r—r'

with ¢ playing the role of the antiscreening function. In
the inset of Fig. 2 we compare 1y (R) with a phase-shifted
spherical Bessel function cj,(kR +¢) where ¢=0.4474,
k=1.9814, and ¢=0.19797. We see that y(R) falls off
only slightly more rapidly than j;(kR +¢) and has a
well-defined oscillation wavelength. We note that K, (k)
has a sharp peak at k=1.95 and a very large derivative
(probably logarithmically infinite) at k=2.00; thus an os-
cillation with wave vector k=1.98 is not surprising. On
the other hand, K(x) has a logarithmically infinite deriva-
tive at k=2.00 but the oscillations in K;(R) do not appear
to be settling down to a fixed wavelength.!?

The correlation kernel K.(R) remains undetermined.
There appear to be two schools of thought concerning the
effect of correlation on K,.. One based on an approxi-
mate many-body calculation!® for X(«) says that correla-
tion screens exchange and smooths out all the structure in
K, (k). This implies that K,.(R) will have, at most, very
weak long-range oscillations, i.e., that, for all r,, K.(R)
has oscillations of essentially equal magnitude and wave-
length but opposite phase to those of K,(R). The fact
that it was necessary to approximate the dynamic screen-
ing function with a static one in Ref. 13 leaves room for
the second school to question these conclusions. They
would claim that the fact that G.[n,] is negligible with
respect to G, [ng] for small r, is a strong indication that
so is K.(R) with respect to K,(R). They would also say

1777

that of Kohn-Sham eigenfunctions. Thus we believe this
is the preferred definition of the exchange energy in a
density-functional calculation. It is now known that an
earlier, first order in e?, Hartree-Fock calculation of Fy («)
by Sham,'! is equivalent to the exact Kohn-Sham eigen-
function F, (k).
We fit K, (k)=

— (97 /4kE)F, (x) for large k with

6 2
2  k°—0.402«°458.996 17

3k} (k*—0.728%)*+164.62

Ki(k— o0 )= —

to within 0.00005 of its calculated value’ for all k> 3.4.
Its Fourier transform, obtained by the method of residues,
is

[0.050 896e ~0-675135R ¢5(1.875 801R ) +0.199 104e ~ -617389R ¢05(0.783 002R )] . (18)

that in spite of the fact that correlation screens exchange
interactions, the correlation energy is independent of and
additive to the exchange energy. Thus no conclusions
concerning K,.(R) (other than, perhaps, its approximate
magnitude) can be drawn from our knowledge of K, (R).
In any event, an accurate determination of K.(R) and
K.(k) remains an important unsolved problem.
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FIG. 2. Graphs of the dimensionless quantities —ar;K, and
—rK, as functions of the dimensionless distance R. The inset
compares —rK, with a phase-shifted spherical Bessel function.
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