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Wigner-function model of a resonant-tunneling semiconductor device
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A model of an open quantum system is presented in which irreversibility is introduced via bound-

ary conditions on the single-particle Wigner distribution function. The Wigner function is calculated
in a discrete approximation by solution of the Liouville equation in steady state, and the transient

response is obtained by numerical integration of the Liouville equation. This model is applied to the
quantum-well resonant-tunneling diode. The calculations reproduce the negative-resistance charac-
teristic of the device, and indicate that the tunneling current approaches steady state within a few

hundred femtoseconds of a sudden change in applied voltage.

I. INTRODUCTION

The progress of semiconductor fabrication technology,
particularly the heteroepitaxial technology, has permitted
the fabrication of structures' and devices ' whose behav-
ior is dominated by quantum-interference effects. By
providing a mechanism to control current flow through
nanometer-scale semiconductor structures, such
quantum-interference effects might form the basis for a
new generation of solid-state electronic technology. The
successful development of such a technology will require a
much-more-detailed understanding of the dynamic behav-
ior of size-quantized systems than is presently available.

A key property of any device, which has not been ade-
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quately addressed in the case of quantum tunneling de-
vices, is the transient response to changes in the externally
applied voltage. The transient response determines the ul-
timate switching speed and frequency response of the de-
vice. Because a device is a physical system characterized
by openness and irreversibility, the analysis of its behav-
ior, and particularly the analysis of the transient response,
must be performed within the framework of statistical
mechanics, rather than pure-state quantum mechanics. A
preliminary report on the calculation of the transient
response of a tunneling device has appeared. This paper
describes the calculation in detail.

In the present work the quantum-well resonant-
tunneling diode ' ' (RTD) has been taken to be the proto-
type quantum semiconductor device. This device consists
of a single quantum well bounded by tunneling barriers,
as shown in Fig. 1. As a bias voltage is applied to the de-
vice, the resonant state in the well is pulled down in ener-

gy with respect to the more negative electrode, and the
tunneling current through this state depends on the densi-
ty of occupied states in the electrode. When the resonant
state is pulled below the conduction-band edge of the elec-
trode, the tunneling current decreases. The device thus
shows negative differential resistance, which is attributable
to quantum interference.

0
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OF THE DEVICE

FIG. 1. Potential diagram and experimental I( V) curve for a
resonant-tunneling diode. The barriers are thin layers of a
wider-band-gap semiconductor, typically (Al, Ga)As, and the
quantum well and the regions outside the barriers are GaAs. A
size-quantized state is confined in the well; its energy is indicated

by the dashed line. (a) shows the structure in equilibrium.
When a voltage is applied (b) electrons can resonantly tunnel out
of occupied states (shaded region) through the confined state. As
the voltage is increased (c) the resonant state is pulled below the
occupied levels and the tunneling current decreases, leading to a
negative-resistance characteristic, as the current decreases with
increasing voltage. The experimental data are made available by
courtesy of Reed (Ref. 6).

An electron device is necessarily an open system; it is
useless unless connected to an electrical circuit and able
to exchange electrons with that circuit. If one wishes to
study the behavior of the device apart from that of the cir-
cuit, it is convenient to represent the effects of the external
circuit by ideal electron reservoirs attached to the termi-
nals of the device. The term "open system" is used here
in a more restricted sense than is common in the statisti-
cal physics literature. For the present purposes, an open
system is one which is connected to reservoirs of con-
served particles, so that the interaction between the sys-
tem and a reservoir necessarily involves a particle current
through an interface (real or idealized) between the system
and the reservoir. A concrete example is a semiconductor
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device (the system) to which a metal wire (the reservoir) is
attached through an ohmic contact (the interface). The
body of literature of which Ref. 7 is representative is pri-
marily concerned with a related problem which I will
refer to as "damping. " In the semiconductor-device ex-
ample, this is the interaction between the electrons and
phonons (regarded as a heat bath) which leads to electrical
resistance.

The dynamic behavior of a device must be time irrever-
sible. This is demonstrated by the existence of the
current-voltage I( V) curve that is conventionally used to
characterize a device. Each point of the I ( V) curve
represents a steady state, and all of the points except
V=O represent a nonequilibrium steady state. A time-
reversible system cannot stably approach such a steady
state.

Landauer has pointed out that if one considers con-
duction through a sample in which only elastic scattering
occurs, the resulting finite conductivity requires that ener-

gy be dissipated in the reservoirs to which the sample is
connected. The connection between openness and dissipa-
tion may be readily perceived in other physical systems,
perhaps most clearly in the vacuum tube (or valve) of an
earlier generation of electronic technology. The vacuum
is certainly not a dissipative medium, but making electri-
cal contact to it through metal electrodes results in a de-
vice which displays an I(V) curve and which dissipates
energy (generally in the anode). Thus openness and dissi-
pation are related. What is perhaps less obvious is that
dissipation or irreversibility is a necessary feature of any
meaningful description of the interaction between an open
system and the reservoirs to which it is connected. If the
boundary conditions are reversible, then unstable solu-
tions to the transient response are admitted. This will be-
come apparent when we consider the effect of open-system
boundary conditions on the eigenvalue spectrum of the
Liouville superoperator.

The connection between open-system boundary condi-
tions and the eigenvalue spectrum can be seen in the
simpler case of the Hamiltonian. Consider the conven-
tional demonstration of the Hermiticity of the single-
particle Hamiltonian. ' This demonstration proceeds by
invoking Green's identity to transpose the Laplace opera-
tor, which leaves a surface term. This term is convention-
ally taken to be zero, but it can be expressed as

H —H = — j.ds,
l s

where j is the current operator and S is the boundary of
the domain in which the Hamiltonian is defined. One
maintains the Hermiticity of the Hamiltonian by choosing
wave functions for which the surface integral vanishes:
states that are well localized within the domain, or sta-
tionary scattering states for which the incoming and out-
going flux cancel. Now, in general, there must be a net
change in the electron density in a device as the device
passes from one steady state to another. For example, the
resonant state in the RTD shows a large electron density
peak in the quantum well. Therefore, during the process
of establishing this state, there must be a net inward
current How to "fill up" the well. However, according to

(1), a set of basis states (on a finite spatial domain) that
could describe such a process would result in a non-
Hermitian Hamiltonian.

III. STATISTICAL MECHANICS

Irreversible quantum phenomena are properly treated
at a statistical level. " That is, a level at which the state of'

the quantum system is represented by an operator (density
matrix, ' Wigner function, ' or Green's function, ' typi-
cally) rather than by a wave function. The statistical rep-
resentation is required if one is to describe both the super-
position of complex-valued amplitudes leading to interfer-
ence effects, and the superposition of real-valued probabil-
ities leading to incoherent phenomena. Let us brieAy re-
view the fundamental relations of quantum statistical
mechanics, in order to define the terms and display the
equations that will be invoked.

A statistically mixed quantum state is described by a
density matrix' which, in a real-space basis, can be writ-
ten as

2m

B2

&2

+ [v(x) —v(x') ]p (3)

where H is the Hamiltonian and L is the Liou ville
(super)operator. The potential v will include contribu-
tions from the device structure in the form of heterojunc-
tion band discontinuities and from the electrostatic (Har-
tree) potential due to mobile electrons, ionized impurities
and externally applied fields. In the present work the
independent-electron model will be assumed, so that only
the single-electron reduced density matrix or distribution
function is required.

The Wigner distribution function' is obtained from the
density matrix by changing the independent variables to
X= —,'(x+x') and g=x —x'. The classical position is then
identified with X and the Fourier transform of g is taken
to obtain the classical momentum variable:

f(X,k)= f dge '"~p(X+ —,'g, X——,'g) . (4)

This transformation of variables and its effect on the
boundary conditions for finite systems is illustrated in Fig.
2. The Liouville equation for the Wigner function can
then be written

Bf Ak Bf 1 ao dk
Bt m ()7 A' — 2~

where the kernel of the potential operator is given by

where [ ~

i ) I represents a complete set of states and w; is

a probability. The time evolution of the density matrix is
given by the quantum Liouville equation:

Bp =(1/iA')[H, p] = (L /iA)p
at
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V(X, k)=2 J"dgsin(kg)[v(X+ —,'g) —v(X ——,'g)] . (6)
0

The nonlocal potential is the means by which interference
between alternative paths enters the Wigner-function for-
malism. '

The density matrix, and thus the Wigner function, may
be normalized so as to represent the particle density.
Thus the electron density n (X) (in units of particles per
cm, for example) can be found from

The continuity equation can be derived from the Liouville
equation (5) by integrating with respect to k. The contri-
bution from the potential operator vanishes by antisym-
metry and one obtains an expression for the current densi-
ty:

Now let us consider the effect of boundary conditions
on the eigenvalue spectrum of the Liouville superoperator.
The Hermiticity of L, follows directly from that of the
Hamiltonian H for a closed, conservative system. Such a
system can only display oscillatory behavior. If we
change the boundary conditions so as to allow particles to
pass into or out of the system, we violate the Hermiticity
of Liouville operator, because its Hermiticity depends
upon a relation derived from (I). This introduces imagi-
nary parts into at least some of the eigenvalues of L„or

RESERVOIR 1

r~
1

r

/ I

RESERVOIR 1 RESERVOIR 2

FICx. 2. Domain of the density-matrix and Wigner-
distribution function calculations. The arguments of the density
matrix are x and x'. The Wigner function is obtained by trans-
forming to the coordinates P and g, followed by a Fourier trans-
form with respect to g. The long-dashed lines indicate the
system-reservoir boundaries, and they partition the domain into
regions corresponding to various system-system, system-
reservoir, and reservoir-reservoir correlations. The short-dashed
lines represent the boundaries of the domain of the %'igner-
distribution-function calculation. Note that the Wigner-
distribution-function domain includes regions which represent
correlation with the reservoirs.

f (0 k)
~
u~p=ft(k)

f(l, k)
i g(p=f„(k) . (9b)

Note that these boundary conditions are appropriate for
the Liouville equation in the form of (5). The derivative is
first order in X and so one value off must be specified for
each k. The dependence on k is expressed as an integral,
so no boundary conditions need be specified in the k
direction. The reservoirs are characterized by the chemi-
cal potential p and reciprocal temperature P. The equilib-

real parts into some of the eigenvalues of (L /iA), giving a
real exponential character to the time dependence of f. If
the open-system boundary conditions are time reversible,
then the real parts of the eigenvalues of (L/iA) occur
symmetrically. That is, there is a positive real part, corre-
sponding to an unstable solution, for every negative real
part. ' An example of such a boundary condition may be
applied to the density matrix. ' It is Bp/8+ =0, along
boundaries parallel to the x and x' axes (shown as the
long-dashed lines in Fig. 2). This is a plausible boundary
condition for an open system, because it leads to a con-
stant density at the boundary, approximating the eA'ect of
a fixed chemical potential at the boundary. Fixing the
chemical potential is the usual way to represent an ohmic
contact in classical semiconductor-device analyses. ' '' In
the present case, however, its time-reversal symmetry
leads to an unphysical exponentially growing solution of
the Liouville equation.

One might expect that the unstable eigenvalues would
be removed by the inclusion of the damping which results
from coupling the system to a heat bath. (The damping
in semiconductors is due to random scattering of electrons
by phonons. ) Within the simple models which I have
studied, ' such is not the case. If one uses a simple
Fokker-Planck operator ' to approximate the eA'ects of
phonon scattering, then damping coefficients which are
appropriate to a high-mobility material such as GaAs are
not sufficient to render the time-dependent behavior
stable. Damping coefficients about an order of magnitude
too large are required to remove the positive eigenvalues.
Thus, the stability of a model of an open system should
be guaranteed by the open-system boundary conditions
themselves, and this means that these boundary condi-
tions must be time irreversible.

The required irreversibility can be obtained in a physi-
cally appealing way by assuming that the reservoirs to
which the device is connected have properties analogous
to those of a black body: the distribution of electrons em-
itted into the device from the reservoir is characterized by
the thermal equilibrium distribution function of the reser-
voir, and all electrons impinging upon a reservoir from
the device are absorbed by the reservoir without reAection.
To implement this picture, we must be able to distinguish
the sense of the velocity of an electron at the position of
the boundary. Thus the Wigner function is the natural
representation for an open system. Let the interface be-
tween the device and the left-hand reservoir occur at
7=0, and the interface between the device and the right-
hand reservoir occur at 7=l. Then we may write the
open-system boundary conditions as
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rium distribution functions of the reservoirs can be writ-
ten (after integrating over the transverse momenta) as

f(, (k) =(m /M f3( „)
&& In[1+ exp[ —/3~ „(A k /2m p~—„)]] . (10)

The physical picture which underlies these boundary
conditions is of course well known. It is invoked in most
forms of transport calculation, including scattering analy-
ses of conductance and tunneling, and classical calcu-
lations such as those performed by Monte Carlo
methods. ' The characteristic feature of such calcula-
tions, however, is that the interaction between the system
and the reservoir is treated implicitly within an algorithm-
ic procedure. The usefulness of this approach is inherent-
ly limited. We will see that the explicit statement of the

I

boundary conditions (9) leads to new insights and calcula-
tional capabilities.

The most important insight is that the boundary condi-
tions (9) assure the stability of the solutions of the Liou-
ville equation. This may be demonstrated by proving that
the real parts of the eigenvalues of (L /iA) are all nonposi-
tive. We may do so by evaluating the expectation value of
the homogeneous part of (L /iA) for an arbitrary distribu-
tion function f. Note that because L is a superoperator,
the expectation value is taken between operators (the dis-
tribution functions). If we define the inner product of dis-
tribution functions in the obvious way, the expectation
value is readily evaluated. Again the contribution from
the potential operator vanishes by antisymmetry and the
gradient operator can be integrated to obtain

(f, (L/ih')f) = fdx f dk f(L/iR)f

=(A/2m) f dk k[f (O, k) f (l, k)—]

=(R/2m) f kf~(O, k)dk+ f"kfi (O, k)dk —f kf, (l, k)dk —f"kf~(l, k)dk

Here I have used the notation f, to denote the part of the
distribution function that is a property of the system, that
is, not specified by the boundary conditions. For the
homogeneous case, f~=f, =O. Then the terms containing
these quantities vanish, and the two terms containing f,
are clearly nonpositive. Therefore the real parts of the ei-
genvalues of (L/i%) must all be nonpositive. The physi-
cal interpretation of this argument is that the electrons in
an open system will eventually escape and the internal
density will approach zero if there is no inward current
Aow from the reservoirs.

IV. DISCRETE MODEL

The problems which are of interest in studying the be-
havior of quantum devices do not fall into the domain of
analytically soluble problems. The results of the present
model must therefore be evaluated numerically. This re-
quires that the infinite number of mathematical operations
implied by the continuum formulation of the problem
must be reduced to a finite number. A natural way to do
this is to replace the continuous domain of the problem by
a mesh or lattice of discrete points in phase space.

The position coordinates x will be taken to be elements
of a uniformly spaced set with mesh spacing
xE [0,6„,2b, . . . , 1). The number of mesh points in
the x dimension is thus N =l/6 +-1. The underlying
wave functions and the operators which act upon them
are assumed to be defined only on a mesh point [although
for the purpose of evaluating the potential operator (6) the
mesh may be extended into the reservoirs]. The definition
of the Wigner distribution function (4) may be discretized
as follows: The position argument g takes discrete values
from the set defined above. (Henceforth I will neglect the
distinction between the position argument of the Wigner
function J' and the position argument of the wave func-

V(x, k) = g sin(kg)[v(x+ —,'g) —v(x ——,'g)] .2

Nk
~g1

(12)

tion x, and refer to both of these quantities as x.) The rel-
ative coordinate g, from which the momentum argument
is obtained, must be treated more carefully. Because we
have assumed that the potential is only defined an integral
multiples of b, and because g appears in (6) with a
coefficient of —,', we must constrain g to take only even
multiples of 6„: gH [0,2b,„4b,„, . . . , I~). Then when
we take the Fourier transform with respect to g as in (4)
or (6), the resulting function is periodic in k with a period
of ~/6 . The maximum value of g in this scheme, l~, is
not necessarily related to any of the previously defined
quantities. It determines the maximum distance over
which quantum correlations are taken into account, thus
determining in some sense the number of alternative paths
which are allowed to interfere. ' In the present calcula-
tions, l~ has been taken to be equal to l.

The domain is similarly discretized in the k dimension.
The domain —~/2A & k (~/2A may be discretized
into an arbitrary number of mesh points Nk. However,
the numerical solution of the Liou ville equation is
simplified if we choose the mesh so that k=0 is not one
of the mesh values. [At k =0 the gradient term of (5) de-
generates, leading to zeros on the diagonal of the super-
operator. Such zeros require that row interchanges be
performed in the Gaussian elimination procedure. If the
mesh is chosen so that these zeros do not occur, it has
been observed that no interchanges are required. ] Thus
we require that Nk be even, so as to have equal numbers
of points for positive and negative k, and let the mesh
straddle k=0: kH [(vr/b )[(j—,')/Nq ——,'], j=1, —

2, . . . , Nq ). The k mesh spacing is therefore
5& =sr/Nqb. „. Equation (6) for the potential operator
then takes the discretized form:
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Discretization of the Liouville equation (5) requires
some care, as the gradient (drift) term must be replaced by
a finite-difference approximation. There is a potential am-
biguity in this procedure, because the gradient can be ex-
pressed as either a left-hand difference: (Vf)(x)
=[f(x)—f(x —b„)]/lb, , or as a right-hand difference:
(&f)(x)=[f(x+& ) f(x)—]/& . This ambiguity is natu-
rally resolved by considering the boundary conditions.
Let us imagine that the boundary conditions (9) will be
represented by extra rows of mesh points placed just out-
side of the domain of f, as illustrated in Fig. 3. The
values off along these boundary rows will be regarded as
fixed. There will be a row along x = —6 for k ~ 0 and a
row along x=i+6 for k &0. Now consider k ~0. If
the boundary conditions are to be coupled into the
domain at all, we must use the left-hand difference for the

gradient, at least next to the left-hand boundary. If we
want the discrete version of the fundamental theorem of
calculus to hold for integration with respect to x, we must
then use the left-hand difference for all x. A similar argu-
ment leads to the use of the right-hand difference for all x
for k &0. This sort of scheme for discretization of the
gradient is the phase-space equivalent of a scheme which
is known as an "upstream" or "upwind" difference in the
context of classical Quid dynamic calculations. Similar
schemes have been employed in neutron-transport calcula-
tions. The use of this upwind difference is what permits
the argument of Eq. (11) to hold in the discrete case, and
is thus the key element in obtaining stable solutions for
the signer distribution function. The discretized Liou-
ville equation can thus be written as

@ (x k) 1 gk [f(x + b, ) —f (x)], k (0
Bt fi (q, )

' mg [f(x)—f(x —b,„)], k) 0 .
= ——'V V(x, k —k')— (13)

The discretized continuity equation is derived from the
discretized Liouville equation (13). In a simple discretiza-
tion scheme, the vector quantities such as electric field or
current density are most naturally associated with the in-
tervals between mesh points rather than with the mesh
points themselves. Thus we may expect the discretized
continuity equation to have the form:

Bn(x) =[j (x + —,'b,„) j(x ——,'b )]/b„—. (14)

If the density is defined as
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FIG. 3. Discretization scheme for the gradient (or drift) term
of the Liouville equation. The Aow of probability between mesh
points is indicated by the arrows, which also indicate the sense of
the finite-difference approximation for the gradient. The upwind
difference means that a Aow toward the right implies a left-hand
difference approximation, and vice versa. Note that the sense of
the finite difference is uniquely determined by the form of the
boundary conditions.

n(x)= g f(x,k),
I k I

2' (15)

then the form of the discretized Liouville equation (13) re-
quires that the current density be

j(x+—,'b,„)= g f(x+5„,k)+ g f(x, k)
Ak Ak

2' k 0 m 0 m

(16)

Using this definition of j, the current density calculated
for a steady-state solution (Bf/Bit =0) is independent of x.

The derivation of the discrete continuity equation (14)
from the discrete Liouville equation (13) requires that

g V(x, k)=0,
IkI

for all x. This condition follows from the antisymmetry
of V and from the Fourier completeness relation:

g e'"~=NI, 5t p .

This is significant because one is very tempted to employ
a smaller set of k values to reduce the computation time.
If the k's included in the computation do not span the
"Brillouin zone" defined by the g discretization [and thus
satisfy (18)], however, the continuity equation will not be
satisfied. This can lead to steady-state solutions in which
the current density is not constant, and to transient solu-
tions in which there is a significant gain or loss of particle
density inside the device.
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to find a part of L whose effect can be integrated analyti-
cally, and then to expand the remaining part of L in a
perturbation series. The simple nonperturbative numeri-
cal approaches approximate the integral in the exponential
by a finite sum, thereby obtaining a product expansion of
the operator exponential

exp I L dt' = exp g L (t')b, ,
1 i, I

o lA,
0

where t'H [ro, to+At, to+26„, . . . , t I, to obtain a simple
iterative scheme (in this case Euler's formula) which I will
call the explicit scheme:

f(t+6, )=f(r)+4, (L/i')f(r) . (21)

(Note that this approach to evaluate the time-development
operator trivially resolves the issue of time ordering the
operator product. ) The usefulness of this scheme is lim-
ited by the existence of large negative eigenvalues of
(L/i'). Consider the eigenfunction fi corresponding to
such an eigenvalue A, . Each iteration of Eq. (21) multi-
plies the fq component of the solution by a factor
(I+A,b„). If the modulus of this factor is greater than
unity, the solution will diverge, even though the criterion
for stability of the continuum problem [Re(A, ) & 0] is
satisfied. The modulus of the factor (I+A,b, , ) can be
made less than unity by choosing 6, to be su%ciently
small, but the resulting values often lead to impractically
large requirements for computer time.

An absolutely stable integration scheme is the implicit,
or backward, Euler method. It i.s obtained by expanding
the operator exponential as

terion for stability of the explicit scheme. The benefits of
the implicit scheme are due to the fact that not all of the
eigenfunctions are present in the desired solution. In par-
ticular, the eigenfunctions of the large eigenvalues (the
"stiff"' components) are not significantly present. These
eigenfunctions correspond to the occupation of higher-
energy states. We may estimate the magnitude of the im-
portant eigenvalues by estimating the maximum occupied
energy levels in a given situation. In the case of the
resonant-tunneling diode this would be the Fermi level,
plus a few times kT, plus the applied bias, or the bias
voltage plus 0.1 to 0.2 V for the assumed design at room
temperature. The present calculations employed a time
step 6, =1 fs, which corresponds to an energy of 0.6 eV.
Thus this time step is small enough to realistically
represent the transient response.

The results of the calculations of the transient response
of the resonant-tunneling diode model are shown in Figs.
9 and 10. Since the negative-resistance characteristic is
the interesting feature of this device, the transient
response calculations were performed for switching events
across this region of the I(V) curve. Figure 9 shows the
current density in the device as a function of position and
time for an event in which the initial bias of 0.11 V (corre-
sponding to the peak in the current) was suddenly
switched to 0.22 V (corresponding to the bottom of the
valley) at t =0. More specifically, the steady-state Wigner
function for a bias of 0.11 V was used as an initial value,
and the time evolution under the Liouville operator for
0.22-V bias was evaluated. The response of the current is
complex, as might be expected, but shows some features
that are readily interpreted. The current density initially
increases throughout the structure, so that the device

t

e p J L dt' = + [1 L(t')6, / A']-
i% &o ' —'o

This leads to the following iteration equation:

(1 b„L/iR)f(r+b. , )=f—(r) .

(22)

(23)

In this scheme each eigenfunction of the Liouville opera-
tor is multiplied by a factor of (1 —Xb, , )

' which has a
modulus less than unity for any value of 5, if Re(k) &0.
A consequence of this stability is that one must solve a
linear system of equations at each time step (computation
proportional to N„NI, ), as opposed to simply multiplying
by a matrix as in the explicit scheme (computation pro-
portional to N Nj). The use of larger time steps b„how-
ever, makes the implicit method the more effective one.
This scheme was employed in the present calculations.

The stability of the calculation is guaranteed in the im-
plicit method for arbitrarily large time steps A„but there
is also the issue of the accuracy of the calculation. The
potential inaccuracy arises because one is trying to ap-
proximate exp(A, b, , ) by (1—A, b, , ) ', which is clearly
inadequate when

~

kb, ,
~

& l. [Recall that Re(k) &0.) If
all of the eigenfunctions of the Liouville operator were
present in the Wigner-function solution, this condition for
accuracy of the implicit scheme is equivalent to the cri-

00

p, o

+o0

FIG. 9. Transient response of the resonant-tunneling diode of
Fig. 4. Current density is plotted as a function of time and posi-
tion within the device. The potential profile illustrates the device
structure. At t =0, the voltage was suddenly switched from 0.11
V (corresponding to the peak current) to 0.22 V (corresponding
to the valley current). After an initial peak, the current density
approaches the lower steady-state value in 100—200 fs.
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FICx. 10. Transient response for a switching event opposite to
that of Fig. 9. At t =0 the voltage was switched from 0.22 to
0.11 V.

displays a positive resistance over a short time. The des-
tructive interference which underlies the negative resis-
tance takes some tens of femtoseconds to manifest itself.
The current has settled quite near to its steady-state value
after 200 fs. Of course the response of real devices will be
limited by the time required to charge the device capaci-
tance through the parasitic series resistance of the con-
tacts. Such effects were deliberately omitted from the
present model in order to observe the intrinsic response of
the tunneling process itself.

A simulation of the reverse transition is shown in Fig.
10. That is, the bias was suddenly switched from 0.22 to
0.11 V. The response shows a similar short-time positive
resistance, as the current density initially drops. After
200 fs the steady state has not quite been reached, as indi-
cated by the slightly higher current density through the
left-hand barrier as compared to that through the right-
hand barrier. This indicates that the process of filling the
quantum well is not yet complete. The difference in speed
of response between peak-to-valley and the valley-to-peak
transitions may be understood in terms of the shape of the
energy barriers as a function of bias voltage. The higher
bias voltage, and thus the higher electric field, leads to
more "triangular" barriers. The more triangular barriers
are effectively narrower and are therefore more transpar-
ent to tunneling currents. Thus there is more tunneling
current available to complete the peak-to-valley transition,
and it proceeds more quickly.

VII. DISCUSSION

The present model of an open quantum system clearly
reproduces the essential features of the current-voltage
curve of the resonant-tunneling diode. In addition, by in-
corporating the open-system irreversibility, it permits de-
tailed calculations of the time-domain response of the de-

vice to externally applied voltages.
The open-system boundary conditions (9) are equally

applicable to quantum and classical systems. In particu-
lar, they are the appropriate boundary conditions for the
classical Liou ville and Boltzmann equations for those
cases in which a transporting medium connects two or
more reservoirs (which covers the great majority of cases
of interest). The demonstration (11) of the stability of the
system under these boundary conditions is equally valid
in the classical case.

An examination of the drift term in the discrete Liou-
ville equation (13) shows that it has the form of a master
operator. [That is, it has a (gain) —(loss) form and could
therefore appear in a master equation. ] This suggests
that an implicit Markov assumption must have been made
in the derivation of (13). The Markov assumption is in-

herent in the boundary conditions (9). By expressing the
effect of the reservoir as a boundary condition, we have
suppressed the internal degrees of freedom of the reser-
voir. In general, such a procedure leads to a non-
Markovian equation for the time evolution of the system,
as the effects of the suppressed degrees of freedom are
"folded" into a memory functional. Some further ap-
proximation is then required to derive the conventional
(Markovian) macroscopic kinetic equations. In the
present case, it is assumed that such a Markovian approx-
imation exists. Physically, we would expect that the ideal
reservoir behavior would be obtained when the correlation
time of the reservoir is very short, ' or equivalently, that
the scattering rate in the reservoir is very high. In other
words, the Markovian behavior results from the loss of in-
formation about the state of an electron as soon as it
passes out of the system and into a reservoir and is quick-
ly scattered.

The shape of the domain of the Wigner function as il-
lustrated in Fig. 2 is significant. The density matrix
p(x, x') is essentially a spatial correlation function. In
Fig. 2, the long-dashed lines indicating the system-
reservoir interfaces in x and x divide the domain into re-
gions corresponding to the various possible system-
system, system-reservoir, and reservoir--reservoir correla-
tion functions. The domain of the Wigner function
(bounded by the short-dashed lines) necessarily extends
into the domain of the system-reservoir correlation func-
tion. This appears to be an essential element in the
description of open quantum systems. It specifically
enters the present calculations in the evaluation of Eq. (6)
or (12) for the potential operator. These equations require
values for the potential v(x) at positions x &0 and x & l.
For this purpose the potential was assumed to extend into
the reservoirs with a constant value equal to that at the
system-reservoir boundary.

A consequence of the abrupt change in band structure
at a heterojunction is that the effective mass also changes
abruptly. This must be taken into account in the con-
struction of the effective-mass Hamiltonian, ' and this
effect is readily incorporated into a density-matrix calcula-
tion. ' When the Liouville operator is transformed into
the Wigner-Weyl representation, however, the effect of the
effective-mass discontinuity becomes nonlocal. If the
discontinuity in the effective mass is small, we may use a
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semiclassical (local) approximation by placing the
effective-mass factor in Eqs. (5) and (13) inside the gra-
dient operator. This should adequately describe the
GaAs-Al„Gai As heterojunction for Al mole fractions
in the direct-gap range, and this approximation was used
in the present calculations.

There is no dissipation due to random scattering within
the device in the present model. Energy dissipation
occurs through the loss of energetic electrons to the reser-
voirs. The inclusion of random scattering would not seri-
ously complicate the present calculations so long as the
collision superoperator C(x, k;x', k') is local in the sense
that it has the form C(k, k')5(x —x'). [By "not seriously
complicate the calculations, " I mean that the collision
operator would not add to the sparsity structure of the
Liouville superoperator as defined in (13). The elements
of C would of course have to be evaluated and added to
the corresponding elements of L, but the algorithms and
data structures required to solve for the Wigner function
would remain unchanged. ] The collision operator has
been shown to take this form in the case of a uniform
field. ' An obvious first approximation would be to use
a classical Boltzmann collision operator. This has not yet
been done.

lt would be desirable to have more-detailed microscopic
models of the coupling between a device and its contacts,
while still treating the contact as a reservoir. Techniques
such as those used to integrate out the heat-bath variables
in studies of dissipative systems ' ' ' ' might be applied
to integrate out the reservoir variables. The boundary
conditions used here are perhaps a crude model, but they
illustrate the essential physics of the system-reservoir in-
teraction.

VIII. RELATION TO OTHER WORK

The more traditional approach to modeling tunnel-
ing devices is to evaluate stationary scattering
states. ' ' This is an excellent way to obtain the
steady-state behavior, particularly the I ( V) curve. When
this approach is applied to time-dependent phenomena,
however, the results are much less satisfactory. The result
is expressed as a single "characteristic time. "' ' (It is
clear from Figs. 9 and 10 that the transient response of a
tunneling device actually involves several different time
constants. ) There is a marked contrast between the rather

qualitative nature of the derivation of this characteristic
time scale and the highly detailed and precise calculations
of steady-state properties in the same papers. This con-
trast suggests that the scattering theory is inherently un-
suited to the calculation of transient phenomena.

The problem with scattering theory concerns the for-
mulation of boundary conditions for the time-dependent
Schrodinger equation. As pointed out in the discussion of
Eq. (1) it is not possible to describe the transient transition
from one steady state to another with finite boundary con-
ditions that leave the Hamiltonian Hermitian. Conceptu-
ally, there is no problem if the boundary conditions are
allowed to approach infinity. (The irreversibility that re-
sults in such a case comes from the infinite propagation of
disturbances in the wave functions. ) Boundary conditions
at infinity, however, are very difFicult to treat computa-
tionally. Kundrotas and Dargys have dealt with this
problem for the case of tunneling out of the bound state of
a 5-function potential. To do so, they invoked the special
properties of the bound state. The present statistical ap-
proach makes no such assumptions, and in fact does not
require that a distinction be made between bound and free
states.

The use of the Wigner distribution function in semicon-
ductor device problems has been previously advocated by
other workers. The published works on this subject are
either primarily concerned with the formulation of the
problem (rather than its solution), ' ' or report calcu-
lations that sufter from numerical instabilities. The
missing element has been a proper formulation of the
open-system boundary conditions. When these boundary
conditions (and the logically consequent discretization
scheme) are included, the direct solution of the Liouville
equation for the Wigner distribution function becomes a
practical technique for the analysis of quantum semicon-
ductor devices.
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