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Elastic scattering from cubic lattice systems with paracrystalline distortion
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The three-dimensional paracrystalline lattice factors Z (q)’s for a face-centered-cubic lattice and a
body-centered-cubic lattice, in addition to a simple-cubic lattice, were calculated. The Z(g)’s thus
calculated could reproduce the diffraction peaks at the characteristic positions for each cubic lattice
system over a fairly wide range of g values (g is the degree of the paracrystalline distortion). In addi-
tion to the paracrystalline distortion, the thermal oscillation and crystal size effects were also con-
sidered. The numerically calculated profiles were compared with light and small-angle neutron
scattering curves for polymer latex dispersions and with small-angle x-ray scattering curves for block
copolymer films for quantitative determination of the ordered cubic systems.

I. INTRODUCTION

The paracrystal theory for the diffraction pattern and
the distribution function 4 (r) for one-dimensional crystals
containing a distortion of the second kind was first pro-
posed by Hosemann.! The theory was based on a
convolution-polynomial operation, was extended later to
two-dimensional cases and has been mainly applied to the
determination of the fiber structure.”? For three-
dimensional cases, Steffen and Hosemann calculated the
function 4 (r) and compared it with experimental data for
liquid lead.® Because of some uncertainties such as the
termination effect* involved in the procedure for obtaining
h(r) from an experimental scattering curve, direct com-
parison of theoretical and experimental scattering curves
[not A (r)] seems more appropriate.

We have calculated the lattice factor Z (g) for randomly
oriented three-dimensional cubic lattice systems with
paracrystalline distortion of the second kind, such as the
simple cubic (sc) lattice, the face-centered-cubic (fcc) lat-
tice, and the body-centered-cubic (bcc) lattice. We believe
that this three-dimensional theory is useful for the deter-
mination of the structure and the degree of distortion of
the structure for three-dimensionally ordered systems.

Colloidal particles such as polymer latex and synthetic
and biological macroions form an ordered structure in
solutions.>” In the case of latex suspensions, scattering
profiles have been analyzed by Luck et al.® Ordering
phenomena in such systems has been almost unequivocal-
ly proven by ultramicroscopy.” Recently, the crystal
structure was identified using pseudo!® and intrinsic!!
Kossel line analyses: According to Yoshiyama et al.,!!
bee structures are stable at low concentrations whereas fcc
structures are favored in concentrated regions. By using a
cinematographic method, the particles forming the or-
dered structure were demonstrated to be different from
free particles, because the root-mean-square displacement
of the free latex particles was very close to the prediction
of the Einstein theory on Brownian motion,!?"!* whereas
that of the particles in the ordered state was practically
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zero for a reasonably long period of time (e.g., 30 sec).
This observation convinced us of the existence of more-
or-less distorted latticelike distributions of the latex parti-
cles in dilute suspensions. These experimental facts on
‘“visible” latex suspension appear to support our con-
clusion that synthetic and biological ““invisible” macroions
likewise form latticelike ordered structures in dilute solu-
tions, probably with a much larger degree of distortion
than in the case of latex particles because of the difference
in the geometrical size.

Recently, spherical microdomains of block polymers in
bulk and in solutions have been reported to be arranged in
an ordered manner with cubic symmetry.'*'® The sym-
metry of ordered structures called “superlattices”'® was in
some cases discussed qualitatively on the basis of
volumetric considerations, that is, from the peak positions
of the scattering maxima observed in the small-angle x-
ray scattering (SAXS) and neutron scattering (SANS)
from the block polymers: It would be possible to estimate
the nearest-neighbor distance D between the spherical mi-
crodomains, e.g., A spheres when A-block chains form
A-spherical microdomains, and the radius R 4 of the A4
spheres. Comparison of the stoichiometric volume of an
A block chain with a volume fraction of 4 spheres es-
timated from the experimental values of D and R 4 for a
given symmetry made it possible to determine the symme-
try of the cubic superlattice.'®!® The relative peak posi-
tion of the scattering maxima gave additional information
on the lattice symmetry.!>!6181% However, no attempts®®
have been made so far to utilize whole scattering curves,
such as peak heights and linewidths of the scattering max-
ima and their positions, for quantitative determination of
the symmetry, despite the fact that there is rich informa-
tion associated with the scattering profiles as shown in
Fig. 9, for example. A quantitative determination of the
symmetry and its distortion may be made possible by
comparison of the experimental profiles with the theoreti-
cal profiles for paracrystals with the cubic symmetries,
and this is one of the main objects of this paper. The
force stabilizing the superlattice!® and the degree of order
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typically existing in the systems have been described else-
where, 15:16,18,19

Thus it would be interesting to analyze the nature of
the ordered structures, particularly their distortion, and
the diffraction patterns of scattered radiation from such
distorted structures in terms of the three-dimensional
paracrystal theory. We are fully aware of some adverse
criticism of the paracrystalline treatment in the three-
dimensional cases,?! but we believe that the paracrystal
theory is one of the most convenient methods for elucidat-
ing, though approximately, the symmetry of the cubic lat-
tice and the distortion of the ordered structures in ques-
tion. As examples of the applications, we discuss here the
two cubic systems, block polymers and colloidal suspen-
sions, although the physical origins of the ordering”!® are
distinctly different.

II. THEORY

A. Review of general paracrystal theory

Generally, the scattering intensity I(q) from a para-
crystal with a given orientation to a reference axis is given
by!

H@Q=N(|fo|*)=[{fo) |+N|{fo) |*[1—D(q)]
+(1/v) | {fo) |2D(q)*Z(q)0o [2(q)]?, (1)

where q is the scattering vector, N the number of particles
in the paracrystal, fo=fo(q) the structure amplitude of
the particle, v the volume available per particle, Z (q) the
paracrystal lattice factor (associated with the distortion of
the second kind!), and 2(q) the shape amplitude of the
paracrystal. The angular brackets { ) designate an aver-
age with respect to distributions of particle size, density,
and orientation (in the case when the particle is asymmtri-
cal). The symbol fog designates a convolution,

Sfog(r)= fduf(u)g(r—u). ()

The factor D (q)* represents the thermal vibration of the
particles (the distortion of the first kind') about the para-
crystalline lattice points.

When the particles are identical and spherical, the
thermal vibrations are not significant, and the size of the
paracrystal is infinitely large, then Eq. (1) is reduced to

I(Q) =N |fo|*Z(q) . (3)

We define here the three fundamental lattice vectors ay for
the ideal perfect lattice. The distortion of the lattice
points from the ideal lattice points is described by the dis-
placement of the lattice vector Aay from a,. We assume
that in a given direction of the lattice the nearest-neighbor
distortions are independent and the distortions in three
directions are also independent. Furthermore, in this pa-
per the distortion is assumed to be isotropic and given by
a Gaussian distribution with a standard deviation Aay, al-
|

though the distortion is generally anisotropic and Aay a
tensor quantity.

In this case, the lattice factor Z(q) for three-
dimensional paracrystals is generally given by!
3
Z(q@)= [I Z«(q), (4a)
k=
1+ F(q)
Z =Re |—————
k(q) € I—Fk((])
1— | Fy |2
- | F | =, (4b)
1—2| Fy | cos(ay-q)+ | Fy |
Fk(q): JFk(q)| exp(—iq-ak) , (5)
| Fr(q) | = exp(—1Aafq?) . (6)

When the paracrystals have an orientation distribution,
the observed intensity distribution in one direction I, is
obtained by averaging I(q) in Eq. (1) over all possible
orientations:

Iobs(Q)=<1(q))oriem ’ (7)

where { )orient Stands for the orientational average.

B. The lattice factor Z (g) for the simple-cubic (sc) lattice

The lattice factor Z (q) for the sc lattice can be calculat-
ed by the method of Yarusso et al.??> Their method is to
calculate the diffraction pattern from the assembly of ran-
domly oriented paracrystals by taking a rotational average
of one infinitely large paracrystal.

Three unit vectors, a;,a,,as, for the ideal sc lattice are
taken as shown in Fig. 1(a), and the length is represented
by a:

lar| = |ay| = |ay| =a . ®)
Then,

a;-q= —agq sinf cos¢ , 9

a,-q=agq sinfsing , (10

a3 q=agq cosb . (11)

Figure 2 shows the Eulerian angles (8,7,¢) specifying the
orientation of the coordinates (1i,V,W) fixed to the unit
cell with respect to the laboratory fixed coordinate
(%X,¥,Z). The Z axis is parallel to the vector q, 8 and 7 are
the polar and azimuthal angles specifying the orientation
of the axis W, and ¢ is the angle specifying rotation of the
crystal around the W axis. In the case of the sc lattice the
axis W coincides with the vector a;. By assuming the iso-
tropic distortions of a real lattice point from an ideal lat-
tice point designated by a;, a,, and a3 [Fig. 1(a)]

Aa;=Aa,=Aaz=Aa . (12)
We obtain from Egs. (4)—(6) and (12),

Z1(9,6,¢)=[1— exp(—q*Aa?)]/[1—2 exp( —1g?Aa?) cos(—ga sinf cos¢) + exp(—g’Aa?)] , (13)

Z,(q,6,6)=[1— exp(—g*Aa?)]/[1—2exp(—Lg?Aa?)cos(ga sinfsing)+ exp(—gq?Aa?)], (14)
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(a) (b) (c)

FIG. 1 (a) Three fundamental vectors a,, a;, and a3 for a simple-cubic (sc) lattice. In (a), (b), and (c) the isotropic lattice distortion
is depicted by the spheres of radius Aa (dashed circles). (b) The fundamental vectors a,, a2, a; and the orthogonal vectors by, b,, b; for
a face-centered-cubic (fcc) lattice. (c) The fundamental vectors aj, a,, a3 and the orthogonal vectors by, b,, bs for a body-centered-cubic
(bce) lattice.

Z5(q,0,¢)=[1— exp(—g*Aa?)]/[1—2exp(—1g?Aa?)cos(ga cos)+ exp(—g?Aa?)] . (15)

Then we can calculate Z (q) for the randomly oriented paracrystals by

Z(q)=% J77 [77219.6.6)22(4.0.8)Z5(9,0,6)sin0 d6 d . (16)
|
C. Z(q) for the face-centered-cubic (fcc) lattice Therefore, using the relations of Egs. (9)-(11), and noting
that |[b;| = |by| = | b3 | =a, we obtain

We define the fundamental vectors a;, a,, a3 and the or-

r- -a,=Lga(sin0 si ) 20
thogonal vectors by, by, b; as in Fig. 1(b) and take the W q-a1=7qa(sinfsing + cos6) 20)
axis parallel to b;. We obtain q-a,=1qa(— sinfcosp+ cosh) , 21
ca;=1lga(— si ind si . 22
ai=1(by4bs) , (17) g-a3=1qga(— sin6 cos¢ + sinb sin¢) (22)
Then, by assuming Eq. (12) again for the distortion of the
ay=3(b;+b3), (18) lattice points from the ideal lattice designated by aj, a,, a3
in Fig. 1(b) and by using Eqgs. (4)-(6) and (20)-(22), we

a;=1(b;+b,) . (19) obtain

J

Z1(q,0,6)=[1— exp(—gq*Aa?)]/{1—2exp(—1g?Aa?)cos[1ga(+ sinOsing+ cosO)]+ exp(—g2Aa?)} , (23)
Z,(q,0,)=[1— exp(—gq*Aa*)]/{1—2exp(—1g*Aa?)cos[1ga(— sinOcosp+ cosd)]+ exp(—g’Aa?)} , (24)
Z5(q,0,¢)=[1— exp(—q?Aa?)]/{1—2exp(—Lg>Aa?)cos[Lga(— sinf cosp+ sinfsing)]+ exp(—g2Aa?)} . (25)

By substituting Egs. (23)-(25) into Eq. (16), Z (¢g) for a randomly oriented fcc lattice can be calculated.

D. Z(q) for the body-centered-cubic (bcc) lattice

The three fundamental vectors a;, a,, and a3, and the orthogonal vectors by, b,, and b; are defined as shown in Fig.
1(c). Then,

a1=1(—by+by+by) , 26)
a2=%(b1—bz+b3) R 27)
a3:%(b1+b2-b3) . ' (28)
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By taking the W axis parallel to bs; noting that | b, | = | b, | = | b3 | =a; assuming isotropic lattice distortions as given by
Eq. (12) from the perfect lattice defined by the vectors a;, a,, and a; in Fig. 1(c); and by using Eqs. (4)-(6) and (26)-(28),

we obtain

Z,(q,6,8)=[1— exp(—g*Aa?)]/{1—-2exp(—Lg?Aa?) cos[ Lga(sind cos + sinfsing+ cosd)]+ exp(—g?Aa?)} ,  (29)

Z,(q,6,¢)=[1— exp(—q*Aa?)]/{1—~2exp(—Lg’Aa?) cos[Lga(— sind cos¢— sinfsind+ cosO)]+ exp(—g’Aa?)} , (30)

Z5(q,0,6)=[1— exp(—g?Aa?)]/{1—2exp(—Lg>Aa?)cos[ Lga(— sindcosd+ sinfsing— cosd)]+ exp(—g?Aa?)} . (31)

Z (g) for a randomly oriented bcc lattice can be calculated
using Egs. (16) and (29)-(31).

III. RESULTS OF NUMERICAL CALCULATIONS

We first define the paracrystalline distortion factor g as
g=Aa/la;|=Aa/|ay| =Aa/|a;] , (32)

where aj, a,, and a; are the three fundamental vectors as
shown in Fig. 1 for sc, fcc, and bec lattices, and Aa is the
distortion of the lattice point from the ideal lattice point
as schematically drawn in Fig. 1 with the spheres of ra-
dius Aa.

Figure 3 shows the results of numerical calculations of
Z(g) for a randomly oriented sc lattice for various g
values. At small g values (low degrees of distortion),
many sharp peaks appear at the reduced scattering vectors
aq /(2m)=(h?+k2+1%)'? characteristic for the sc lattice:
the relative peak positions of the first- and higher-order
peaks are at 1, V'2, V3, V4, V/5, ..., and these peaks
correspond to diffractions from (100), (110), (111), (200),
(210), and so on. As the g value increases, the peaks be-
come lower and broader, and the higher-order peaks
disappear. According to Hosemann’s prediction for the
one-dimensional paracrystal lattice, the nth peak disap-
pears at the g value which satisfies the criterion
gn =0.35." The corresponding criteria for the sc and bcc
lattices will be discussed in Sec. V A.

Figures 4 and 5 show the Z (g) for randomly oriented
fcc and bcce lattices, respectively. The relative peak posi-
tions of the first- and higher-order diffractions from (111),
(200), (220), (311), and (222) planes and so on for the fcc

\‘%‘

FIG. 2. Eulerian angles (6,7,¢) specifying the orientation of
the coordinates (4,V,W) fixed to the unit cell with respect to the
laboratory fixed coordinates (%,¥,2).

lattice are at 1, (%)1/2, (%)1/2, (%)1/2, (4)!2, etc., respec-
tively. The relative peak positions from (110), (200),
(211), (220), and (310) planes and so on for the bcc lattice
are at 1, V2, V'3, V4, V5, etc., respectively. As the g
value increases, the peaks become lower and broader for
these two cases also. The criterion for the (hkl)
diffraction peaks to be resolvable will be discussed also in
Sec. VA.

It should be noted that strong zeroth-order scattering
exists for the three-dimensional paracrystal, and is espe-
cially marked for the sc and bcc lattices. This peculiar
effect, which exists even for paracrystals with an infinite
size, does not exist for the one-dimensional paracrystal.
Further details will be discussed in Sec. V B.

IV. CONSIDERATION OF OTHER DISTORTIONS

A. Thermal oscillation (distortion of the first kind)
and the effect of interfacial thickness

The thermal vibration of the particles around the lattice
points is one of the paracrystalline distortions called a dis-
tortion of the first kind, and the effect of an interfacial
diffuse boundary is a problem associated with the varia-
tion of the scattering contrast between the particles and
the medium at the interface. The two problems are in-
herent to the particle scattering function, and hence these
two effects can be treated mathematically in a similar
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FIG. 3. Calculated paracrystalline lattice factors for a sc
structure. g=0.05 (curve 1), 0.07 (curve 2), 0.09 (curve 3), 0.11
(curve 4), 0.13 (curve 5), 0.15 (curve 6).
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FIG. 4. Calculated paracrystalline lattice factors for a fcc lat-
tice. g=0.05 (curve 1), 0.07 (curve 2), 0.09 (curve 3), 0.11
(curve 4), 0.13 (curve 5), 0.15 (curve 6).

way. The former effect is given by the exponential term,
the so-called Debye-Waller factor, in Eq. (1) as follows:

D= exp(—%u_zqz) , (33)
where 12 is the mean-square displacement of the particles
from the lattice points by thermal motion. Similarly, the
effect of the smooth diffuse boundary is given by’

B=exp(—1loiq?), (34)

where B is the Fourier transform of the smoothing func-
tion b (r) characterizing the distribution of the scattering
contrast p(r) at the interface

p(r)=p;(r)ob(r) , (35)

where p;(r) is the scattering contrast profile for the sharp
interface with o, =0 and

b(r)=(2mo2) 3% exp(—r?/20%) . (36)

For the particles with the diffuse boundary, f, in Eq. (1)
should be replaced by foB(q). Physically, these two
effects can be recognized as the blur of the particle scatter-
ing. (See Ref. 15 and Fig. 10 in Ref. 24 as examples of
the influence of these factors on scattering behavior.) It
must be noted that these effects influence the intensity of
diffraction peak(s) and even more strongly those of the
higher-order peaks. However, the influence on the width
of the peaks is very small as is easily seen from Egs. (1),
(33), and (34).

B. Effect of size of the paracrystals

The size of the crystal also affects the scattering behav-
ior. The smaller the crystal, the lower the intensity of the
diffraction and the broader the diffraction profile. There-

15.00
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450+ ‘

3.00 2
1.50 K\\‘ 3
0.00

0.00 0.80 1.60 2.40 3.20 4.00 4.80
aq/2w

FIG. 5. Calculated paracrystalline lattice factors for a bcc
structure. g =0.05 (curve 1), 0.09 (curve 2), 0.13 (curve 3).

fore, the scattering function 7(q) must be calculated tak-
ing into consideration the effect of the finite crystal size
especially for an assembly of microparacrystals, and even
more so for greatly distorted microparacrystals because it
is hardly feasible that a greatly distorted crystal can grow
into a larger crystal. For an assembly of the microcrys-
tals, the definition of the crystal size is rather obvious.
For greatly distorted continuous crystals, however, the sit-
uation is not simple. The “crystal size” implies now the
limit of “correlation” of lattice points; if the crystal size is
N by particle number in one direction, the lattice point of
the (N + 1)th particle is not affected by that of the particle
at the origin. Generally, the correlation is a statistical
quantity and &V is an ensemble-averaged quantity.

The effect of the finite size of the paracrystal is incor-
porated in Eq. (1) by the shape factor =(q)%. However,
from the technical point of view in the numerical calcula-
tion, it seems to be much easier to calculate directly the
scattering of the paracrystal containing /N particles in each
direction specified by the fundamental vectors a;, a,, aj,
rather than taking a convolution of the lattice factor Z for
infinitely large paracrystals and =2 as in Eq. (1).

One of us (T.H.) previously presented full details of the
equation for the lattice factor Z containing N unit cells for
the one-dimensional paracrystal,® the results of which
can be extended to the three-dimensional paracrystals.
With this approach instead of Egs. (1) and (4), we obtain

I@Q=N | fol>)— | {fo) |H+N|{fo) | [1-D*q)]

3
+ [ {fo) [ TI Ne(Zx +1x/Ny), (37)
k=1

where N=N|N,N; is the total number of unit cells in the
paracrystal, N; the number of the unit cell along the kth
direction, Z; the lattice factor for infinitely large para-
crystals along the kth direction, and I the zeroth-order
scattering related to the finite-size effect of the paracrystal.
The factor Z; is given by Eq. (4b), and I is given by
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I =—2Re[Fr(1—F*)/(1—F;)?]

=—2|F | {(14 | F | cos(q-ag)—2| Fy | — | Fi | ™

+2 | Fi | ™" cos[Ni(q-a)]— | Fi |

Again the assumptions of the independent distance statis-
tics in each direction and between the three directions
were employed in the calculation. The intensity I(q) is
subjected to the orientational average as in Eq. (7) when
the paracrystals have an orientation distribution with
respect to the laboratory coordinate. For example,
Z(q,N.) is defined as a lattice factor per unit size, i.e.,
normalized by N,N,N3;=N? for the randomly oriented
paracrystal with Ny =N,=N3=N,:

3
Z(quc)=< H [Zk +(Ick /Nk)]>random orient * (39

k=1

Figure 6 shows results of the numerical calculations of
Z(q,N_.) for three different N, values and at a fixed g
value for the fcc lattice. The intensity level of each profile
was shifted vertically to avoid overlapping. It obviously
approaches unity at large g, regardless of the value of N,.
With decreasing N,, the diffraction peak(s) clearly become
lower and broader, and the higher-order peaks tend to be
smeared. The upturn of a scattering curve at low-angle
regions, which is observed for a small value of N, corre-
sponds to the contribution of the zeroth-order scattering
I« from the finite size of the paracrystal. In this calcula-
tion, the volume outside the paracrystal is assumed to be
a vacuum,; therefore, this upturn appears. If the difference
in the electron densities or the scattering length inside and

Z(q)

" L n 1 L "
0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.56

a &

FIG. 6. Effects of the crystal size on the paracrystalline lattice
factor for fcc with the nearest-neighbor distance a,=70.7 A.
Each curve was vertically shifted to avoid an overlap. g was
0.10.

Ny +2
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(38a)
* cos[ (N +1)q-ax]
cos[(Nx —1)q-ax 1} /[1—2| Fx | cos(q-ax)+ | Fx | 2] .
(38b)

[
outside of the paracrystal is zero, this upturn would
disappear.

As both of the parameters g and N simultaneously
affect the height and the width of the diffraction peak, it is
fairly difficult to determine unique values of g and N from
a single diffraction maximum.”® Hosemann and his co-
workers found experimentally that the values of g and N
should not be independent. They proposed the so-called
a* law,?’

gvV'N =a*
0.1<a*<0.2.

>

(40)

This a* law may be used for the approximate determina-
tion of g and N. It is a very interesting problem to exam-
ine whether the a* law holds in such systems as latex
dispersion and block copolymers which have not been
tested so far.

V. DISCUSSIONS ON CRITERION FOR THE
(hkl) DIFFRACTION MAXIMUM TO BE
RESOLVED AND ON Z (¢ —0) FOR THE

THREE-DIMENSIONAL PARACRYSTALS

A. Criterion for the (hkl) diffraction maximum to be
resolved for the three-dimensional paracrystals

Hosemann predicted the following equation as the cri-
terion for the nth peak to be resolved for the one-
dimensional paracrystal:

gn=0.35. 41)

This relation was obtained analytically on the assumption
that the relation

Zmax/Z min=1.5 (42)

was a limit for the nth peak to be resolved, where Z .,
was a value of Z (q) at the nth peak position and Z;, was
a corresponding minimum value.

We reexamined this relation in our numerical calcula-
tions for a one-dimensional paracrystal. Figure 7 shows
the g;-versus-n ~! plot for a one-dimensional paracrystal,
where g; is the value g which satisfies Eq. (42). The
straight line is the result of the first-order least-squares
fitting of the data points, which predicts the following re-
lation:

gin =0.319 . 43)

The slight discrepancy between Egs. (41) and (43) may be
due to the approximations involved in the procedure of
obtaining Eq. (41) analytically.

For three-dimensional paracrystals, the situation be-
comes much more complicated, because each scattering
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n‘l
FIG. 7. g;-vs-n~! plot for a one-dimensional paracrystal.
The straight line is a result of the first-order least-squares fitting,
21=0.3192 "1,

peak corresponds not only to a different order but also to
a different reflection plane which has different multiplici-
ty. Furthermore, the extinction rule has to be taken into
account. Thus it seems to be impossible to obtain analyti-
cally a criterion for the three-dimensional paracrystal.
Therefore we tried to obtain the criterion by the numeri-
cal calculations of the lattice factor with an infinite size.

Figure 8 shows the g;-versus-(h2+k2+12)"1/2 plot for
a simple-cubic paracrystal. It is obvious that the linearity
is not as good as for the case of the one-dimensional para-
crystal, as we expected. The straight lines are obtained by
the first-order least-squares fitting by two functions,
y =ax and y =ax +b. These fittings give us the following
relations:

gi(h?+k2+1%)12=0.155 , (44)
g =0.215(h*+k*+1*)~12-0.031 , (45)

which may be used as criteria for the simple-cubic para-
crystal lattice. As is clearly seen from Fig. 8, Eq. (45)
gives a better fit. However, this equation predicts that the
higher-order peaks, whose (h2+k?+12) values are larger
than 48, cannot appear even if the g value is zero (i.e., for
the ideal crystal). This is physically unreasonable. Actu-
ally, in the three-dimensional paracrystal the relation be-
tween g; and (h%+k2+1%) may not be a simple linear re-
lation. Hence Eq. (45) is an approximate criterion. The
value specifying the criterion for the three-dimensional
paracrystal appears to be close to that for the one-
dimensional  paracrystal divided by V3  (viz.
0.35/v/3=0.202).

For the bcc lattice, the following approximate criteria

|

1— |F3|*=¢*Aa3+0(g"),
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0.0LZ 1

(o] 1.0
(h2+k2+12)-1/2

FIG. 8. g;-vs-(h?+k?+1?)~!/? plot for a sc lattice. The
straight lines are the results of the first-order least-square fitting.
Line 1, g =0.155X(h*+k?>+1*)~'2, line 2, g =0.215
X (h24+k?41%)~12-0.0313.

were obtained using reflections from (110), (200), (211),
(220), (310), and (321) planes:

gih2+k?+1%)12=0.170 , (46)
g =0.215(h*+k24+1%)~12-0.024 . 47)

As was the case for the sc lattice, Eq. (47) is a better cri-
terion. It is interesting to note that we obtain similar cri-
teria for sc and bcce lattices. It was impossible to obtain a
criterion for the fcc lattice because the fusion of the peaks
hindered the estimation of the characteristic Z,,, and
Z nin values for each peak.

B. Behavior of the lattice factor Z at ¢ —0
for the cubic paracrystals

In this section we discuss the origin of the intensity up-
turn for Z in the limit of ¢—0 which was found clearly
for sc (Fig. 3) and bec (Fig. 5) lattices. This intensity up-
turn may be thought peculiar in light of the behavior of Z
for the one-dimensional paracrystal as reported by
Hosemann and Wilke.?® For the one-dimensional para-
crystal it was found that

lim Z(g)=g? . (48)
g—0
As g approaches zero, the intensity Z (g) continuously de-
creases to the limiting value of g2 and the intensity upturn
is not found.

For a three-dimensional paracrystal, we should study
Eq. (4) to understand this upturn. For example, Z;(q)
can be calculated as follows:

1—2|F3 | cos(q-a3)+ | F3 | *=[4sin*(1a;q cos0)1(1—1g?Aa3)+0(g*)

=aig?cos’60+0(q*) .
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Thus it follows that

2
Aa3

a3 cos?0

lim Z3(q) =gl (51)
q—0

for a one-dimensional paracrystal with periodicity along
the a3 direction and observation of the scattering with q
vector along the aj; direction, cos@ =1, and hence

lim Z;=Aa%/a%=g}, (52)
q—0

which was obtained by Hosemann and Wilke. However,
for three-dimensional crystals, the effective unit-cell size
a3 .r=aj; cosf, which is a projection of a; onto q, depends
on the orientation of the vector a; with respect to q. Thus
the limiting value of Z at ¢ —0 is equal to the effective g
value (g.r) as defined in Eq. (51), which goes to infinity as
0 approaches /2. This divergence, which causes the up-
turn of Z (g) as g goes to zero, occurs as a consequence of
a random orientation of the paracrystal and of a spherical-
ly symmetric distortion of the Ilattice points, e.g.,
Aaz; =Aa3; =Aaz3;=Aa;. Similar to Eq. (51), we obtain

lim Z,(g)=—; ‘Aza% = Aza% =gl (53)
g—0 aisin‘fcos’d afiew
lim Z5(q)=—; .Aza%' 2= Aza% =g3er - (54
g—0 ajssin“@sin‘g  aj.q
Therefore

giir})Z(q)z kI:II gher - (55)

We may extend similar arguments for fcc and bcc.
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VI. COMPARISON WITH EXPERIMENTAL
SCATTERING PROFILES

In recent years scattering techniques have been em-
ployed for the investigation of the ordering phenomena®”’
of macroions (including synthetic macroions,? biopoly-
mers,>* and ionic surfactant micelles’®) in solutions.
Laser light and neutron scattering techniques have also
been used for solutions of monodisperse polymer latex
particles.’** The ordering of larger latex particles with a
diameter of about 3000 A in solution has been almost un-
equivocally proven by observation through ultramicros-
copy.” SAXS and SANS techniques have been used to
study the microdomain structure of block copolymers in
the solid state'>!7 and in solutions.'®! In this section we
discuss the applications of the three-dimensional paracrys-
tal theory to some real systems, ordered spherical micro-
domains of block polymers and aqueous suspensions of
ordered latex particles.

A. Small-angle x-ray scattering of block copolymers

As a model experimental system showing ordered
spherical microdomains with a cubic symmetry, we dis-
cuss here the solvent-cast film of a polystyrene-
polyisoprene block polymer designated as SI-4 with a to-
tal number-average molecular weight M, =21.9X 10* and
a weight percent of polyisoprene block w,;=15.4.
Readers who are interested in the morphology, physics,
and details of the block polymers are referred to the ear-
lier references.!>1819:34

Figure 9 shows the SAXS profile obtained for the
solvent-cast films of SI-4 (shown by the points!®). The
profile was corrected for the slit-width and slit-height
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FIG. 9. Comparison of the experimental scattering curve of styrene-isoprene block copolymer and the theoretical curves for cubic
paracrystals: (a) sc, (b) fcc, and (c) bee. Theoretical profiles were calculated for a given set of parameters R =12.9 nm, o, =1.0 nm,
and o,=0.5 nm. The parameters g and a, were 0.075 and 40.1 nm, respectively, for sc, 0.081 and 69.6 for fcc, and 0.057 and 56.7 for

bec.
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smearing and for the background scattering due to diffuse
thermal scattering. The figure also includes the best-fit
theoretical profiles with an infinitely large size (the profiles
drawn in the solid curves). In these three figures the ex-
perimental profiles are the same and s denotes s =¢q /2.

In the experimental profile the scattering maxima
marked by thin arrows are due to those from interparticle
interference associated with Z(q,N.) or Z(q), their rela-
tive positions being 1:V'2:V3:V'4. The maxima marked
by thick arrows are due to those from higher-order
scattering maxima from intraparticle interference. In
these higher-angle regions Z(q,N.) or Z(q) approaches
unity, so that the scattering depends upon the single-
particle scattering | {fo) |2 The small modulation on
the first-order scattering maximum due to the intraparticle
interference located at s =0.70% 10~! nm~! may be asso-
ciated with the interparticle interference phenomena [i.e.,
the higher-order maxima occurring in Z (q)].

To obtain the best-fit theoretical curve we need struc-
ture parameters such as (i) the average radius of the spher-
ical domain R and (ii) its standard deviation o,, (iii) the
parameter characterizing the diffuse boundary oy, (iv) the
length a, = |a; | = |a,| = |a3| for the fundamental lat-
tice vectors, identical to the nearest-neighbor distance be-
tween the particles and (v) the paracrystalline distortion
parameter g =Aa /a, which is assumed to be isotropic,
and (vi) the lattice symmetry (sc, fcc, or bec). Among
these, the parameters R, o,, and o; were obtained previ-
ously from the higher-angle region where Z(g)—1 and
are commonly used for the three figures for the best
fitting.!> The theoretical and experimental profiles of the
sc, fcc, agd bee lattices indicate that the bec lattice of
a, =567 A and g =0.057 is the most probable one. The
slight misfit may be attributed to the distortion of the real
lattice from the cubic lattice which in turn may arise from
the residual strain imposed on the film during solvent eva-
poration. Further investigations along this line should be
done for the block polymer solutions at a given tempera-
ture and concentration.

It is worth noting that, as expected, the value g =0.057
is very small compared with the values for colloidal sus-
pensions to be discussed in the next section, and is of
about the same level as for the lamellar microdomains of
the block polymers.35 From the g value we can determine
the heterogeneity index J,, for the distribution of the
nearest-neighbor distance.’® The index J,, is defined as

jan—<an>/<an )2 <an>w/<an )n:g2+1 > (56)

where a, is the nearest-neighbor distance, (@) and (a, )
the second and the first moments of its distribution func-
tion, and (a,), and {a,), are the weight and number
average distances, respectively. The index J,, =1.003 is
obtained for g =0.057, indicating a highly regular ar-
rangement of the domain in the superlattice. Similarly,
the heterogeneity index of the size of the spherical
domains Jg can be estimated from o, /R by

Jr=(0,/R)’?+1 . (57)

Since 0,/R ~0.078, Jgr =1.006. Thus the domain-size
distribution itself is also very narrow.
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Figure 10 shows the calculated scattering profiles for sc,
fcc, and bee cubic paracrystals with random orientations
and infinitely large crystals for several g values: (a)
g =0.05, (b) g =0.07, and (c) g =0.08. Other parameters
such as R, O O, and a, are all fixed for the three figures
(R=129 A o,=10 A o,=5 A, and a, =567 A). These
figures clearly indicate how the scattering profiles depend
on the packing and the distortion. The profiles can be
used as a chart to estimate quantitatively the packing and
the distortion of the real microdomain systems.

B. Small-angle neutron and laser light scattering
of polymer latex suspensions

In colloid science, the lattice factor [Z(q)] is often
called the interparticle interference function, and
represented by S(g). All the S(q) functions which we
discuss in this section are obtained from the scattering
curve with the assumption of o,=0;=0, i.e., the latex
particles are homogeneous spheres and monodisperse.
The scattering intensity in Eq. (3) is rewritten by

I(q)=NP(gq)S(q), (58)
=|/fol% S@=Z(q), (59)
sc fcc bce
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FIG. 10. Theoretical scattering curves of cubic paracrystals.
(a) g =0.05, (b) g =0.07, and (c) g =0.08. Other parameters are
the same as in Fig. 9.
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where P(q) is the intraparticle scattering function. All
the interference functions Z (g) are obtained for N, — oo
unless otherwise stated.

In Fig. 11 we give the interference function for a poly-
mer latex dispersion obtained by laser light scattering’!
(solid circles) and Z (q) calculated by the present theoreti-
cal treatment (solid curve). The concentration of latex
particles is much lower than those employed in micro-
scopic observation to avoid some experimental difficulties
such as multiple scattering. We cannot observe directly
the spatial distribution of the particles by microscopy for
this system. However, it is expected that the spatial ar-
rangement of the particles will be highly distorted due to
the low concentrations. The first peak position and height
were fitted with a g value of 0.19 for fcc, though the ob-
served height of the secondary peak could not be repro-
duced well by the theory.

In Fig. 12 the interference functions obtained by neu-
tron scattering for latex solutions® are compared with the
theoretical curves which were obtained for fcc structures.
Investigations on the more concentrated dispersions were
possible for small latex particles by employing the SANS
technique. Here again the first peak position and height
were fitted. Although the disagreement at low scattering
vectors and for the secondary peak are obvious, the agree-
ment between theory and experiment is satisfactory. The
g values are again about 0.2. With decreasing concentra-
tion, the g value becomes larger. This trend is quite un-
derstandable and is consistent with the microscopic obser-
vation.3® Also, the tendency of the interparticle spacing
to decrease with increasing concentration (volume fraction
is denoted by ¢’) is readily acceptable and is in accordance
with earlier microscopic observations.>’

Figure 13 shows the experimentally obtained interfer-
ence function for polymer latex dispersion from light
scattering®® and the theoretical curve obtained for an fcc
structure with a g value of 0.15. The agreement is fairly
satisfactory, though the agreement for the second peak is
not as good. The disagreement in the low-angle regions is
also clear, but it may be at least partially due to the inac-
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FIG. 11. Comparison of the experimental interference func-

tion S(g) with theoretical paracrystalline lattice factor, Z(q).

Circles: S(gq) for latex solution by Ottewill, volume fraction (¢’),

1073 partiocle radius, 256 A. Line: Z (g) for an fcc structure,
a, =5597 A, g =0.19.
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FIG. 12. Comparison of the experimental interference func-
tion S(g) obtained by neutron scattering for latex solutions by
Cebula et al. and theoretical lattice factors, Z(q). ®, /A, and O
represent S(gq) observed for a latex of R =157 A at ¢’ =0.04,
0.08, and 0.13, respectively. Curves 1, 2, and 3 represent Z(q)
for fcc structures w1th a, =830 A g=0.22; a,=679 A,
g =0.19; and a, =539 A, g =0.17, respectively.

curacy in the experimental data caused by multiple
scattering, dust scattering, etc.

Figure 14 shows the experimental data given in Fig. 12
for a volume fraction (¢’) of 0.13, together with theoreti-
cal curves, which were obtained for two different sets of
N. and g. The profile for the smaller N. and g values
gives a better fit with the experimental data; although we
cannot claim that this pair of g and N, values (g =0.12,
N.=3) is the only pair which can reproduce this S(q)
curve, because both g and N, simultaneously affect the
peak height and the peak width as was discussed in Sec.
IV B. It might be interesting to note the rough agreement
of these values with the a* law (a*=0.12x3!/2=0.207).
As will be discussed in detail later, the interparticle dis-
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FIG. 13. Comparison of the experimental interference func-
tion S(q) and theoretical paracrystalline lattice factor Z (g). Cir-
cles: S(g) obtained by light scattering for latex solution by
Versmold et al., 1.34x 10'® particles/m>®. Line: Z(q) for an fcc
structure. a, =9824 A, g =0.15. X: RMSA result.
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S(q) or z(q)

FIG. 14. Comparison of the experimental interference func-
tion S(gq) and theoretical lattice factors Z (g). Circles: S(g) ob-
tained by neutron scattering for a latex solution (Ottewill et al.),
¢'=0.13, R=157 A. Dashed curve: Z (q) for an fcc structure,
a,=539 A, g=0.17, No=. Solid curve: Z(q) for an fcc
structure. a, =539 1&, g =0.12, N. =3.

tance obtained from the S(q) peak position is very close
to the one calculated assuming a uniform distribution.
Thus, we believe that the crystal size, in this case, must be
recognized as the region which has correlated particles for
the directions of the three axes as described in Sec. IV B.

Note that the interparticle distances a, used in the cal-
culation of Z(q) in Figs. 11-14 are all fairly close to the
average interparticle spacing (2D() which can be calculat-
ed from the concentration by assuming a uniform distri-
bution of the particles throughout the space and fcc sym-
metry.’® In the case of Fig. 11, the a, value was 5600 A
whereas the 2D, value was 4633 A for fcc. For Fig. 12
the agreement is even much better: The values of a, were
830, 679, and 539 A at the volume fractions of 0.04, 0.08,
and 0.13, respectively, whereas the 2Dg values were 831,
659, and 561 A. In Fig. 13 the value a, was 9824 A and
the 2D, value was 10180 A. Except for a case in Fig. 11,
the two interparticle spacings are fairly close to each oth-
er. This agreement and the fact, that the experimental
scattering profiles were well reproduced by the theoretical
profile for the fcc lattice, support the validity of the
present extension of the paracrystal theory.

Another interesting point is the similarity between the
interference functions calculated by the so-called rescaled

mean spherical approximation (RMSA) method and those
calculated by our present treatment. The RMSA results
are shown by crosses in Fig. 13, which were taken from
the work by Versmold and co-workers.*>> Our values, cal-
culated on the basis of the paracrystalline theory, are in
fairly good agreement not only with the observed S(q) but
also with the RMSA results. The RMSA method is based
on a liquid theory, whereas the paracrystalline theory has
its foundation in ideal lattices. Thus the agreement
shown by the two methods might indicate that the nature
of the ordered structure under consideration is intermedi-
ate between a liquid and a solid. The RMSA method is
based on a purely repulsive interaction, whereas in our ap-
proach the type of the interaction does not explicitly come
into question. Thus, it is not warranted to claim that the
interparticle interaction is purely repulsive on the basis of
the agreement of the RMSA calculation with the observed
S (q). In order to clarify the nature of the interparticle in-
teraction, the analysis of the structure factor in terms of
the RMSA method is not adequate: a much more
thorough study is required of the scattering behavior and
of other fundamental physicochemical properties of the
systems as well.

VII. CONCLUSION

In the present article a three-dimensional paracrystal
theory has been developed for cubic lattices. The lattice
factors were calculated by taking the paracrystalline dis-
tortion into account. Also discussed were the thermal os-
cillation of the scattering elements around the lattice
point, the interfacial thickness, and the size of the para-
crystals. The theory was compared with scattering
profiles obtained for block copolymer (solid) films and po-
lymer latex suspensions. From the comparison, the lattice
symmetry and the degree of paracrystalline distortion
were evaluated. The best fit was obtained for micro-
domain distribution in the copolymer film, when bcc
structures with relatively small distortions were assumed.
The fcc structures with fairly large distortions gave the
best fit with the latex suspensions studied.
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