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In a classic paper Hohenberg and Kohn wrote the energy of an electron gas as a functional of
the charge density n (r): E [n] = f v (r)n (r)dr+ —,

' f [n (r)n (r')/
~

r —r'
~
]dr dr'+ G [n]. For a

gas of almost constant density, n (r) =n0+ 8'(r) with 8 (r) /np (( 1 they expanded
G[n]=G [no]+ f K(r r')tT(r)tt—(r')drdr'+ . The kernel K(r) may be written as a sum of ki-

netic, exchange, and correlation terms, K(r) =K,(r)+K„(r)+K,(r). We present here graphs of K, (r)
and K„(r) which are exact to within our numerical accuracy.

In a classic paper Hohenberg and Kohn' wrote the en-

ergy of an electron gas as a functional of the charge densi-
ty

I

E[n] = f v(r)n (r)dr+ —,
' f " dr dr'+ G[n] .

/r —r/

For a gas of almost constant density

n(r) =no+n(r)

with

n(r)/no « 1,
they expanded G[n]:

G[n]=G[no]+ f K(r r')n(r)rT(r')dr—dr' .

Now K(r) may be separated into its component parts,

K(r) =K,(r)+K„(r)+K,(r),
where K, (r) is the kinetic energy kernel for noninteracting
Kohn-Sham eigenfunctions, K„(r) is the exchange energy

kernel, and K, (r) is the correlation energy kernel. Al-
though K, (k) and K„(k) have been known for a long
time, no one seems to have been curious enough to
Fourier transform them in order to see what they look
like in real space. In this Brief Report we display graphs
of K, (r) and K„(r) which are exact to within our compu-
tational accuracy.

It was shown in Ref. 1 that

K, (k) = 1/2Xo(k),

where Xo(k) is the RPA susceptibility,

kF 2 K 2+K
Xo(K)= 2

2+ ——— ln
(2m. ) K 2 2 —K

We work with dimensionless quantities K =k/kF and
R=r/ar, where kF ——1/ctr, and a=(4/9n) Noting. .
that go-K for large K we expanded 1/2Xo(K) in that
limit to obtain

2

F

Noting that d k /(2m ) =kFd K/(2~) we have

where

k k
3 3 3 24 12m

R ]6 20 175( —K ——K ——K ) Sln(KR )dK=—
175 R (9)
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We then sub«ith a~0 in the integof including a convergencence factor e wi a~d the standard trick o inc u
'

enc

Note that 6, va

K
!
r —r'! )n(r)n(r')dr dr'+J, [n],G[n] =G[no]+ K, r —r n (12)
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We havave recently calculated '

G„[n]=G„[no]— n „—a
z g n(a)F„(a)n( —«),

where ~ '
re is a normalization volume.
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62~ a —0.402K +58.996
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This calculation was performed on an IBM PC-AT given to us by Project guest, University of Texas. The research
was supported by the Robert A. Welch Foundation (Houston, Texas) and by the National Science Foundation under
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