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Fast-particle energy loss in the vicinity of a two-dimensional plasma
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This paper presents an analysis of the energy loss of a fast-charged-particle probe of a two-
dimensional (2D} collisionless solid-state plasma. The fast-particle motion is taken to be parallel to
the 2D plasma sheet, and the plasma is taken to be in a degenerate state (zero temperature). The 2D
plasma response dynamics are described in the random-phase approximation (RPA}, and our calcula-
tion is a 2D analogue of the well-known Nozieres-Pines energy-loss calculation, but with the
particle's trajectory at a fixed distance H from the plane of the 2D plasma sheet. Our calculation in-

cludes a determination of the part of the fast particle's energy loss which can be ascribed to the exci-
tation of electron-hole pairs in the 2D plasma, as well as the part which can be ascribed to 2D
plasmons (of all wave numbers). We determine the energy loss as a function of the distance of the
fast particle from the 2D plasma plane, and its velocity.

I. INTRODUCTION

The interaction of a fast-charged particle with a medi-
um has proven to be an important probe of the properties
of matter. Moreover, the intense focus of concern on sur-
face physics in recent years has spurred investigations of
charged particles interacting with bounded media. Our
interest here is to analyze the energy-loss rate of a fast-
charged particle passing parallel to a planar sheet of two-
dimensional (2D) solid-state plasma, whose dynamics are
described by the random-phase approximation (RPA).
For example, this analysis is applicable to a semiconduc-
tor inversion layer. ' Our "dielectric formulation" for the
energy-loss rate will be set up in a way that is easily ex-
tended to other bounded systems (as well as unbounded
systems) for which the inversion of the dielectric function
can be carried out, and it closely parallels other recent
work. It has already been employed in the analysis of
energy loss to a semi-infinite medium to determine the
efT'ects of an ambient quantizing magnetic field. In re-
gard to the problem of energy loss to a 2D plasma sheet
of interest here, our work divers from the corresponding
analysis of Fetter" in that we employ an RPA descrip-
tion of the 2D plasma in contrast to his hydrodynamic
model of plasma dynamics. Even so, some of our results
are identical with those of Fetter. In particular, for very
high velocity one should expect nonlocal shielding to be
ineffective (as there is not enough time for a static redistri-
bution of charge to take place) and so the local 2D
plasmon structure of dielectric response should determine
the energy-loss rate. Since the local 2D plasrnon limit of
response is identical in the RPA and in the hydrodynamic
model, it is clear that the high-velocity energy-loss rate
which we will determine will be the same as that of
Fetter. It is at lower velocities that significant diA'erences
should occur as the transfer of energy to particle-hole ex-
citations becomes more important, and to examine this we

carry out an explicit analytic determination of the stop-
ping power of a 2D plasma to linear order in (low) veloci-
ty, and we also do a numerical RPA evaluation of 2D en-

ergy loss at arbitrary (intermediate) velocities, in all cases
examining the dependence of the energy-loss rate on the
distance H of the passing charged particle from the plane
(to which it is in parallel motion).

II. DIELECTRIC FORMULATION
OF ENERGY LOSS

Our formulation of the energy loss of a fast particle
moving parallel to a sheet of two-dimensional (2D) plasma
in the (x-y) plane proceeds from the observation that the
fast particle moving with velocity v=vi parallel to the
plane impresses a Coulomb potential U(2) at a space-time
point 2=(rq, t2) which is dynamically screened by the 2D
plasma. (Only electrostatic interactions are considered
here. ) The resulting effective potential V(1) at a space-
time point 1=(ri, ti ) is given by

V(1)= fd 2K (1,2) U(2), (1)

where K(1,2) is the inverse dielectric function for the 2D
plasma in a 3D real space-time representation such that

d 3K 1,3@3,2=6 1,2

and e(3, 2) is the direct dielectric function of the 2D plas-
ma in 3D real space-time representation. One must also
recognize that there is a density perturbation involved in
the response dynamics, such that

p(1) = fd 3R (1,3) V(3) (2)

= fd 3 fd 4R (1,3)E(3,4)U(4)

with R (1,3) =6p(1)/SV(3) as the density-perturbation
response function. Employing the random-phase-
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approximation (RPA) integral equation

K(1,2)=5 (1 —2)—fd 3a(1,3)K(3,2), (3a)

K(1,2)=—5 (1—2)
6'p

fd 3 fd 4 U, (1—4)R (4,3)K(3,2),
6p

and consequently

V |[K(1,2)—5 (1 —2)/eo] = fd 3 R (1,3)K (3,2)
Ep

(4)

which permits p(1) to be rewritten as

p(1)= — fd'4V', [K(1,4) —5 (1—4)/e ]U(4) . (5)
4~e

Since the force on an element of plasma is
—ep(l)Vi V(1), the reaction force of a frictional nature
on the fast particle is given by

f=e fd 1 p(1)Vi V( 1), (6)

we write the polarizability a(1,3 ) in a form which de-
scribes both the free-electron response and an additive
static background contribution ( U, is the interelectron
Coulomb interaction of the plasma, and ap ——ep —1 is the
additive background polarizability):

a(1,3)=—fd 4U, (1 —4)R (4, 3)+ao5 (1—3) . (3b)

This yields

the 2D plane, algebraically K (p, co)=1/e (p, co), with
background shielding incorporated by means of
v, ~u, =U, /ep or e ~e =e /ep. Moreover, the irn-2 —2= 2

pressed Coulomb potential U(2) of the fast particle
(charge strength Ze) moving parallel to the surface and at
a height H above it has the form

—1U(2) =Ze
i
r2 —vt2i —Hk

~

These considerations determine the energy loss per unit
time as (e =e /eo)

dW f = —Z2 2 f d~p tp» K2D( )
dt 2~ p

~ [K 2D( ———
) 1] —2PH

(8)

In view of the fact that both the real and imaginary parts
of K (p, co) are even functions of p, whereas the real part
is even in co but the imaginary part is odd in co, the
K K term of Eq. (8) may be seen to have an odd p„
integrand leading to a null result. The remaining K
term has its real part vanish for the same reason, and con-
sequently the result involves the imaginary part of E
alone:

2—
Z2-2 d p —2pHp» I ~ 2D( — —.—

)
dt 2m p

Alternatively, one may express this in the equivalent form

dR' —Ze d„dp„co—e
dt 2m — " — p

and the rate at which the fast particle loses energy is
f.v=uf„. Our calculations proceed from Eq. (6) jointly
with Eq. (1) and Eq. (5). Considering translational invari-
ance in the r=(x,y) plane and time (but not for z) we
Fourier transform

K (1,2) =K (r t r2, zi, z2—', t i
—t )~2K (p, z z lm2)

with

P~ Py+
CO

2 1/2

X ImK (p, —co) (10)

with respect to space r] —r2~p and time t] —t2~co. The
inverse dielectric function K(p, zi, z2, co) for a 2D plasma
sheet in 3D space is readily determined as (see the Ap-
pendix).

and

ImK (p, —co)= —e2 (p, co)/[Zf (p, co) +F2 (p, co) ]

5(zi —z2)
K (p, z ],Z2, co )—

6p

5(Z2 ) —PI I —2De ' [K (p, co) —1],
Ep

where K (p, co) is the 2D inverse dielectric function on

where

(K 2D) —j g 2D g2D+ g2D

is written in terms of the real and imaginary parts of the
two-dimensional RPA dielectric function determined by
Stern as follows for zero temperature:

(p, co) = 1+ —gsgn +co 21+
2e m 4p

$3p 3 m ~ 2m
Ap + 2p g
2m m

2

2m m

1/2

(1 la)

2 2

&2 (p, co)= g (+)ri+
pe 3 m 2m

2'
2p g trtp

m 2m

2 1/2

(1 lb)
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Here, g is the Fermi energy, m, e =e/+Ep are the elec-
tron effective mass and charge, respectively, and g+(x) is
the Heaviside unit-step function. Hereafter we suppress
explicit reference to the overhead tilde, and understand
that e —+e /eo everywhere.

III. LOW- AND HIGH-VELOCITY LIMITS
AND LARGE-DISTANCE (H) LIMIT

A. Low velocity

dW 2zem u p2pF
—2pH

1}13 J p [(2p )2 p 2]1/2dp

2e m
X 1+

—2

since E2 (p, co=0) and (8/Bco)E1 (p, ate=0) vanish as odd
functions of a1. Direct calculation based on Eq. (11)
yields

The low-velocity limit is of special interest, and in this
case we may expand

K (p, —p v)=K (p, O) — (p, co=0)p, u .
ax'

CO

The first term gives a null contribution to d8'/dt=f v
since the p integrand is odd. The second term yields

(13)

where pF is the Fermi wave number. Considering the
Bohr radius ao-A /me to be the smallest length of the
system (ap «H, pp '), the corresponding stopping power
d8'/dl =v 'd8'/dt is given by

2— 2

Z2 2 2 P -2pHP~=Zeu e P Im
dt 2' p

dp 1 e 2PHp
20

g~ 2D

(p, p3 =O)
Bco

2pF
—2pH

aH2 ~ [(2p )' —p']'"dp . (14)

BE2 (p, co=0)
X [EI (p, O)]

(12)
I

The result of integrating equation (14) may be expressed
in terms of modified Bessel functions I„(x) (first kind) and
modified Struve functions L„(x);

d8' 2 8PFH
dl

mZ fipF—u [12(4ppH) L2(4pgH)—]+[I1(4pFH) L1(4pFH)—]/4pFH-
3K

(15)

It should be noted that this result is valid under the con-
dition ap «pF ' alone (irrespective of the value of ap/H)
for all values of pFH. For the special cases of 4pFH «1
and 4pFH »1, we obtain

d8'
dl

—7tfTpF Z v

2
for 4p~H && 1 (pFap && 1),

—Z ftpF v
for 4pFH »1 (p~ap &&1) .

On the other hand, for a high-density 2D plasma (sheet
density p ) we have pFap=(2mp )' ap»1 and corre-
sponding to this Eq. (13) yields

d8
dl

—vrZ2e 4m 'u
for 4pFH «1 (pFap »1),

$3

—Z'e4m 'u
for 4pFH »1 (pFap »1) .

2A3pFH

B. High velocity

The high-velocity limit is also amenable to analysis,
since in this case the frequency argument co= —p v of
K (p, —P.u) in Eq. (9) is so large in relation to relevant
wave-number parameters that we may employ the local
"2D plasmon" limit for dielectric response (b, is an
infinitesimal positive number)

2Z 2 4 2 2p+
dp e

—2PH [(2p )2 2]1/2
dl P3 0

whence

(16)

and

K (p, —p v)~ —K (O,p v)

27Te p p
m (co+15) co=p„u

(18a)

ImK (p, —P.u)

=~5(1—2ne p p/men ) z „sgn(p„) . (18b)

Thus, for high velocity we have (in 2D polar coordinates)

Z2 4 2

[lp(4pFH) Lp(4pFH)] . (17)—
The special cases of 4pFH «1 and 4pFH »1 are given
by

d8' = —2Z e dp pe ~ dgcos 0 5(1 —2vre p /mv p cos 8)
dt 0 0

(19)
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and the Dirac 5 function of Eq. (19) is given by

6( )= —,'g+(p 2—~e p /mv )

' 1/2
cos t9p

cos t9p
2

5(0—Hp),

27Te

(2ne p /mu mv

(20)

which may be evaluated in terms of modified Bessel
(Whittaker) functions K„(x),

2'—Z e (p ) —(2+e p H/mu )e
m v

2' 2p2DH
X &p

mv

2me'p'DH
+Ki (21)

That this result is consistent with that of Fetter "' (corre-
sponding to his result for v much greater than the Fermi
velocity vF should be no surprise since his hydrodynamic
analysis describes the same local 2D plasmon dynamics
which characterize our high-velocity dielectric response in

where cos Op ——2m.e p /mv p for ~/2) Op) 0. Executing
the 0 integral we have

d8 mZe p
dt mv BH

the RPA analysis here. Both results diverge as H~O, as
one can readily see from Eq. (20) as v~ ao, yielding

d8'
dt

z&

mvH
(22)

IV. NUMERICAL EVALUATION
FOR ARBITRARY VELOCITY

For arbitrary velocity it is necessary to undertake a nu-
merical evaluation of the RPA energy-loss rate. Employ-
ing Eq. (9) in 2D polar coordinates (p, 0) and setting
x = cosO, we have

This divergence as H~0 is a consequence of the fact that
our 2D plasma sheet has zero width, and we have verified
that the inclusion of a finite width b yields a convergent
result as z~O —but reproduces Eq. (22) for very high ve-

locity provided that z) b. Thus, for distances z greater
than the width of the 2D sheet, the present zero-width
analysis is valid and meaningful.

C. Large-distance (H) limit

In the case when the distance H is the dominantly large
distance in the analysis, we note that the energy loss given
by Eq. (9) is mainly governed by low wave-number contri-
butions (e p factor) so that the dielectric response is
e6'ectively determined by the local 2D plasm on limit
K (O,p.v). Accordingly, Eqs. (21) and (22) pertain to
this large-distance limit quite generally.

dW
dt

2Zev "dp pe dx
2 &/2o o (1—x )'~ [ef (p,pvx)] +[e2 (p,pvx)]

(23)

The Heaviside unit-step functions of Eq. (11b) for
eq (p, co) determine cutoff's for the vanishing of e2 within
which the contribution to energy loss may be attributed to
particle-hole excitations. However, it must be recognized
that a nonlocal 2D plasmon-pole contribution will enter
when eq vanishes if e~ vanishes as well, for in this case

5.0

4.0

e2Dy[(~2D)2+ (e2D)2] ~g(e2D)

Thus we classify the types of contributions as particle-hole
(p-h) and plasmon (pl)

2.0

d8'~ ~ d8', ]

dt dt dt
(24) 1.0

The limits of integration for d8'z q /dt are determined by
the zeros of 0

0 0.4 0.8 1.2

W' +,„
m 2m

2

=0 (25)
V/VF

(considered jointly with the limits of the x integral [0,1]).
The nonlocal plasmon contribution takes the form

FICx. 1. Plot of two-dimensional plasmon dispersion relation
and particle-hole excitations as functions of wave number. The
values of the material parameters are presented in the text.
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' =2Z e u f '"dppe ~ f'dx 6(rv —duo)

det (p, rv)

dc'

(26)

where coo is the nonlocal plasmon root of e~ (coo)=0,
xo ——coo/pv, and p „represents the maximum wave num-
ber for an undamped plasmon. The spectrum of 2D
plasmon and particle-hole excitations is shown in Fig. 1,
and p,„ is represented by the intersection of the 2D
plasmon curve with the particle-hole continuum. The
values of the material parameters employed are appropri-
ate for a (100) p type-Si inversion-layer system with
go ——12, I=0.2m„p =10' cm . The Fermi wave

0
number is p~ ——0.0251 A ' and the Fermi velocity is
1.45&&10 cm/sec. In Fig. 2, the plasmon and particle-
hole contributions to the energy loss are plotted as func-
tions of the impinging projectile velocity for various dis-
tances above the 2D plasma plane. These results were ob-
tained from Eq. (10) jointly with Eqs. (24) —(26), by em-
ploying the full RPA dielectric function given by Eq. (11).
It is of interest to note that the numerical results indicate
dominance of the plasmon contribution at large distances
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FIG. 2. The energy loss in units of (Zg) /fi is plotted as a function of the fast particle velocity v in units of vF. The contributions
due to the particle-hole excitations (dashed curves) and plasmon modes (solid curves) are shown for various distances H from the 2D
plasma sheet. (a) H =pF ', (b) H =0.5pF ', and (c) H =0.1pp '.
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in Fig. 2(a} (H =pp '} and Fig. 2(b) (H=0. 5pp '), as ex-
pected from our analytical studies above. However, for
shorter distances as represented in Fig. 2(c) (H =0. 1pF '),
the particle-hole contribution is larger than the plasmon
contribution; nevertheless, it is to be expected that even in
this case the plasmon contribution will become more
prominent at very high velocities beyond the scale of Fig.
2(c).

Although nonlocality (spatial dispersion) in the dom-
inant plasmon contribution is insignificant for the ex-
tremes of high velocity v and/or large distance H [nonlo-
cality parameters

p g/mes ~p g/mp u ~(vp/u) &&1

and p/pp-H '/pp «1], the more moderate ranges of
velocity and/or distance bear significant nonlocal correc-
tions, particularly through the contributions of particle-
hole excitations which are clearly in evidence in Figs.
2(a) —2(c). Such nonlocal spatial-dispersion particle-hole
contributions are in fact larger than the plasmon contribu-
tion in Fig. 2(c) even at u —50vp for H=0. Ipp '. In Fig.
2(b) such nonlocal contributions are smaller than that of
the plasmon, but exceed 50% of the plasmon part in gen-
eral for H=0. 5pF '. Nonlocality is smaller still relative
to the plasmon in Fig. 2(a) for H=pF ', but it is still
significant and cannot be ignored. It should also be noted
that in the low-velocity (linear) regime, nonlocality is al-
ways dominant since screening goes into the static limit,
as in Eq. (12) for example.
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APPENDIX

To determine the inverse of the 2D plasma dielectric
function e(p, z~, z2, co) in 3D space, we employ arguments
similar to those of Ref. 5. The inversion condition,

fdzzK(p, z ],zp', co)e(p, z2, z3 ', co) =5(z )
—z3 ),

may be applied to Eq. (3a) to write e(p, z~, z2, co) as

e(p, z l, z2i co) =5(z 1
—Z2 ) +a(p ~z 1 ~z2, &)

(Al)

(A2)

a(p, z~, z2, co) is given by Eq. (3b), and we note that for
electron motion confined to a single 2D plane sheet, the
density-perturbation response function has its z arguments
localized to the sheet by positional 5 functions of the form

R(p, zi, z2, cu) =5(zi )5(z2)R (p, m) . (A3)

Here, R (p, co) describes the electron density perturba-
tion response properties on the 2D sheet, such that the 2D
electron polarizability on the sheet is given by
a (p, co) = —R (p, co }/p. With this in view, we find
that Eq. (3b) and Eqs. (A2) and (A3) jointly yield

e(p, z~, zq, co)=eo5(z~ —z2)+5(zi)a (p, cu)e

(A4)

+—5(zi)e ' [K (P,co) —1] . (A5)
Fp

The determination of K (p, co) is carried out by requir-
ing satisfaction of the inversion condition in the form of
Eq. (Al): Equating coefficients of like positional delta
functions, we obtain

2D-
K"(P )= 1+

Ep
:—l~' (p ~)l ' (A6)

a (p, cu) was determined by Stern for null magnetic field
and division by ep corresponds to putting U, ~v, =U, /ep
or e ~e =e /pp. A simple example of the utility of Eq.
(A5) is provided in the determination of the statically
screened Coulomb potential sited at (0,0,zo) in 3D space,
with the electron sheet on the 2D plane z =0: Taking
up~1, we have the shielded potential as

where p =
~ p ~

and eo = 1+ao for the background. Guid-
ed by the experience of Ref. 5, we attempt inversion in the
form

1K (p, z ~,z2, co ) =—5(z ~
—zq )

Fp

2—
V(r, taboo)= f e'~ "fdz'K(p, z,z', co~0)e ' /p

(2m. )

2p eip r

(2~)'
—p —

~

—p( ~z
~
+ ) a (p, ~~O)2D—

e —e 2D—1+a (p, co~0)
(A7)

For a perfect metal sheet a ~—m, this yields a perfect image field of relative strength —1 on the same side of the
sheet as the Coulomb site (same sign for z,zo); and also it yields a completely shielded null result at points on the other
side of the sheet (diff'erent signs for z,zo) as one should expect.
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