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Hot-electron noise in two-valley semiconductors: An analytic model
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We present results for the hot-electron noise in two-valley semiconductors, such as GaAs, where

intervalley transfer plays an important role. The noise is calculated by a Boltzmann —Green-function
method. We obtain an analytic solution for a model with two valleys and three relaxation times. Us-

ing the measured low-field mobility, lower-valley mass, and valley separation energy 6, while adjust-

ing three upper-valley parameters, we obtain good agreement with both experimental time-of-flight

measurements and microwave noise measurements. We find that the hot-electron noise is very sensi-

tive to the transport parameters, much more so than the velocity-field curve. In particular, the noise

is very sensitive to the I -to-L scattering rate and our results indicate that experimental noise mea-

surements might be used for determining this parameter.

I. INTRODUCTION

Hot-electron noise (i.e., nonequilibrium current Auctua-
tions) in semiconductors is of great interest from both a
fundamental and applied point of view. From a funda-
mental viewpoint, nonequilibrium noise can provide addi-
tional information about a system that is not available
from the I-V curve. This is not true in equilibrium where
the fluctuation-dissipation theorem requires that the noise
be proportional to the conductivity. Furthermore, as we
shall see, the nonequilibrium noise can be more sensitive
to the various scattering rates and transport parameters
than the conductivity, and can be used to deduce these
parameters. From an applied viewpoint, many of the de-
vices in use today operate in the high-electric-field regime,
and thus a knowledge of hot-electron noise is essential to
the design and performance of these devices.

In this paper, we calculate the hot-electron noise in
bulk GaAs. The noise is interesting not only because of
the heating effects in the lower I valley due to the strong
electric fields, but also because of the fluctuations associat-
ed with the transfer of the electrons between the I and L
valleys (intervalley noise).

Previous calculations of the hot-electron noise in GaAs
have either been Monte Carlo calculations' or have as-
sumed ' that the distribution functions were displaced
Maxwellians so that a generalized Einstein relation holds,
i.e., the noise is proportional to the electron temperature
times a differential mobility. Prior calculations in GaAs
(Refs. 7—9) show that the distribution function in the l
valley is clearly not Maxwellian, and thus the validity of a
generalized Einstein relation is questionable. Here, we
use a Boltzmann —Green-function method to obtain an an-
alytic expression for the current noise. The method is
based on finding the time evolution of the velocity of a
single electron given by the time-dependent Boltzmann
equation. The method is valid for nondegenerate semi-
conductors when electron-electron scattering is not impor-
tant. The results obtained are in fair agreement with the
time-of-flight data of Ruch and Kino' and the microwave

V'

noise measurements of Gasquett" et al. and Bareikis
et al. ' We find that the nonequilibrium noise is fairly
sensitive to the transport parameters that enter in the
model, more so than the velocity-field curve. In particu-
lar, we find that the noise is extremely sensitive to the I-
to-L scattering rate, suggesting that noise measurements
might be used to determine this rate.

II. THE MODEL
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The important features of the band structure of GaAs
are the minimum in the conduction band at the I point
and the satellite minima at the L points separated from
the I -valley minimum by an energy 6=0.3 eV. The
spherical I valley has a mass of 0.069m, . The L valleys
are ellipsoidal, and the masses are not known extremely
well, although the density-of-states mass in the L valley
has been estimated to be about mL =0.2m, —0.5m, . ' '

We model the dynamics of the system with parabolic I
and L valleys and a coupled set of Boltzmann equations,
one for the I valley and one for a single, generic L valley.
A distribution function, fr(v) or fL(v), normalized to the
density of electrons, nr or nJ, describes the electrons in
each valley. The collision integral in the Boltzmann equa-
tion is approximated by a relaxation-to-local-equilibrium
form for both the intravalley and intervalley processes.
The collision integrals are chosen so that particle number
is conserved in the collision process. Details of the ap-
proximation of the collision integrals to relaxation-time
form are given in Refs. 7, 15, and 16. Finally, we neglect
electron motion perpendicular to the electric field; our
model is one dimensional in velocity. The resulting cou-
pled Boltzmann equations are
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one, the ratio of the valley populations is
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The local-equilibrium functions, fr LE ( u) and fL LE( u ) are
Maxwellians with the mass of the respective valley, nor-
malized to the density offr and fL,

nrfr, LE( v)=,fr,.q(u),
nr
nL

fL, LE(u) 0 fL, q(u)
nip
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Finally n r, and n r
~ are the number of electrons in the

I valley with energy greater than 6, i.e.,

nr

np

fr(v)
, dv)& .

fr,q(v)
'

Again, the superscript zero denotes an equilibrium densi-
ty.

The first term on the right-hand side of Eq. (la) is the
collision integral for I -to-I scattering. The second term
represents I -to-L scattering. The e function in the I -to-
L term permits only those particles with energy greater
than 6 to transfer from the I to the L valley. In the ac-
tual system, electrons can transfer from the I valley to
the L valley when they are within an optic-phonon energy
of the L-valley minimum. Since the optic-phonon energy
for GaAs, 35 meV, is small compared to 6=0.3 eV, our
approximation is reasonable. The first term on the right-
hand side of the second equation is the collision integral
for L-to-L scattering. The second term is the I -to-I
scattering term. The coefFicients of the local equilibrium
functions in the intervalley scattering terms are
nonuniquely determined by the requirements of particle
and current conservation.

(lb)

Here, m r and mL are the effective masses, and nL and n r
are the equilibrium valley densities which are determined
by the density of states. For parabolic bands in d dimen-
sions with an L-valley degeneracy N,

III. STEADY-STATE PROPERTIES

To calculate the noise in the two-valley model, we
make use of the Boltzmann —Green-function method de-
scribed in earlier papers. ' ' The method involves three
steps. First, the steady-state distribution function is cal-
culated from the time-independent Boltzmann equation.
Next, the Green function or response function R (u, t

~
uo)

is calculated from the time-dependent Boltzmann equa-
tion, subject to the initial condition that at time t =0, the
electron has velocity vp. Finally the current correlation
function is calculated from the expression

2
eI (t)=
2I

dv dvpvvpR v, t vp vp

where 2l is the length of the system. The noise power
spectrum is just twice the cosine transform of the current
correlation function.

Calculating the noise for the two-valley model is com-
plicated by the necessity to compute four Green functions
corresponding to the response of the I valley to an elec-
tron initially in the I valley, the response of the L valley
to an electron initially in the I valley, etc. This leads to
four power spectra, Sr r, SLL, , Sr L, and SL r. The de-
tails of the calculation are outlined in the Appendix.
Only the co~0 limit of the noise is calculated; not only is
calculating the full frequency dependence difficult but also
the frequency dependence is apt to be excessively sensitive
to the approximations made for the collision integrals.

The results for the noise are shown in Fig. 1. The solid
line is the calculated noise from our model. The squares
are the experimental data of Ruch and Kino' calculated
from time-of-Aight measurements of the diffusion con-
stant. The error bars are 20%%uo, which is the quoted error
in the paper. The solid circles are from the experimental
data of Bareikis et al. ' and the open circles are from the
experimental data of Gasquet et al. " These data points
were determined by microwave noise measurements.

There is a straightforward (if tedious) procedure for
solving the coupled set of equations. The two equations
are coupled only through the densities; nL appears in the
equation for fr and n r appears in the equation for fL.
Once the densities are known, the equations uncouple and
the distribution functions can be found by using integrat-
ing factors to directly integrate the equations. To find the
densities, Eq. (la) is solved to determine fr in terms of n r
and nL. We then integrate fr over velocity to obtain nr
as a functional of n r and n L . Using the constraint
nr+nL ——nt, t, we are left with an algebraic equation for
n r which is easily solved. The steady-state solution of the
model for the' velocity-field curves and the distribution
functions has been published previously (note in that
solution the electron is assumed to have a charge —e,
whereas in this paper we assume for convenience that the
electron has a charge +e). The v Ecurve -obtained there
agreed fairly well with the experimental data, and the dis-
tribution function in the I valley deviated substantially
from Maxwellian, showing structure at the valley separa-
tion energy.

IV. NOISE PROPERTIES
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FIG. 1. The noise for the two-valley model of GaAs com-
pared with the experimental data. The solid line is the calculat-
ed curve using the following values for the parameters:
pi-i-=7500 cm /V sec, m i*- =0.067m„mL = 1.2m„
7 r L /7 r r =3.5, and ~I„I /vs r = 10. The squares are from the ex-
perimental data of Ruch and Kino (Ref. 10) and the error bars
are 20% (the quoted value). Ruch and Kino's data is from a
time-of-flight measurement of the diA'usion constant. The solid
circles are from the data of Gasquet et al. (Ref. 11) and the open
circles are from the data of Bareikis et al. (Ref. 12). Gasquet

V'

and Bareikis's data are from microwave noise measurements.
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FIG. 2. The Si- i- contribution to the noise compared with the

total contribution. The total noise is dominated by the Sz, i-

term. This is due to the fact that the mass and the scattering
rate in the I valley are much smaller than these quantities in the
L valley.

There is a disagreement between the time-of-flight and the
noise data at low electric field. One possible explanation
for this discrepancy has been suggested by Glisson et al.
They showed, using Monte Carlo simulations, that circuit
effects such as contact resistance and oscilloscope rise
time could lead to a diffusion constant, as determined by
the time-of-flight technique, that was larger than the actu-
al diffusion constant especially in the region of intervalley
transfer. In view of the differences between the three sets
of experimental data, it appears this is the case.

Many aspects of the noise results can be simply under-
stood notwithstanding the complicated details of the cal-
culations. Figure 2 shows that Sq q term completely
dominates the noise. This is not unexpected since, in
equilibrium, the noise scales with ~/m *. Since the upper
valley has both a larger mass (factor of 17) and a larger
scattering rate (factor of 10) than the lower valley, we
would expect that any component of the noise involving
the upper valley would be much smaller than Sq q.

Figure 3 displays the various contributions to Sq ~.
The expressions for the components are given in the Ap-
pendix after Eq. (A28). The solid line is the thermal equi-
librium noise. At high fields, the number of electrons in
the I valley is reduced and this component decreases.
The short-dashed line results from the heating of the I-
valley distribution by the electric field. In a single-valley
model, this term would increase quadratically with the
electric field (for a constant scattering time). For two val-
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FIG. 3. The components of Si-, i-. The solid line is the
thermal equilibrium noise contribution. It decreases because the
number of carriers in the I valley decreases as a function of the
electric field. The short-dashed line is the heating component
that is due to the increase in electron temperature in the I valley
as the electric field increases. This contribution also decreases at
high fields because of the reduction in the number of I -valley
electrons. The long-dashed line represents the contribution to
the noise that arises because the electrons fluctuate between the
I and L valleys. The expressions for these components are
given after Eq. (A28) in the Appendix.
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leys, this component must decrease at very large fields
simply because the number of electrons in the I valley de-
creases. The last term (long-dashed line) is not present in
a single-valley model. It arises from the scattering of an
electron out of the I valley into the I valley and then
eventually back into the I valley. This term has a max-
imum for electric fields where the difFerential mobility is
negative and the slope of the number of electrons in the
I -valley versus electric field curve is large. For high elec-
tric fields this term is negative. This occurs since most
electrons initially scatter out of the I valley with positive
velocity. They scatter back from the L valley isotropically
into the I valley. Those electrons that scatter back with
negative velocity are then accelerated by the electric field
and cannot scatter back into the L valley, whereas the
electrons that scatter back with positive velocities, even
when accelerated by the field, can still scatter back into
the L valley. This leads to a negative correlation at high
fields.

A. Sensitivity to parameters

Figures 4 and 5 display the sensitivity of the U-E curve
and the noise spectrum, respectively, to four important
parameters: (i) the valley separation 6, (ii) the mass of the
upper valley mq, (iii) the ratio of the I -to-L scattering
rate compared to the intravalley scattering rate 7 pL/'Tfp,
and (iv) the ratio of the intravalley scattering rates
~LL/~p~. Comparing the two figures, the overall con-
clusion is that the U-E curve is relatively insensitive to all
the parameters, in contrast to the noise spectrum which is
exceedingly sensitive to parameters (i) and (iii)—namely,
the valley separation and the I -to-L scattering rate. Since
the valley separation is relatively well known, we stress
that the measurement of the noise spectra could be a good
way to determine the intervalley scattering rates.

Below we analyze the sensitivity of the U-E curve and
the noise spectrum to the four parameters listed in the
previous paragraph.

(i) Valley separation energy b, . As the valley separation
energy increases, the I -valley electrons need a higher en-
ergy to transfer into the L valley and thus the number of
I electrons increases. Given the lower mass and lower
scattering rate of the I valley, a larger 5 must increase
both the maximum velocity and the electric field at which
the maximum velocity occurs (cf. Fig. 3). Since there are
more electrons in the I valley, the noise spectrum also in-
creases from both the heating and intervalley Auctuation
components of Sq q (cf. short-dashed and long-dashed
lines in Fig. 3).

(ii) Upper valley mass ml. . The m-ass effects of the v F. -

curve through the density of states [ ~ (m~ )' ] and the
mobility of the L valley. An increase in mL will, through
both of these effects, cause the average velocity to de-
crease. The effect of mL on the noise is more subtle. As
mentioned, increasing the mass increases the population
of the L valley through the density of states. This causes
the heating component in Fig. 3 (short-dashed line) to de-
crease (since the number of electrons in the I valley is de-
creased). At intermediate fields, however, the intervalley
fiuctuation component (cf. long-dashed line in Fig. 3) in-
creases enough to lead to an overall increase in the noise.

At high fields, where the intervalley Auctuation term is
small, the decrease in the heating component dominates
and the noise decreases with increasing mass.

(iii) I to -L-scattering rate rrL. The dependence of the
v-E curve on the intervalley scattering rate is fairly com-
plicated. At intermediate fields (in the negative
differential mobility regime) a large intervalley scattering
decreases the fraction of electrons in lower valley with en-
ergies greater than 6, and therefore decreases the number
of electrons in the L valley; hence there are more elec-
trons in the higher-mobility I valley and the average ve-
locity increases. At large fields, even though there are
only a few I -valley electrons, they still dominate the aver-
age velocity since their mobility is high. Increasing

s
~

s t t t
~

i i 3 i i i t
J

s r i s
P

Vary 6 (eV)
--0.25

0.30-—0.35

0
Vary m&

--16
1.2—0.8

0 ~ ~

'0'
3

I i i i i I

10 20
1 I

I
I I I I

t
I

Vary &n /&rr
————100

3.5—1.0

00
I 3

I t l i t I I I

10 20
I I i t

t
I I l I

i
I I

I

Vary &u. /&rr
- ———-10 0

5.0
—2.0

~ ~ ~ ~ ~

00 t I I I i I i I 010 20 0 10 20

Electric Field (kV/cm)
FIG. 4. The sensitivity of the velocity-field curve to the vari-

ous parameters that enter the model. These figures are based on
results of Baranger (Ref. 16). In all figures, the solid line is the
best fit and the dots are the compiled experimental data. The
upper-left-hand figure shows the sensitivity to the valley separa-
tion energy A. As 6 increases, the I -valley electrons need to
reach a higher energy before they can transfer into the L valley,
and thus the maximum velocity occurs for a higher electric field
and is larger as 6 increases. The upper-right-hand figure shows
the sensitivity to the upper-valley mass. The mass effects the v-E
curve through the density of states in the L valley [oc(mL )' ]
and the mobility of the upper valley. An increase in mL will,
through both of these effects, cause the average velocity to de-
crease. The lower-left-hand figure shows the sensitivity to the
I -to-L scattering rate. At intermediate fields, as the rate in-
creases, the number of electrons in the I valley below the energy
threshold 5 increases and thus the peak in the v-E curve is
higher and occurs at a greater electric field. At higher fields,
even though there are only a few electrons in the I" valley, they
still have a large effect on the average velocity since their mobili-
ty is high. An increase in ~t=L causes a decrease in the I -valley
mobility and the average velocity. The lower-right-hand figure
shows the sensitivity to the L intervalley scattering rate. As r«
increases, the mobility of the electrons in the L valley decreases
and thus the v-E curve at high fields decreases.
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V. DISCUSSION

Because the noise is so sensitive to the 1 -to-L, scattering
rate, it might be used to determine the rate. Figure 6
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v.pL, /~I-i'- thus decreases the average velocity. For the
noise spectrum, we note that it is very sensitive to this
scattering rate; in particular the intervalley fluctuation
component [cf. last term of (A28) and the above discus-
sion of Fig. 3]. A decreasing rrL/rpt' increases the corre-
lation time for the intervalley scattering and therefore in-
creases this component.

(iv) Ratio of the intraualley scattering rates rLL /err.
The v-E curve has only a slight dependence on ~IL/~pi'-.
This is at high electric fields where the average velocity is
dominated by the L-valley electrons. As ~LL' increases,
the mobility of the L-valley electrons decreases, causing
the average velocity to decrease. The noise is not very
sensitive to ~LI' since the L-to-L scattering rate primarily
affects SL L, which is much smaller than St t. (cf. Fig. 2).
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shows two fits of the parameters for the v-E curve and the
noise. Fit 1 has the parameters 5=0.3 eV, mL' ——1.2m„
~i-L/~I-i'- ——3.5, and ~I.L /~pq ——5.0 while fit 2 has the pa-
rameters b =0.35 eV, mL ——1.8m„~qi-/~ql. ——0.5, and
~qi-/~LL ——15.0. As can be seen, the resulting v-E curves
are very similar and agree reasonably well with the experi-
mental data. The noise curves, however, are extremely
different, and only fit 1 is close to the experimental data.
This is because fit 2 has a very small value for the I -to-L
scattering rate and the noise is very sensitive to this pa-
rameter, while the U-E curve is not. Note the parameters
of the fit are similar to those used to generate Fig. 1.

We believe that our model resolves the discrepancy be-
tween experimental data for the diffusion constant and
theoretical attempts to explain it. As pointed out by Glis-
son et al. , if Monte Carlo calculations of the diffusion
coefficient versus electric field are brought into agreement
with experimental data, then agreement is sacrificed in the
velocity-field curve or low-field mobility. As mentioned
earlier, part of this discrepancy was shown by Glisson
et al. to be due to circuit effects. By allowing for circuit
effects, they brought into agreement the experimental and
Monte Carlo results for the diffusion constant at low field
(&6 kV/cm). However, their Monte Carlo results were
still too low at high fields (& 6 kV/cm) and this could not
be accounted for by circuit effects.

Our model, though overly simplistic (we have neglected
valley nonparabolicity as well as scattering to the X val-

ley) shows that by slightly decreasing the I ~1. scatter-
ing, the value of the diffusion coefficient at high fields ( ~ 6
kV/cm) can be increased without substantially changing
the velocity-field curve (cf. Figs. 4 and 5).
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FIG. 5. The sensitivity of the noise to the transport parame-
ters. The upper-left-hand figure shows the sensitivity to h. As
6 decreases, transfer to the upper valley occurs at a lower field
and the noise decreases due to the fact that electrons in the I
valley do not heat up but transfer to the L valley instead. The
upper-right-hand figure shows the sensitivity to mL, The density
of states in the L valley increases ~(mL j' which causes the in-

tervalley noise to increase with the upper-valley mass. The
lower-left-hand figure shows the sensitivity to the I -to-L scatter-
ing rate. As can be seen, the noise is extremely sensitive to this
parameter. From Fig. 3, we see that the noise in the negative
differential mobility region is sensitive to the fluctuations in the
number of carriers in the I valley. As the I -to-L scattering rate
increases, the correlation time for these Auctuations decreases
and the noise decreases at all values of the electric field. The last
figure shows the sensitivity of the noise to the L-to-L scattering
rate. The noise is not very sensitive to this quantity (the L-to-L
scattering rate will have more of an effect on the SI., L term, but
since this term is smaller than the Si-, i- term, the L-to-L rate
does not have a large effect on the total noise).
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the average velocity is not. This suggests that noise measure-
ments could be used to determine some of the unknown trans-
port parameters in many-valley semiconductors.
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VI. CONCLUSIONS

To summarize the results of this paper, we have pro-
posed a simple model for transport in many-valley semi-
conductors such as GaAs which includes coupling be-
tween the central I valley and the satellite I. valleys. The
coupled equations are chosen so that certain properties of
the collision integrals are obeyed (e.g., particle conserva-
tion, relaxation to local equilibrium, etc.). The model
treats the scattering rates and band structure simplistically
but has the advantage that it is analytically solvable for
both the velocity-field curve and the noise. The model
predicts that the noise should be very sensitive to the I-
to-L scattering rate while the v-E curve should not be that
sensitive, and suggests that noise measurements might be
useful in determining some of the transport parameters.
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APPENDIX A: SOME DETAILS
OF THE CALCULATION FOR THE NOISE

In this appendix, we outline the steps of the calculation
of the noise in the two-valley model of GaAs discussed in
Sec. IV. The procedure is very similar to that for calcu-
lating the steady-state behavior.

The starting point is the time-dependent coupled
Boltzmann equations for the Green functions. There are
four Green functions, which are denoted by Rr r(v, t

~

vp),
Rr t (u, t

~

up), Rt. t (u, t
~

up), and Rt r(v, t
~

up) where the
second subscript denotes the valley the electron was in at
time t =0 and the first subscript denotes the valley that
the electron was in at time t. The coupled equations for
the Green functions are

aRr, (u, t [vo) eZ ~Rr, (u t (uo)+at mr

BR t(v, t
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~
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n r (t)nt
Rt. , ;(v, t
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vp) —
p Rt LE(v, t

~

uo)
n t' nt (t)

with ~ra/&zr =n p /n~. The subscript i can be either I or I. depending on which of the two sets of initial conditions
is used

Rr r(u, t =0
~

up)=5(u —up), i =I (starts in the I valley),

Rt r(u, t =0
~

vp)=0, i =I (starts in the I valley),
(A2)

or

Rr t (u, t =0
~

vp) =0, i =L (starts in the L valley),

Rt t (v, t =0
~

up)=5(v —up), i =L (starts in the L valley) .
(A3)

Rr t E(v, t
~

vp) is the local-equilibrium function for the function R. This is just a Maxwellian (with the appropriate mass)
that is normalized to the time-dependent density of the given valley, i.e.,

—mrv 2

exp
2ka To

Rr ( tEtui up)= ', ' f™dv'Rr;(v', t
~

up) . (A4)
(27rks Tp jm r )'~

The analogous quantity is also defined for the L valley.
In these equations, nt and nr, etc. , are now the probability of finding the initial electron in the I or L valley (i.e., the

integral over the appropriate R) and depend on time (as well as the initial conditions). Care should be used in distin-
guishing them from the quantities that appear in the equations for the f's (where the normalization is slightly
different —the f's are normalized to the total density n„, while the R s are normalized to 1 since they are for a single
electron).

To solve these equations, we first Laplace-transform them:
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eE ~Rr, ;(u s
l
vo)

sR r;(u, s
l
vp)+

mr BU

1
[R ri(, u~s

l
vo) —R r, LE(v, t

l
uo)]

B(v —v, ) n mt (s)
Rr;(u, s

l
vp) — Rr LF(u, t

I
up) +Rr;(v, t =0

l
vp},

&I L nLnr(s)

BRt. ;(u, s
l
vo)

sRL;(u, s
l
vo)+

ml BU

1 [Rt; (v, s
l

up) —RL LE(u, t
l
up)]

&LL

(AS)

1
RL;(u, s

l
vo)—

7zr

n r(s)nt
RL LE(v, t

I
uo) +RL;(v, t =0

I
uo) .

nr ~nL(s)

Instead of solving for the full frequency dependence of the quantities, we will solve for only the low-frequency quanti-
ties since this simplifies the problem. The procedure to solve for the fully frequency-dependent quantities is similar but
more complicated.

We expand the response functions in powers of s, the Laplace-transform variable

Rr, ;(u, s
l
vo)=

R r;(u
l

Up)
+R r;(u

l
up)+sR r;(u

l
up)+

s
(A6)

R t;(v
l

Up)
RL;(U, s

l
up)= ' +R L, ;(u

l
Up)+sR t. 1(u

l
vp)+

From the property of Laplace transforms, we know that lim, psRr;(U, s
l
Uo)=lim, „Rr;(u, t

l
up). Since as t~ ao,

the response function goes to the steady-state distribution function (normalized to l) independent of initial conditions, we
see that

fr(v)
R r;(u

l
up)=

n tpt

ft. (u)
R L;(v

l
uo)=

n tpt

(A7)

fr(u) eE M r, (u
l
uo)

+
ntpt m r U

If we substitute Eq. (A6) into Eq. (AS) and collect terms to linear order in s, we obtain the following pair of equations:

—m ~v /2kTO
1 e

R r, (u
l

vo) —n r
&rr (2vrkTo /mr )'

e( ' — ') 0 —m t- v /2kTO
Uc n p

R ri(u luo) —
p

n L
&1L nL (2trkTplm r )' +Rr;(u, t =0

l
up),

ft. (u) eE ~R t., (v
l

vo)
+

n tpt mz BU &LL

mL V /2kTO

Rt;(u I up) —n L
(2~kT lm*)'

(AS)

&zr
R L;(v

l
vo)—

n 0 —mr v /2k To

n r ' +RL;(v, t =0
l

up) .
n t' (2nkTplmt*)'

Here n r and n L are the integrals over v of R r;(u
l

up) and R t;(u
l

vp), respectively, and n r '' is the integral over u

of R r;(u
l

uo) for
l

v
l

& u, . They are also the first terms in the expansion of the densities in the Laplace-transform
variable s, i.e. ,

np
nr(s)= +n r(vp)+sn r(vp)+

s
nz

nL (s)= +n t (Uo)+sn t (Up)+
s

If the density in each valley is constant in time (does not fluctuate), then all higher-order terms vanish, i.e.,

n p=n I-=
—1 —2n L=n L=

~ ~ o O

~ ~ o O

n r and n t. are the (low-frequency) density response functions (for the given initial velocity vp). Since the total density is
a constant, n ~+ nz ——1/s and therefore

nr= —nz n r= —nL (A9)

Equations (AS) are a rather complicated set of equations, especially since the expressions for fr(u) and fL (u) are com-
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plicated in themselves (see Ref. 7). In addition, the coupled pair of equations must be solved for both sets of initial con-
ditions given by Eqs. (A2) and (A3). To solve the equations, one first integrates them using an integrating factor to find
R I-;(v

I
up) and R t. ;(u

I
vp) as functionals of n r, n L, and n r '. The first is given by

l mr
R r;(u

I
up)= du' exp

eE
(u —u')

eE &rr IL
—m rv' /2kTonr nr nL e fr(v')

+ p , q
+Rr;(u', t =0

I
up)—

&rr nt. &rt. (2vkT o/m r ) ntot

r—mr mr
R r;(v

I
vp)=exp (u+v, ) R r;( —v,

I
vp)+ dv' exp (u —u')

eE~rr —vc eE eE~rr

U (—V~

mr
R ri(u ,I

vo)=exp
&rr &rL

nr e fr(v')
+Rr;(v', t =0

I

up)—
&rr (2vrkTpm r)'

v mr mr 1 1
(v —v') R r;(u,

I
vp)+ du' exp +eE eE

—v, (v (v,

(u —u')

(A10)

and the expression for R L;(u
I

vp) is given by

—mr' /2kT0
r

nr nr nL fr(v')
+ 0 +Rr i(v', t =0

I
uo)—

nt &rt. (2vrkTp/m r )'
U (U

R L;(v
I
vo)= J

' du'exp
eE

—mL

eE
1

(u —u')
~LL &LI

—1 0nL nL
0&LL n I

1 —mL v /2kT0 f(')n r U

, 2 +RL;(u', t =0
I
vo)—

&Lr (2ttkTp/mL )
'

tt tpt
(A 1 1)

&LI

nL
n L —

o n r' +nL(t =0) .
n r'

(A12)

These equations are rather horrifying, especially since
the expressions for fr(v) and ft. (u) still must be substitut-
ed into them and one still has to determine the density by
integrating over R r, (u

I
vo). Nevertheless, these equa-

tions represent the solution to the coupled equations (A8)
once the quantities n r, n L, , and n r ' are determined.

Determining the densities. To determine the self-
consistent densities, n r, nL, and n r ', it is necessary to
have three equations relating these densities. The first re-
lation is Eq. (A9) and is a result of the fact that the total
density is constant. The second is obtained by integrating
either one of the Eqs. (A8) over v from —co to oo and is
given by

n r =(»+Ei )/( & i+De ), (A14)

I

linear equations in three unknowns. These equations can
be solved in each case. In the case that the electron starts
out in the L va11ey, we find that the expressions do not
depend on what the initial velocity is, but if the electron
starts out in the I valley then the densities have a depen-
dence on the initial velocity v0. This is not surprising. If
an electron is in the L valley, then it always has enough
energy to transfer to the I valley. However, an electron
in the I valley must have an energy above 5 to transfer
to the L valley and thus the expressions for the densities
have a dependence on the initial value of the velocity vp.

Starting in the L valley. The expressions for the densi-
ties when the electron starts out in the L valley are ob-
tained by solving the linear system of three equations and
are given by

The third equation is obtained by integrating the first of
Eqs. (A8) from —u, to u, to obtain nL ———nr (A15)

eE
1ttr nr + „[R—r, ~(u.

I
uo) Rr, i( —uc —

I
uo)]

mr

(an r nr ')+ '
dv'R—r;(v', t =0

I
uo) .

&rr C

(A13)

n r'= —B)+A)(n r) . (A16)

A ~
—— exp

m r2vq

eE~rr
CK—1 ai+e~+-

&rr
(A17)

Here A ~, B~, D~, and E~ are constants (they depend only
on the electric field):

Here, a=erfc[(b/kii Tp)' ] is the fraction of electrons in
the I valley with energies above 5 in equilibrium.

There are two cases, corresponding to which valley the
electron starts out in. In both cases, since R I;(v,

I
up) i.s

a linear function of n }, n L, and n r ', we have three

B~ —— 1 —exp
—m r2vc

eE~rr b~ —d~ f~+n r —nr—
(A18)
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rn'
0

nL &rr

&I LE) ———nr
&rr

(A19)

(A20)

Starting in the I valley. For the case that the electron
starts out in the I valley, the expressions for n r, n L, and
n r ' are given by the above expressions with A

~
and D~

given by Eqs. (A17) and (A19) but with B~ and E& now
given by

a] ——
1 nr 1

&rr nL &rL0

The expressions for a ~, b ~, d ~, e ~, and f~ are
B]—— 1 —exp

—mr2v,
eE&rr

(bl +cl ) dl fl

—g~ +n r —nr —e(u, u—)e(v+u, ), (A22)

X f "dv'exp mr 1 1+E ~rr &rL
(u, +u')

&I L
E~ =(1 nr—) (A23)

—m pv' /2kTp
e

X
(2n.kTo/m f )'rz

The expressions for a ~, b ~, d ~, e ~, and f ~ are the same as
before, and the expressions for c ~ and g] are given by

c~(vo)=e( —u, —uo)
0

+ 0eE Q exp
mr +E ~rr 7rL

(v, +uo) (A24)

X f "dv'exp
00 eE

1 1+
I I &I L

(u, +v') g, (u, ) =e(u, —u, )e(uo+u, )

—m pv' /2kTp

X(v, +u')
(2vrkTo/m r )'

m r2vc
1
— 2vc exp fr( —u, ),

eE~rr
(A21)

VC

e& = dv
C

exp
—m r(v, —u')

eE~rr

—m p v /2kTp
e

(277kz"o/m ~r )

V

f~ = du'exp
C

—mr(u. —u')

eE~rr
gQ

nrmr( c u—v ) e
X

eE&rr (2nkTo lm r )'

Most of these integrals can be evaluated analytically in

terms of error functions.

)& exp
—mr(u —uo)

eE~rr
(A25)

Note that B] no longer is a constant but has a dependence
on the initial velocity both through expressions for c~ and

g& and the last term in Eq. (A22). These equations solve
the equation for the Green functions. To determine the
current fluctuations, we still have to integrate over the
Green functions and the steady state distribution func-
tions.

Expressions far the power spectra. Rather than directly
integrate over the Green functions to obtain the expres-
sion for the power spectra, some simplification is made if
the equations for the Green functions are directly multi-
p1ied by v and v0 and the appropriate steady-state distri-
bution function [either fr(uo) or fL, (vo)], then integrated
over v. and v0. We find four contributions to the noise
spectra, denoted by Sr r, SL L, Sr L, SL L and given by

IL

Sr L, (co=0,E)=—
2l

&LL

4nre k~To/mt* 4It (2 —nL)/nt. z n L
SL L (cv =0,E)=- + +4IL

2l 1 1 1 nL+ +
&LL &LI LI"

—4ILIr 4eIL
+ duovon L (uo)fr(vo)

1 1 nL+
&L I

(A26)

(A27)

uofr(uo)
2 2 4Ir irr+

e(vo —v, ) 1

+I I 7 I L&IL

Sr r(n) =O, E)=—4e f" dvo
2l

+

e E+4 Ir
mr

n rvrr
1

7rr ~rL

e E2 —1+4 f dvovofr(vo) n r(vo)&rr-
mr

IL
1 1+

rL

X In r '(Uo)+U, [R r r(v,
~

vo)+R r r( —v,
~
Uo)]I (A28)
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A
SL, r(co =O, E)=—4II I—r &rr+

21 1

~rr &rL

e E+
mr

nr&rr
1 I+

IL

—1—n r&rr—
1 +

&rr &I L

[n r '+U, [R r L (v, )+R r L( Uc)lj (A29)

where A is the cross-sectional area and 2l the length of
the sample.

The dominant contribution (cf. Fig. 2) is from Sr r.
One can divide Sr r up into the three expressions. The
first expression (cf. solid line in Fig. 3) comes from divid-
ing the first integral in (A28) into two pieces [by dividing
fr(UO) through the time-independent version of Eq. (la)];
one an equilibrium piece proportional to fr, q', the other a
nonequilibrium piece proportional to t)fr/t)U. The first
expression in Fig. 3 (solid line) is this equilibrium piece.
The second expression in Fig. 3 (short-dashed line) is the
remaining nonequilibrium piece plus the next two terms
in (A28) that are proportional to Ir and Ir. The third
and final expression (cf. long-dashed line in Fig. 6) is the
remaining integral in (A28) (note that all the terms in this
remaining integral are proportional to n r or n r ' so that
the third expression would equal zero in a one-valley
model).

One word of caution should be said about the expres-

sions for Sr L and SL r. The individual expressions have
no physical meaning by themselves. The only quantity
that should have any physical meaning is —,'(Sr L+SL r).
This is because in analytically continuing the Laplace ex-
pressions for Sr I. (s) and SL r(s) into frequency space, we
have assumed that the individual correlation functions
I r L(t) and I L, r(t) are even functions of time. This is
not necessarily true since stationarity only guarantees that
the sum I r t (t)+ I I r(t) is even in time and thus the an-
alytic continuation procedure is valid only for the sum of
the two terms and not for the individual terms.

The expressions for SL, L, and SL r are easily evaluated
in terms of the given expressions for the Green functions
and the densities n r, n I, , and n r '. The expressions for
Sr r and Sr L are more complicated since when the elec-
tron starts in the I valley, the expressions for the n r, etc.
depend on the initial velocity vo, and this leads to terms
that contain integrals over the initial conditions.
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