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Resonance Raman scattering in GaAs-Al„Gat As superlattices:
Impurity-induced Frohlich-interaction scattering
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We report measurements of Raman scattering from E.Q phonons in resonance with quasi-two-
0 0

dimensional excitons in a 104-A GaAs —125-A Alo. 25Gao 75As superlattice. Incoming and outgoing
resonances are observed at discrete excitons formed from first and second conduction and valence
subbands. As already pointed out by Zucker et al. , the resonant Raman profile shows a stronger
outgoing resonance as compared with the incoming one. We present a quantitative explanation of the
observed asymmetry of both resonance channels by invoking the impurity-induced intraband
Frohlich scattering mechanism, an eA'ect also observed in bulk semiconductors. This analysis differs
from that of Zucker et al. , which was based on the details of the quantized quasi-two-dimensional ex-
citons. We believe that the latter mechanism may explain resonance asymmetry for a special range of
superlattice parameters, while the one proposed here should be more general, extending all the way
to the two-dimensional case.

I. INTRODUCTION

Raman scattering from phonons in semiconductor su-
perlattices and multiple quantum wells (MQW), in partic-
ular GaAs-Al„Ga& As systems, is being extensively
studied in order to understand the nature of the vibration-
al modes and their interaction with electrons (or exci-
tons). ' The optical properties of such superlattices are
dominated by discrete and continuum excitons formed
from the confined electron-hole pairs. These electron-
hole pairs, confined in the GaAs layers of GaAs-
Al GaI As superlattices and thus termed quasi-two-
dimensional excitons, strongly aff'ect the optical proper-
ties.

Recent Raman experiments have shown the difference
between the concepts of zone-folded vibrational modes,
applicable to acousticlike phonons, and confined modes
for optical phonons. ' The LO phonons of the superlat-
tice [with (001) growth direction and D2d point group] be-
long either to the 82 or the 3] irreducible representations
of D2d. The A~ modes, dipole-forbidden in bulk GaAs
(diagonal Raman tensor), are dipole-allowed in the super-
lattice. The values of the diagonal Raman tensor com-
ponents, as calculated within a polarizability model, are
small and hence 3& modes should, in general, not be ob-
served. "' It has, however, been shown that these
modes resonate much more strongly than the 82 modes,
so much that only 2

~ modes are seen close to resonance.
This fact is analogous to the resonant enhancement of the
forbidden Raman scattering by LO phonons in bulk semi-
conductors, arising from the intraband Frohlich electron-
phonon interaction.

Resonant Raman scattering (RRS) in GaAs-
Al Gal As superlattices was first reported by M~nuel
et al. ' This work was performed at room temperature.
The results of Zucker et al. on resonance enhancement
at low temperature in these superlattices clearly brought

out the role of quasi-two-dimensional discrete excitons.
In these measurements, the resonance profile showed a
peak when the exciting photon energy AcoL equaled the
energy of the n =1, electron —heavy-hole (e-HH) exciton
of GaAs (incoming resonance). In the case of the n =2,
heavy-hole exciton, in addition to the incoming resonance,
a resonance peak was observed when the scattered photon
energy ( fms ) matched the n = 2 exciton (outgoing reso-
nance). Similar incoming and outgoing resonances were
observed in GaAs-A1As superlattices at the n =1, e-HH
exciton. The outgoing resonance is observed to be
stronger than the incoming one. Zucker et al. attributed
this asymmetry between the strengths of incoming and
outgoing resonances to an exciton-LO-phonon scattering
process in which the exciton makes a transition to a
diff'erent quantum-well state at higher energy (from n =2
to n = 3). On the other hand, Sood et al. ' conjectured
that double resonance effects arising from the impurity-
induced Frohlich interaction scattering, analogous to
those found in bulk GaAs, are the cause of the stronger
outgoing resonance. A stronger incoming than outgoing
resonance is observed for the resonance of Raman scatter-
ing by LO phonons with extended excitons. ' Zucker
et al. ' explain the asymmetry in a way similar to Ref. 2
by the interaction of the extended exciton state with a
discrete exciton at lower energy via the LO phonon. In
asymmetric modulation-doped quantum-well structures
Suemoto et al. ' ' showed that the Raman scattering by
LO phonons resonates when the scattered photon (outgo-
ing resonance) matches the transition from the uppermost
hole subband to the conduction subbands (n & 11).

In this paper we report Raman measurements of LO
phonons in a GaAs-Al„Ga~ „As superlattice at tempera-
ture T=2 K in resonance with n =1 and n =2, e-HH
discrete excitons. We show that the stronger outgoing
resonance can be quantitatively understood on the basis of
impurity-induced intraband Frohlich scattering. Detailed
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calculations are performed for the n =2 resonances. In
this case excitonic effects should be weaker and it is
reasonable to treat the resonance by assuming uncorrelat-
ed electrons (two-dimensional interband minimum). The
inclusion of continuum Coulomb interaction would con-
siderably complicate the problem without adding much
physical insight to it. '

In our model, which has been shown to work well in
three dimensions, ' we evaluate a fourth-order process in
which the incident photon creates a virtual electron-hole
pair, this pair is scattered by the LO phonon and then by
the impurity, and finally recombines to give the scattered
photon. This process, although of higher order, can dom-
inate over the standard quadrupole-type (q-dependent)
third-order Frohlich mechanism' ' because phonons of
much larger wave vector are involved: The impurities
carry away the difference between this wave vector and
the small optical scattering vector.

In a superlattice, or more precisely, in the multiple
quantum wells treated here, two scattering mechanisms
involving Frohlich interaction are possible. One of
them, which involves no q transfer parallel to the layers,
results from the different penetration of electron and hole
wave functions into the barriers. We neglect this mecha-
nism here because of the high barriers of our samples
(large period) and the fact that the larger penetration
depth due to the reduction in barrier height of the valence
band, as compared with the conduction band, is compen-
sated by that due to the larger mass of the heavy holes.
The mechanism we actually treat involves q transfers
parallel to the layers and, for backscattering, can only be
activated by defects such as impurities or irregularities at
the interface. The q transfer due to the defects must,
however, remain below rr/dr (dr =GaAs layer thickness),
otherwise the LO phonons convert into their TO modes
(for spherically symmetric impurity potentials). '

The calculations of impurity-induced Frohlich interac-
tion scattering by LO phonons for 2d bands yield, like the
3d case, ' ' stronger outgoing than incoming resonances.
In two dimensions the peaks are, however, better resolved
than the 3d case. For 2d bands the ratio of strengths of
the outgoing and the incoming resonances depends criti-
cally on the cutoff chosen for the Coulomb potentials.

II. EXPERIMENTAL DETAILS AND RESULTS

The multiple-quantum-well sample studied was grown
on a (001) GaAs substrate by molecular beam epitaxy. It
consisted of 100 periods of 104-A (dr ) GaAs/125-A (dq)
Gap 75Alp 25As which were not intentionally doped. As a
tunable excitation source we used a cw dye laser with the
dye LD 700 (Lambda Physik, Gottingen) pumped by all
red lines of a Kr+ laser (4.5 W). The dye covered the
spectral range from 1.53—1.70 eV. The measurements
were performed at about 2 K in a helium bath cryostat
with superAuid helium. The power density on the sample
was kept below 5 W/cm .

Figure 1 shows the resonance of the "forbidden" Ra-
man scattering by LO phonons [z(x,x)z backscattering
configuration, where x =(1,0,0),z =(0,0, 1)] in the region
of the n =1 and n =2 quasi-two-dimensional excitons.
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FIG. 1. Resonance profile of the forbidden scattering by LO
phonons in the energy region of the n =1 and n =2 excitons.
The counting rates are normalized with respect to those for
single-crystal silicon without correcting for optical constants.

The counting rate has been normalized with respect to
that measured for the optical phonon of Si, but the data
points were not corrected for the different absorption
coefficients of both materials. The line was drawn as a
guide to the eye. The arrows in Fig. 1 depict the exciton
levels as estimated from the calculated quantum-well lev-
els including the exciton binding energies evaluated by
Miller et al. ' The levels are labeled by the confinement
number n (starting from n =1) and the hole state (HH:
heavy hole, LH: light hole). Incoming and outgoing res-
onances differ by the energy of one LO phon on
(rrtQLo =36.6 meV).

The resonance profile of the forbidden Raman scatter-
ing by LO phonons reveals the following features (Fig. 1):

(i) The incoming resonance at the n = 1,
electron —heavy-hole (e-HH) exciton and the outgoing res-
onances at the e-HH and e-LH excitons.

(ii) The incoming and outgoing resonances at the n =2,
e-HH exciton. The outgoing resonance is stronger than
the incoming one for the e-HH excitons. Strong lumines-
cence near the n =1, e-HH exciton prevented us from
completely observing the n = 1 exciton incoming reso-
nances.

The results are similar to those of Zucker et al. The
additional feature in our results is the observation of the
n =1 outgoing resonances at the HH and LH excitons.
The asymmetry in the strengths of the n =2, e-HH exci-
ton incoming and outgoing resonances is a factor of 2,
similar to that reported by Zucker et al. , while the asym-
metry of the n = 1, e-HH exciton resonances amounts to
about 6 with a large uncertainty since the structure is not
completely resolved (Fig. 1). Correction for absorption
would tend to increase the asymmetry, most strongly near
the n = 1 exciton (about a factor of 2) and should be less
important near the n =2 exciton (see Ref. 8 and Fig. 15
of Ref. 9).

In the following section we will focus our attention on
the well-resolved resonance near the n =2, e-HH exciton.
We will show that intraband impurity-induced Frohlich
interaction of LO phonons with quasi-two-dimensional
discrete excitons can quantitatively explain the asymmetry
of the incoming and outgoing resonances.
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III. THEORY AND DISCUSSION

A. Forbidden scattering by LO phonons

RF; —— 0 bF; 0

0 0 bF;

where b F; and b F; are Raman polarizabilities. Their
di6'erence arises from the anisotropy introduced in the cu-

l

The q-induced (quadrupole) and surface-field-induced
forbidden Raman scattering by LO phonons has been re-
viewed by Richter et al. ' for the case of one-electron ex-
citations at a two-dimensional critica1 point such as the
E] and E~+h~ gaps in III-V compound semiconductors.
Their quantitative results show a symmetric enhancement
of the forbidden scattering by LO phonons at the incom-
ing (ficoL =Ei ) and the outgoing resonance (fxoL =E

~

+ iriQLo). In the three-dimensional case, it has been
shown that ionized impurity-induced forbidden scattering
yields a stronger outgoing resonance. ' ' We will apply a
formalism similar to that of Ref. 21 for the transition am-
plitudes and the same definition of transition matrix ele-
ments to evaluate, in fourth-order perturbation theory, the
scattering eSciency of the impurity-induced Frohlich in-
teraction by LO phonons for 2d bands. We proceed in a
similar way as in the 3d case, considering uncorrelated
electron-hole pairs as intermediate states. '

Near resonance the Raman tensor for impurity-induced
scattering-RFi is diagonal:

bF; 0 0

bic material by the quantum wells. At this point, we shall
treat the material as three-dimensional and introduce later
the two-dimensionality of the quantum well by making
the mass along its axis equal to infinity (confined electron-
ic states).

The squared Raman polarizability, proportional to the
sca«e»ng elficiency (

I
es.RF; eL

I

'=
I
bF;

I

' «r es lie; ),
depends on the transition amplitude WF;(q, q') for
impurity-induced scattering by LO phonons (pseu-
domomentum Rq, momentum transfer by the impurity
A'q', f and i final and initial states)

lbF; I
=nr 1

Q)L

2 2
nsnL 2M *QLO V,

2' f3
V

(2m. )

x f f d q' f d q I wf;(q, q')
I

Xfi(kr, —ks —q —q') . (2)

nI denotes the concentration of ionized impurities, nL, q
are the refractive indices of the material at the frequency
coL s of the incident (scattered) laser light, kL, s are the
wave vectors of the incident (scattered) light.
M'=(1/MG, +1/ MA, )

' is the reduced mass of the
primitive cell of GaAs (volume V, =a 0/4, where ao is the
lattice constant), Qt,o the frequency of the LO phonon. V
denotes the crystal volume. The most resonant contribu-
tions to the transition amplitude can be written in fourth-
order perturbation theory:
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(3)

H,~ is the electron- (hole-) photon interaction and HF(q)
the Frohlich interaction between an electron-hole pair and
a LO phonon with pseudomomentum A'q. ak,-, bk&, and cq
are creation operators for a photon with momentum Ak
and a polarization e, an electron-hole (e -h) pair with total
pseudomomentum Rk(k =k, —ki, } and relative pseu-
domomentum iiiK(K=s, k, +si, kq ), and a LO phonon
with pseudomomentum ih'q(q=kL —ks }, respectively. Us-
ing only a two-band model, consisting of the n =2, con-
duction and the n =2, heavy-hole band, the quantities s, ~
are defined by

se meJ /m, Sp =mg), /m m me/+ mb) ~

m, ~q are the conduction-electron, heavy-hole effective
masses in the direction parallel to the layer (perpendicular

to the nondispersive axis), respectively. In Eq. (3), H„(q}
denotes the electron- (hole-) impurity interaction via a
screened Coulomb potential yielding a momentum
transfer Rq. In the effective mass approximation for two
bands the transition energy becomes

e, (K)—e, (K)=E(n =2,HH)+ Ki . (5)
2pi

E(n =2,HH) is the energy of the n =2, heavy-hole exci-
ton transition, AKz the relative pseudomomentum of elec-
tron and hole parallel to the layer (perpendicular to the
nondispersive axis), and pi the reduced exciton mass
[pi = (1/m, i+ I /mi, i ) '].

The electron-photon interaction yields the matrix ele-
ment
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where e (m) are the free-electron charge (mass), n is the
refractive index of the material at the frequency cu, and
(c

~

p.e
~

v) denotes the momentum matrix element be-
tween the valence-band and conduction-band state for the
polarization e of p. Including spin degeneracy we chose

f
(c [p.e

J
U)

f
=P as in the case of HH-conduction-

band transitions in bulk material. The Frohlich con-
stant CF is defined as

CF = [2~e ( I /e —I/ep)AIILo] (7)

where ep and e denote the low- (rf) and high-frequency
(ir) dielectric constant. The matrix element for the
Frohlich interaction then becomes

(0
~

bkKHF(q)bk'K'cq
~

0&

CF
~~2 (fiKs, q+K' fiK+s~q, K'@k,k'+q

( V)1/2

We shall take for H„ the screened Coulomb potential
of a charge in a 2D electron gas which differs from that in
a 3D gas. The electrons are bound in the direction per-
pendicular to the layer whereas they are free in the two
other dimensions. Image potentials at the interfaces have
to be accounted for in addition to the polarization of the
dielectric. There are two different approaches for the
screening of a Coulomb potential by a 2D electron gas.
The first one considers strictly 2D sheets of charges,
whereas the second attempt deals with a quasi-2D elec-
tron gas in a dielectric. Both cases yield complicated
expressions for the screened Coulomb potential. The
most appropriate one for our purpose of an unintentional-
ly doped quantum well is the quasi-2D approach by
Bechstedt and Enderlein. Their final expression in-
cludes the polarization of the medium by the impurity as
well as the image charges created at the interfaces. For
the case of weak screening (qF

' &&d ~ /m, qF is the screen-
ing wave vector, d~ ——104 A is the thickness of the GaAs
layer) their results justify the use of a similar expression
as in the 3D case. The Fourier transform of the screened
potential is thus assumed to be of the form

4 2

(qg+q~~ +qF)epV
(9)

Here qq (q~~) denotes the wave vector parallel (perpendicu-
lar) to the superlattice layer, which signifies perpendicular
(parallel) to the nondispersive axis. ep is the low-
frequency dielectric constant. We shall approximate the
screening wave vector q~ by one-half of the distance be-
tween impurities [qF=2/X=2(4~nl/3)' ], an approxi-
mation which would represent screening by compensated
impurities but also should not be too bad in the case of
screening by ionized impurities. The matrix element for
the electron-impurity interaction then becomes

We neglect ks =kl. =0. Thus, the sums over the k (K)
vectors are trivial in Eq. (3) except that over K. Details
of the calculation are carried out in the Appendix. The
result for the transition amplitude IVf;(q, —q) [Eq. (3)]
can be summarized as follows:

Wf;(q, —q)=2vr
2

1 ACFP

m nLns (col cps)'~ V'~2ep (a')2d

1 1
X 3 2

X(a*qg),
(RSILo) q (q +qF2)

where d is the length of one superlattice period (d =d~
+dq). The function X(a*qq) is defined in the Appendix.
It depends on q only through the component parallel to
the superlattice layer while a * = (fi/2p&QLo) ' is a
characteristic length. After carrying out the integration
over q vectors in Eq. (2) with cylindrical coordinates one
obtains the final result for the squared Raman polarizabil-
ity:

I
bF

I

'=
4 '

3
1 e ~ 2M ALoa o

n
(2~)' m

~l.ms eo (a*) d (AQLo)

dqj qj A qj X a*qg
0

(12)

The integral in Eq. (12) can be computed numerically.
The weighting function A (qq), defined in Eq. (A7) of the
Appendix, results from the integration over q~~. Equation
(12), together with Eqs. (A2) —(A5) and (A7) of the Ap-
pendix, gives the squared Raman polarizability

~
bF;

~

as
a function of the laser energy AcoL. The expression is a
very sensitive function of the screening wave vector qF.
In order to demonstrate the sensitivity of Eq. (12) to the
screening wave vector qF, we evaluated the squared Ra-
man polarizability

~

b F;
~

for different screenings and
reasonable structure parameters of the multiple quantum
well, as given by Table I. The results of calculations for
qF ——0.005, 0.0125, and 0.02 A are shown in Fig. 2.
The screenings correspond, respectively, to the impurity
concentration ni ——3.7)& 10' cm, 5.8 &(10' cm, and
2.4&&10' cm, calculated from the mean distance X be-
tween two impurities.

For all screening wave vectors two distinct peaks are
seen at the incoming and the outgoing resonance, separat-
ed by exactly one phonon energy. The resonance occurs
at slightly higher energy than estimated from the e-HH
exciton transition. In the 3D case, no separate peaks are
observed at incoming and outgoing resonance for compa-
rable broadening of the electronic transition (ri=g meV,
Fig. 2 of Ref. 18): the resonance curve only exhibits a
peak for ficus equal to the gap (outgoing resonance). This
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TABLE I. Parameters used for the evaluation of the squared
Raman polarizahility

~
bFt

~

'.

E (n =2,HH)
7l

~+LO

mph'
a*
P /m
CF

ao

1.642 eV'
7 meV'

38 meVb

0.067 m'
0,34 m'

43.2 A
12.9 eV'
2.14)& 10—s eV cml/2c

13.1'
5.65 A

66285.6 m'

'Determined from the fit of the experimental data.
In order to account for the peak separation between the incom-

ing and outgoing resonance, the phonon energy has to be slightly
increased (see Ref. 2 and text).
'Chosen as for bulk GaAs.

B. Comparison with experiment

In order to compare the result of our calculation with
the experimental ones near the n =2, e-HH exciton in
Fig. 1, we corrected the scattering rates outside the crystal
for reAectivity, absorption, and refractive index. For
opaque materials the relation between the counting rate
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FIG. 2. Resonance of the impurity-induced Frohlich scatter-
ing by LO phonons at a quasi-two-dimensional exciton transi-
tion. The calculations [Eqs. (12) with (A2) —(AS) and (A7)] were

performed for the parameters of Table I and with different
screening wave vectors qF. The vertical scale represents scatter-
ing intensities in arbitrary units which differ, in the three curves,

o

by the following factors: the curve for qF =0.0125 A has been
o

multiplied by 5, that for qF =0.02 A by 10.

difference results from the divergence of the Green's func-
tion for uncorrelated pairs (logarithmic singularity) at a
two-dimensional electronic transition. No such diver-
gence occurs in the three-dimensional case. The asym-
metry of the incoming and outgoing resonance amounts
to about 1, 2, and 2.8 for qF ——0.005, 0.0125, and 0.02
A ', respectively. It depends sensitively on the screening
wave vector. The scattered intensity decreases as the
screening increases.

R,' outside the crystal and the. squared Raman polarizabil-
ity (inside the crystal)

~

es.R eL
~

is given by'

Ts TL ruHn «p& )+ 11 PL ~+
[
es.R.eL

[(al +as)nsnLM Apg V 2c

In Eq. (13) PL is the incident laser power and b, Q' is the
solid angle of collection outside the crystal while n (dolph )

denotes the phonon occupation number. TI ~, eL ~, and
nL q are the power-transmission coefficient, the absorption
coefficient, and the refractive index at the frequency of the
incident (scattered) light, respectively. To convert the
measured counting rates outside the crystal into absolute
squared Raman polarizabilities inside the crystal the large
bracket in Eq. (13) has to be applied as a correction factor
for the multiple-quantum-well (MQW) sample and silicon
reference. For Si, we used the absorption data of Dash
and Newman, and

,
la&;

~

= 30 A at 1.65 eV. For the
multiple quantum well studied no absorption data were
available. For different GaAs/Ga, Al As MQW ab-
sorption measurements have been published covering the
n = 1 —4 exciton region. ' ' The definition of an ab-
sorption coefficient in the direction perpendicular to the
layer must require an averaging because of the inhomo-
geneous nature of a superlattice. It is natural to define it
as

nd, -

n AI
ln I

1 AI
ln

nd I
where n is the number of periods of the superlattice
(=100) and d the thickness of one period (d~+dq=229
A). (AI/I); is the relative decrease in intensity occurring
in one period whereas AI/I denotes the relative decrease
in intensity for the total superlattice. An absolute mea-
surement of the absorption coefficient can be found in
Ref. 32 for a multiple quantum well 102 A GaAs/207 A
GaQ 72AlQ 2/As at room temperature in the region below
the n =2 exciton. Relative absorption data for a 116 A
GaAs/200 A GaQ 75AlQ 25As multiple quantum well
across the n =2 region are published in Ref. 9 by Gos-
sard.

Using Eq. (14) and scaling the data of Miller3 and Gos-
sard in the region between the n =1 and n =2 exciton
we calibrated in cm the absorption scale (given in arbi-
trary units in Fig. 15 of Ref. 9). The photon energy scale
was shifted by 12 meV to account for the different n =2,
HH-exciton energies (Gossard's 1.63 eV, ours 1.642 eV).
Uncertainties in this correction should introduce an error
of about 50%%uo in the value of the absolute squared Raman
polarizability. It should correct, however, reasonably well
for the steplike increase in absorption in the region of the
n =2 exciton and thus slightly modify the asymmetry of
the incoming and outgoing resonances near the n =2 e-
HH exciton (Fig. 1). The corrected data near the n =2,
e-HH exciton resonance are presented as dots in Fig. 3.
The solid line is a fit with Eq. (12) using the parameters of
Table I and qF ——0.0125 A '. From the width and the
position of the resonance we determine the broadening
and the position of the n =2, HH-exciton transition to be
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FIG. 3. Comparison of the experimental data, corrected for
absorption as described in the text (closed circles), with the cal-
culation (solid line) near the resonance at the n =2
electron —heavy-hole exciton. The theoretical curve has been

o 4
raised by 5&10 A to account for a nonresonant contribution.
The parameters of the calculation were taken from Table I and

o

qF chosen to be 0.0125 A

7 meV and 1.642 eV, respectively. The broadening is
larger than obtained from absorption for the n =1 exciton
(g=2 meV). The measured broadening may include a
contribution from the roughness of the interface (about
four times larger for n =2 than for n =1) and, in any
case, an n =2 exciton is expected to have a larger
broadening than for n =1 because of the additional avail-
able decay channels.

As already pointed out by Zucker et al. , the energy of
the LO phonon has to be chosen slightly higher (38 meV
instead of 36.6 meV) to account for the energy separation
of the resonance peaks. A possibly similar renormaliza-
tion of LO-phonon energies has been also reported for
conduction-band-acceptor transitions seen in the hot
luminescence of p-type GaAs. The comparison of the
absolute squared Raman polarizabilities obtained experi-
mentally and those calculated with Eq. (12) for the reso-
nant part of the forbidden scattering by LO phonons us-
ing the parameters of Table I yields an experimental value
about 11 times larger than the theoretical one for
n1=5.8&(10' cm (qF =0.0125 A '). This order of
magnitude agreement is acceptable in view of the
simplified nature of the model, in particular of the defect
potential. The theory considers only the most resonant
terms and neglects the correlation of electron-hole pairs
(excitons). The screening of the Coulomb potential, which
is known to be quite different in the pure two-dimensional
limit, may also have a large influence on the quantitative
results.

Zucker et al. '' explain the asymmetry of incoming
and outgoing resonances by assuming that the phonon
couples excitons associated with different subbands. Cou-
pling to a lower exciton state (intermediate state) should
yield stronger incoming resonances while the opposite
should apply if this exciton is higher than the resonating
one. The main problem with such a model is that, in or-
der to have optically allowed transitions, it requires strong
coupling of subbands by the excitonic interaction. While

IV. CONCLUSION

We have shown that intraband impurity-induced for-
bidden scattering by LO phonons can explain the ob-
served asymmetry in the n =2, e-HH-exciton resonance.
The exact position as well as the broadening of the n =2
exciton transition are obtained from a theoretical fit. This
fit gives also an estimate of the ionized-impurity concen-
tration or an equivalent defect concentration. We believe
that the scattering mechanism proposed, and the theory
developed, should be generally valid as long as the screen-
ing wave vector stays below the length of the mini-
Brillouin-zone.
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APPENDIX

In order to carry out the sum over the electronic densi-
ty of states in Eq. (3) for the quasi-two-dimensional case,
one has to transform the sum gK into an integral in
cylindrical coordinates:

V f Kl dpi, (A 1)

this may happen under special circumstances, ' it will not
hold in general.

The impurity-induced intraband Frohlich Raman
scattering proposed in this paper should be generally valid
provided the screening wave vector stays below the length
of the mini-Brillouin-zone and the screened Coulomb po-
tential can be assumed to be a constant over the envelope
function of the exciton states under resonance. A removal
of both restrictions is possible, in principle, including a
screened Coulomb potential, such as presented in Ref. 27,
as well as the detailed exciton wave functions. However,
the integrals in K and q space must then be computed nu-
merically, thus losing the simplicity of our analytic ex-
pressions. An extension of this theory may also be able to
explain stronger incoming (or still stronger outgoing) reso-
nances than, e.g. , observed for the n =2, heavy-hole exci-
ton in the GaAs (104 A)/ GaQ 75Alo 2qAs (125 A) superlat-
tice. ' The model presented above has the advantage
that it does not depend on the specific nature of the inter-
mediate electronic states, except for the assumption of un-
correlated electron-hole pairs. In the case of resonant Ra-
man scattering by LO phonons with extended exciton
states, not only the variation of the Coulomb potential
over the exciton envelope function may be considerable,
but also the scattering due to the roughness of the inter-
face, which can provide any q vector, should be taken into
account.
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where d is the length of one superlattice period. We have
assumed that the Coulomb potential is constant over the
envelope functions of the n =2, electron and hole states,
an assumption justified by the condition qF

' »d i /~ (d i

is the thickness of the GaAs layer).
After the decomposition of the denominators in Eq. (3)

into partial fractions, the K& integration leads to the stan-
dard form of integral

I( —A, B,C) = dx
(x —/1 )(x + 2Bx +C )

'

ln
1 (z)' C —C —AB

(z)'/ A (z ' + 3 +B)
(A2)

with z = A +2AB +C and x =(a*) K, .
The integration over Ki in Eqs. (3) and (Al) yields the

function X(a*qi) of Eq. (11), with X(a "qi) defined as

X(Q*qi) =I( —a, a, b) I( —/3, a, b—)+I(—a, g, h) I( p—,g,—h)+I( ot, c,—d) I( —p, c,d)+—I( a, i,j—) I( /3,—i—,j )

+ 2 [s,I( a, a, b—) s, I( ——5', Q, b) I( ——a, k, l)+I( —5', k, l)]
sg —s sh(Q ) qi

[s,I( a,g,—h) s,I( —5",g, h—) I( a, k—, l)—+I( —5",k, l)]
s, +s, st, (Q*) qi

+ 2 2 [shI( —a, c,d) shI( ——E', c,d) —I( a, k, l)+—I ( —s', k, l)]
s, —s, sh(Q*) qi

2 2 [shI ( a, i,j ) —shI ( ——s",i,j ) I( a, k—, l)+—I( —E",k, l)] .
Sg +S Sh(Q ) qi

(A3)

a=[Ace +Li 1 2E(n =2, H—H)]/th'ALQ P —a —1, (A4)

where g is the broadening of the n =2, e-HH exciton lev-
el. The variables introduced in (A3) are defined as fol-
lows:

X(a "qi) depends on functions of the laser energy through
the dimensionless quantities a and p defined as '

neglect the dispersion of the LO-phonon energy. The an-
gular integration yields the factor 2~, whereas the integra-
tion of q~~ over the whole length of the Brillouin zone
gives

f +27'//ap 1
dq~~~~ 2 2 2 2 2 2

= A (qi), (A6)
(q ll+qi)(q ~l+qi+qF')'

with A (qi) defined as
a= —p —(a ) s, qi,2 2 2

c = —p —(Q ) shqi,

g= —a —(a ) s, qi,2 2 2

t = —a —(a ) shqi,2 2 2

b =a+2P,
d =c+2P,
h =g +2+,
j =i +2a, (A5)

/1 (qi) = 6'/a p

qF(qt+qlI)(4n /Qo+qi+qF)

(2q,' qF')—2w/ap
arctan

(q2+q2)3/2 ( 2+ 2)1/2

k = —P —(a*) qi, l =k +2/3,

Se5'=p+s, (Q*) qi, 5"=a+—+s, (Q*) qg,
SA

Sh
E'=p+si, (Q*) qi, e"=a+—+si, (Q*) qi .

Se

The sum over the phonon branch [q=(q~, qi)] must also
be carried out in cylindrical coordinates whereby we

2 l+ arctan
qF qj

2m/ap

qz
(A7)

The integration in Eq. (A6) replaces the sum over the
discrete confined modes. This is justifiable for large
period superlattices. The limits of integration in Eq. (A6)
can be set equal to infinity without any loss in accuracy.
The squared Raman polarizability thus reduces to Eq.
(12) which is integrated numerically.
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