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It is shown that strongly interacting Fermi systems, such as 'He, transition metals, and the heavy-
fermion systems can be consistently described within the "induced"-interaction Fermi-liquid formal-
ism. The general limiting features of the model are considered. In agreement with the Gutzwiller
(half-filled case) solution to the Hubbard model, there is a localization of excitations as Fo and
F(~ oo. Some of the large m* originate from a large "dynamic" mass, mq for f electrons, which is

then shown to be further increased by many-body eAects. In disagreement with the Gutzwiller solu-

tion in the half-filled case, but in agreement with the less-than-half-filled case, the compression
modulus goes to a finite value as FD,FI ~ (x), so that —in a jellium model —the Debye frequency OD

has a finite value. The implication of the spin-dependent parameter Fo going to a finite limit are dis-
cussed. In particular, it is shown that ferromagnetic ordering cannot occur in the case of a short-
ranged potential.

I. INTRODUCTION

Strongly interacting fermions appear in a variety of sys-
tems which may have interesting relations with each oth-
er. Examples of these are liquid He, some of the Laves-
phase metals, such as UA12 and TiBez, and the heavy-
fermion (or heavy-electron) systems such as UPt3, UBe~3,
U6Fe, URu2Siq, CeCu2Si2, etc.

The heavy-fermion systems are an exciting class of ma-
terials that have been of great current interest. (For a re-
view of the experimental properties, see Refs. 1 and 2, and
for the theory, see Refs. 3 and 4.) At high temperature
the heavy-fermion systems behave like a collection of in-
dependent magnetic ions. Though not quite clear how, as
the temperature is lowered, a coherence sets in between
the localized f electrons; this gives rise to the low-
temperature Fermi-liquid behavior which is a characteris-
tic of the heavy-electron metals. The Fermi liquid that
develops has several outstanding features. The first, of
course, is the large coefficient of the linear term in the
specific heat, y =C, /T, which is 10 —10 times larger
than in the simple metals. Another is that the susceptibil-
ity P is very large and proportional to y. Also, the tem-
perature dependence of the resistivity for small T can be
fit by an expression, p(T) =po+aT . In the clean heavy-
ferrnion metals, 0.' —1/T&) 0, TI; being the Fermi temper-
ature of the heavy electrons. The diff'erent ground states
that one encounters in these systems are superconducting
as in UPt3, UBe», U6Fe, URuzSi2, and CeCuqSiz, antifer
romagnetic as in UzZn&7, UCd», and URu2Siz, and nor-
mal as in CeA13 and CeCu6. Though it is not clear why
one ground state is favored over another, there seems to
exist some correlation between 7 and y.

In this paper, we shall discuss the calculation of the

Fermi-liquid interaction parameters in strongly interacting
Fermi systems. Thus, we shall assume the existence of a
well-defined Fermi liquid at low temperatures.

Fermi-liquid theory, as developed by Landau, was a
phenornenological theory, in which the Fermi-liquid pa-
rameters were obtained from experiment. It has proved,
in fact, very difficult to calculate the large Fermi-liquid
parameters in, for example, liquid He from microscopic
models. In nuclear physics, however, the interactions are
substantially weaker, the Fermi-liquid parameters being of
order unity, and considerable progress has been made in
formulating a quantitative microscopic Fermi liquid
theory. Some of this work is summarized in Backrnan
et al. Completely microscopic theories have not enjoyed
much success in deriving Fermi-liquid parameters for
liquid He. An approach based on the Babu-Brown
induced-interaction model was introduced by Ainsworth,
Bedell, Brown, and Quader (hereafter referred to as
ABBQ).7 This compromise between microscopic and phe-
nomenological approaches has met with considerable suc-
cess. The induced-interaction model has since been gen-
eralized to treat two-component systems such as spin-
polarized liquid He, extended to include mornentum-
dependent interactions, and applied to diff'erent Fermi
systems. '

Here, we shall concentrate on the general aspects as
well as the limiting features of the induced-interaction
model. We shall discuss how in a broad sense, this gen-
eral framework can be applied to encompass diff'erent and
sometimes interrelated strongly interacting Fermi systems.
In so doing, we shall discuss the work of ABBQ on tran-
sition metals, and elaborate on the work of Bedell and
Quader, " who showed that this formalism could give a
description of the heavy-fermion systems.
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The model system under consideration is a two-level
itinerant one with parabolic dispersion for the excitation
energy spectrum. In the case of spin- —,

' liquid He and
spin-symmetric nuclear matter, this is quite apt; in the
heavy-fermion systems the assumption is that the crystal
fields lift the degeneracy of the f level to give a Kramers
doublet in the ground state. These can then be viewed as
effective spin- —, Fermi systems with spherical Fermi sur-

faces. Though the description effectively is that of a one-
band Fermi liquid, some of the essential features such as
hybridization with other bands and their effects on the
quasiparticles under study are incorporated into the un-
derlying Hamiltonian. Isotropy is assumed, however,
Galilean invariance is not invoked, hence the invariance-
breaking band masses, etc. , can be treated within the
scheme.

The organization of the paper is as follows. In Sec. II,
we outline the relationship of the effective mass m * to the
Landau interaction parameters for Fermi liquids without
Galilean in variance. A general discussion of the full
effective mass m *, the "dynamic" mass m~, and the vari-
ous contributions to them including the energy-dependent
ones, is given in Sec. III. Section IV is devoted to a gen-
eral discussion of the induced-interaction model and the
developments leading up to the formulation of the "direct'
or driving terms in some explicit cases. The general solu-
tions, including the illustrative schematic ones, for large
strengths of the driving interactions are discussed in Sec.
V. The limiting features of the model are also discussed
in detail there. A comparison of this approach to others
in the large enhancement limit is given in Sec. VI. We re-
mark on the electron-phonon interactions in metals in
Sec. VII, and on pairing in the context of the induced-
interaction model in Sec. VIII. We end with a summary
and concluding remarks in Sec. IX.

II. FERMI-LIQUID THEORY FOR SYSTEMS
WITHOUT GALILEAN INVARIANCE

J= g (VEp )n
p, cJ

(2. 1)

where cp is the quasiparticle energy and np is the distri-
bution function. Near the Fermi surface one has

J= g vp 6np
p, o

(0)

g f'pp 6np
p p', cr'

Most of the previous solutions of Fermi-liquid theory
with the induced-interaction model referred to Galilean-
invariant systems. The connection between the effective
mass m* and the l=l Fermi-liquid parameter F& for a
system that is not translationally invariant has been dis-
cussed by Pines and Nozieres' and by Leggett. ' We
outline this for an isotropic Fermi surface. The total
current J is given by

is expanded in a Legendre series in the Landau angle,
cosOL, ——p p', we have,

f~~ = g f~PI(cosOL ) . (2.3)

If this is used in Eq. (2.2) then for p =kj;,

jl, =UF(1+F', /3), (2.4)

where F'& ——(kzm*/a )f ~, f ~
being the 1=1 term in Eq.

(2.3) and m kp/n is the density of states at the Fermi
surface. Since for non-Galilean-invariant systems, the
current is no longer carried by the bare mass m on
defining jk„——kp/m& we get

m*
=1+F )/3 . (2.5)

After rearranging we find

m~/m

1 ——'F ')
3

(2.6)

where

kFmFs fs
~2

(2.7)

The quantity m~, in principle, has contributions com-
ing from band structure, phonons, etc. , and has been re-
ferred to as the dynamic mass. ' If the band mass is al-
ready quite large, one can see that quite modest f'~'s can
lead one to very large m *'s. The limiting behavior should
be noted: m *~ ao as F

&
~3. This may thus introduce

another mass into the problem for systems without Galile-
an invariance.

III. EFFECTIVE MASSES m AND m~

Since the dynamic mass m~ can enter into the problem
in certain cases, it is worthwhile dwelling on it for a bit.
It is not clear how to calculate a m~ for a particular sys-
tem, though it is possible to extract it from experiments. '

A physical interpretation could be given as follows.
When a quasiparticle moves through the medium, it dis-
places other quasiparticles. The interactions give rise to a
contribution to the effective mass due to the backflow of
the displaced quasiparticles. The size of this effect is
given by F&. Thus m& is the mass the quasiparticle would
have in the absence of backflow. We expect m~/m to be
large compared with unity for narrow-f-band metals.
Thus, before the additional Fermi-liquid effects, one al-
ready has a large mass enhancement m~/m -0(10).

The dynamic mass m~ as defined in Ref. 13, can be
measured in experiments in which the normal quasiparti-
cle current vanishes. In the superconducting phase it is
possible to obtain this from the tem. perature dependence
of the penetration depth in the London limit. ' At T=O
the London penetration depth is given by'

=gjp 6np
p, o

(2.2) 4 2

X-'(T=0)= ""', ,
m~c

(3.1)

I vp I

= I(~E& /~p)1, , I

=kF/m* and jp
quasiparticle current. If the quasiparticle interaction f&z

where n is the total number density, and c is the speed of
light.
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In principle it is possible to measure mi (or F', ) if an
absolute measurement can be made. The recent experi-
ments of Einzel et al. ' could only measure the change in
A,(T) at low T Ne. vertheless, they were able to place a
bound on F& in UBe&3, i.e., F& &20. There are many
sources of finite temperature corrections to A(T) in UBei3
which makes the value of F

&
somewhat uncertain. But it

does seem clear that F', by itself cannot explain the large
value of m */m, and is possibly not large.

In a calculation of mq for the narrow-f-band systems,
the band mass coming from the static lattice should be a
sizeable contributor to this mass. There are additional
contributions to this coming from phonons and the
Coulomb interaction. The Coulomb contributions are dis-
tinct from the Fermi-liquid effects coming from F&. This
can be seen in the formulation of the Fermi-liquid theory
for a charged system. In the charged system the
Coulomb term, 4~e /q, is explicitly removed from the
quasiparticle interaction. ' Thus, when calculating the
dynamic mass m~ the contributions from this term must
be included.

It is, unfortunately, not possible to naively replace m~
with the effective mass calculated using the standard tech-
niques, e.g. , local-density-functional methods. The reason
is that, although screened potentials giving many-body
effects are used, approximations are made which drop the
energy dependence (~ dependence) of the electron-
electron interactions. These provide appreciable mass
enhancements.

Said briefly, the effective mass at the Fermi surface is
given by

t)X(p, co)

[co = F.
(3.2)

ar(p, ~)
aT 6) =EF

where the numerator can be connected with Zp, the
weighting at the quasiparticle pole

Zp F
t)X(p, cu)

Bco

(3.3)

Band-structure calculations include, through hybridiza-
tion, the mixing of f electrons with the other electrons.
But the wave function in a band calculation is essentially
a Slater determinant, and does not contain components
such as an excited f electron or conduction electron plus
collective excitation. Just the coupling to such com-
ponents, which involves not only matrix elements but also
energy denominators, brings in a strong m dependence
and enhances the numerator in Eq. (3.2).

Let us restate the situation in other words. The
density-functional calculations give us a representation
consisting of a set of single-particle orbitals much as a
Hartree-Fock calculation would do. These contain the
band mass. Coupling to more complicated configurations,
such as orbitals above the Fermi surface plus collective
excitations, is not included in the density-functional calcu-
lation and must be put in through Fermi liquid theory.

These latter couplings produce the cu-dependent contribu-
tions to the effective mass —the numerator of 43.2)—and
the related renormalization at the quasiparticle pole, Eq.
(3.3).

A somewhat analogous situation has been treated in
nuclear physics. ' Thomas-Fermi, Hartree-Fock, or
Brueckner-Hartree-Fock calculations there provide a rep-
resentation and produce the "k mass, " the denominator of
(3.2). Dynamic effects, which produce the "co mass" must
be put in by Fermi-liquid theory. Reference 15 relates
this situation to that in liquid He and electrons in metals.

Finally, we mention that it has been suggested' that in
the heavy-fermion systems the effective mass m * could be
related to the l =0 Landau parameters, Fo,

m 1+Fo (3.4)

where Fo =(krm */rr )f'„. Thus, the eff'ective mass,

1 —(krm/~ )fo

would diverge if (kFm /7T

)focal.

(3.5)

IV. INDUCED INTERACTION MODEL

A. General discussion

We wish to describe a simple, soluble Fermi-liquid
theory for strongly interacting systems, starting from a
microscopic description, albeit with some empirical input.
It has been known ' that a consistent Fermi-liquid theory
cannot be formulated in terms of short range etc-tive in
teractions alone; collective excitations generated by these
must be exchanged between the quasiparticles. Function-
al differentiation of the two types of self-energy, shown in
Fig. 1, and further generalizations ' lead to integral equa-
tions (see Fig. 2) for the Fermi-liquid interactions on the
Fermi surface f~z .

The main point is that the contributions to f~~ can be
separated into two parts: '

f (T(T g ITo' +1(7cT tf l7cT
] (4. 1)

where the induced part, Ipp a function of the Landau in-
teractions fez themselves, is particle-hole reducible in the

(a)
FIG. 1. The two types of contribution to the quasiparticle

self-energy: I,
'a) the Hartree-Fock interaction involving a short-

range pseudopotential; (b) the self-energy arising from emission
and absorption of a collective excitation. The interaction making
up the collective excitation is here shown to be the same as in (a),
but later it will be taken to be the full Fermi-liquid interaction
f'ki', The undertildes denote 4-vecto. rs.
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For a single-component (or one-band) Fermi system,
the interaction,

P fvV =fvv +fvv
(4.2)

irX {q)

where fez and fez are the symmetric (s) and antisym-
metric (a) spin combinations. Then the induced-
interaction equations are as follows:

FpUp(q')Fp 3 FpUp(q )Fp

2 1+FpUp(q') 2 1+FpUp(q')

1—1 q'

4k

F;U, (q')F; F;U, (q )F',

1+F{U{(q') 1+F;U, (q')

(a) FpUp(q')Fp 1 FpUp(q')Fp

1+FpUp(q') 2 1+FpUp(q')

(4.3)

F', U{(q')F',

1+F',U, (q')

F{U{(q')F{
1+F;U, (q')

p p

(b)
FIG. 2. Graphical representation of the "induced" interaction

model integral equations: (a) for the Landau interaction f~~; (h)
for the scattering amplitudes app

exchange particle hole, i.e., u channel, whereas the direct
part, dpp is not particle-hole reducible in either the direct
particle hole, i.e., t channel or the crossed channel, i.e., u

channel. In physical terms, Ipp includes the contribu-
tions from the exchange of virtual collective excitations,
for example, density, spin-density, current, or spin-current
fluctuations between the quasiparticles.

Another way to understand the induced interactions is
to note that Ipp arise naturally from the fully reducible
four-point vertex functions on demanding that the scatter-
ing amplitudes, a pp on the Fermi surface are properly an-
tisymmetrized. As shown in Fig. 2(b), a~& contains the
contributions from the direct particle-hole channel. Once
an appropriately antisymmetrized direct interaction, d pp
is chosen, the set of equations in Fig. 2 will guarantee that
the Landau forward-scattering sum rule is satisfied. Since
Ipp contains the exchange or u -channel contributions, the
set of equations in Fig. 2, especially with the momentum
dependence treated more generally, are crossing sym-
metric in the two particle-hole channels. Moreover, ver-
tex corrections have been taken into account in a way
that the initial and final vertices (in addition to the inter-
mediate ones) in I~& (u channel) are the Landau f~~
themselves. Thus, by construction, adequate conserving
approximations have been built into the set of equations.
A discussion of the induced-interaction model in the light
of the more microscopic "parquet" approach can be found
in Ref. 17.

(4.4)

where the quantities in Eqs. (4.3) and (4.4) have been mul-
tiplied by the interacting density of states
N (0)=m *kF lvr to make them dimensionless. The
momentum transfer in the crossed particle-hole channel,
q' =

~ p —p'
~

=kF(1 —cos01 ), with the Landau angle
{9L =p p ', and N(0)Up(q') and N(0)U{(q') are the Lin-
dhard functions or density-density and current-current
correlation functions, respectively. These are given in the
Appendix.

The first term in Eqs. (4.1), (4.3), and (4.4) for fg, the
so-called direct i'nteraction, is somewhat of a misnomer
since the direct interaction being antisymmetrized con-
tains both the direct and exchange scattering terms. The
term is designed to convey the fact that the two quasipar-
ticles can directly scatter via some effective potential, and
repeatedly so, as in the G matrix. The direct term is of
short range and contains information about the underly-
ing Hamiltonian of the system under consideration.
Thus, it is the driving term. The induced term is of some-
what longer range since two particles can scatter via an
interaction mediated by another particle. Since the in-
duced terms are a function of the exchange particle-hole
channel momentum, q', they can contribute to all the mo-
ments, fI" [Eq. (2.4)] even for zero range D" These are.
obtained by Legendre projections.

B. Development

In some sense, certain energy scales are expected to un-
derly the strongly interacting systems. To some extent,
the characterization of our direct interactions in the physi-
cal systems is roughly based on such energy scales. For
example, in the case of transition metals or the heavy-
fermion systems for which the Anderson Hamiltonian or
the finite-range Hubbard model may be appropriate start-
ing points, the scales could be the following.

(i) Strong on-site electron-electron interaction,
O(10 —10 K) in the heavy-fermion case.
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(ii) Nearest-neighbor interaction, down by an order of
magnitude 0(10 —10 K).

(iii) Degeneracy or Fermi energy 0 (10 K).
(iv) Energy of the low-lying collective excitation, for ex-

ample, spin-fluctuation energy 0(10 K).

It may be noted that within the context of the Kondo
model, one encounters an energy scale, the Kondo tem-
perature associated with Kondo resonance in the system.

A hierarchy similar to (i) —(iv) also exists in liquid He.
For example, at melting pressure, one obtains the same
ordering by dividing the numbers in (i) —(iv) by 10 .

The direct interaction has a spin dependence similar to
I

fan%:

PP PP + PP
(4.5)

2

Dt~ = (xU
0 2

(4.6)

Often these are expanded in Legendre polynomials,
D&&' = QI o D(' PI (cosHt ), and a few of the moments are
retained. A purely zero-range interaction U, like in the
usual Hubbard model, ' would imply D0 ———D0 ——U/2.
For He, finite-range corrections are important; ABBQ
treated D 0 D 0 and D', phenomenologically so as to
reproduce the empirical F0 F0 and F'& and predicted F&
and the higher (l ) 1) F('"s. For the transition metals, the
nearest-neighbor, i.e., finite-range corrections arise from
the direct overlap of wave functions. These have been es-
timated' to be an order of magnitude down from the on-
site interaction U. Accordingly, the l=1 direct interac-
tion were included by ABBQ to describe transition met-
als.

In the case of heavy-fermion systems, the distance of
separation between the f-atom sites is large, and direct
overlaps are probably small. ' However, finite-range in-
teractions could be induced via the coupling of the heavy
electrons to those in the conduction band, similar to the
Ruderman-Kit tel-Kasuya- Yosida type interactions. Thus,
Bedell and Quader" modeled the direct part of the in-

teraction by a finite ranged renorm-alized potential:

If we use this in Eq. (4.8) we find,
'2

I

F

„'vf, N, (0)(1——cosH) .

From this we have that

(4.9)

and

do' ——do+do ———,'vf, N, (0)—
d (' ——d (+d (

———,'vf, N, (0))0 .

(4.10)

(4. 1 1)

A full two-band calculation would yield a more compli-
cated dependence on Uf, and U for d PP, however, the sign
of d ]" would not change. Thus, we see that a finite-range
term in the direct interaction could be generated by a cou-
pling induced between the f electrons via the conduction
electrons.

V. SOLUTIONS AND RESULTS

(4.6) —(4.7) in the direct part of the induced-interaction
model; in particular, as U is varied. The main results will
not depend on the precise choice of the value of u; but
they will depend on its sign. Here a&0, +=0 being a
special case.

That u&0 can be understood qualitatively as follows.
As an example, consider the f-electron systems. Let vf,
be the interaction between the f and conduction electrons.
This will induce an interaction between the f electrons.
To second order in Uf, the interaction between parallel-
spin f electrons would be of the form

dp„' ——vf, [ N, (0—) Uo(q =0)+N, (0)Uo(q')], (4.8)

where q' =
~ p —p'

~

=2k'(1 —cosH). This form satisfies
the constraint that dpp is antisymmetrized since under
exchange, q and q' are interchanged. The factor

N, (0—) Uo(q) [ N, (0)—Uo(q')] is the lowest-order direct
(exchange) particle-hole propagator (Lindhard function)
for the conduction band. For small q';

2

Uo(q') = 1— 1

12 kF
+ '

With D( (1 )2)=0, this on antisymmetrization gives

U
Do ——(1—a)—,

2

UDa0 2

Ds Da (AU
1 1 4

(4.7)

For strongly interacting systems, we are interested in
the complete self-consistent solution of the coupled in-
tegral equations, Eqs. (4.3) and (4.4) for large values of U.
In this context, the limiting model behavior for U~~
will prove to be interesting. Before we consider the exact
solutions, let us discuss them schematically. This should
give insight into the salient features of the model.

To leading order, in Eqs. (4.3) and (4.4),

D0' represents the strong intra-atomic repulsion between
particles with opposite spins; D0' is the nearest-neighbor
corrections to U with a —0 ( —,', ). Having D', =D; in Eqs.
(4.7) is tantamount to having a local potential; this has
been done for simplicity. As will be discussed later, a
nonlocal potential would give unequal D; and D &, as well
as generate I ~ 1 direct terms.

We shall study in detail the consequences of using Eqs.

F'U. (q')F:
Fo

1+FoUo(q )
(5. 1)

and terms on the right-hand side of Eq. (4.3) involving F(
and F~ can be neglected. Thus, to this order, D0 —U/2
and F0 ——U. As a result of delicate cancellations, the
solution for F0 is more subtle and one has to be more
careful in trying to obtain the correct value for it. We
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F;U)(q', 0)F )+ 4cosOL 1+F) U, (q')
(5.2)

shall return to this later. It is, however, clear from in-

spection of Eq. (4.4) that Fz will decouple from the direct
interaction and from the density modes. Since Do equals
—U/2, and the second term on the right-hand side of Eq.
(4.4) is approximately + U/2, we can see that these two
individually large terms cancel each other to a very good
approximation. We are left, then, with only the induced
interaction pieces involving Fo and the velocity-velocity
interactions on the right-hand side of Eq. (4.4). In this
lowest order, which amounts to setting &x=0, Fo = ——', as
found by ABBQ.

In the next order, we keep only terms of order AU,
which will involve only terms linear in cosOI, since we
are not interested in corrections of order a to Fo and Fo.
These equations are

o.U F'i Ui(q')F'i
6Fpp COSOL + 4 COSOLPP —

4 1+F', U, (q')

Fo' and F~'. These can now be solved for the FI'"s. As
discussed earlier, o. has been fixed at a=0.1, and for a
particular effective mass in the density of states, the model
can be solved for any value of U. For Galilean invariant
systems, the effective mass is the total or the thermal
mass, m*/m which is related to F', (Secs. II and III).
Since for the non-Galilean-invariant case, m*/m is relat-
ed to F', only through the dynamic mass mz (Secs. II and
III) it is then useful to use the density of states
N(0) —=m~kF/~ . This however, requires knowing the ra-
tio m '/m& in addition to the thermal mass m *.

In Table I we reproduce from Ref. 11. the Landau pa-
rameters Fg', F~' as a function of U, and the correspond-
ing quantities, denoted by an overbar, with X(0) as the
density of states. We have also calculated the higher or-
der Landau parameters. To show that these are not negli-
gible, we present these F~'"s (l ( 5) in Table II.

The general limiting features of the model is evident.
(a) For a finite ct, as U~ oo, with X(0) as the density of

states,

o.U Fj'U)(q')F)
5Fpp: cosOI + 4 cosOLPP 4 I +F') U( (q ')

FiUi(q')Fi—
4 cosOL

I +F ) U) (q')
(5.3)

Fo~
F) ~—2aU,

F 1 ~—,'aU,

Fo ~const. ( = —0.906),

(5.8)

F', —— —+—'F'j +—'F (,4 4 4 (5.4)

where 5Fpp Fpp
Fo Since our scheme involves con-

sidering aU to be large compared with unity, these give a
value of Fo more negative than ——', , and

in conformity without our schematic solutions. It is seen
that Fo and F&' diverge as m */m ~ diverges, while

Fo~const. , independent of a or m ~.
For the same a, but for the quantities with X(0), one

gets

F) —— +—'F) ——'F),
4 4 4

giving

F) ———2aU,

F' =—'aU,
1

(5.5)

(5.6)

(5.7)

9
U U„;,= 2a

a
0 crit6

(5.9)

in conformity with the full self-consistent calculation of
Bedell and Quader. "

In discussing the complete solution to Eqs. (4.3) and
(4.4), it should be noted that for large U these equations
simplify somewhat. The resulting forms given in the Ap-
pendix [Eqs. (A7) —(A10)], give the resulting equations for

F ]~ 3 +Ucrit

and

Fo~0
(b) If a~0, i.e., for a purely contact direct interaction,

TABLE I. The Bedell-Quader (Ref. 11) calculated values of the Fermi-liquid parameters, F~" (1=0,1) and m*/mq for different
large values of U; the density of states is N(0)=m kF/77. . F I' and U's have been obtained by dividing F&" and U by m */mz and
hence have density of states N(0) =mzkz/77.

150
1000
4500
9000

25 000
10'

30.11
41.61
44. 14
44.60
44.85
44.99

Fo

—0.879
—0.900
—0.904
—0.905
—0.905
—0.906

Fo
—0.176
—0.037
—0.009
—0.004
—0.002

—4x 10-'

Fo

149
985

4426
8851

24585
9.8 x 10'

Fo

29.95
40.97
43.42
43.86
44. 10
44.25'

Fa

4.3
32.7

149.3
299.4
832.7

3.3x 10'

Fa

0.87
1.36
1.46
1.48
1.49
1.5'

Fs

12
69

302
602

1669
6.7x 10'

F s

2.4
2.87
2.97
2.98
2.99
3 00'

m */mq

5

24
102
202
557

2.2X10'

'Rounded off to the second decimal place.
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TABLE II. The calculated higher order (I& 1) Landau parameters corresponding to different choices of U =N(0)u (see Table I)
and m*/mz. The corresponding quantities with overbars can be obtained from these on dividing by m */m,

m */m,- FQ F' F3 F3 F4 F4 Fa Fg

150
1000
4500

25 000

5

24
102
557

—0.46
—0.68
—0.74
—0.75

1.43
2.24
2.44
2.49

—0.15
—0.23
—0.25
—0.26

0.47
0.66
0.71
0.72

—0.06
—0.10
—0.11
—0.12

0.14
0.30
0.35
0.36

—0.01
—0.03
—0.03
—0.03

0.06
0.09
0.10
0.10

U, „;,~ oo,

Fo~oo,
F 0~0(FO~ ——'-, ),

(5.10)

while m*/m remains finite. This has been considered in
some detail by ABBQ. In the Gutzwiller solution ' to the
Hubbard model with only a contact interaction, Fp~ —

—,
-'.

We point out that the resulting behavior of F
&

above, is
a consequence of the choice of a local direct interaction.
This choice was made for simplicity. Inclusion of a non-
local piece would change F; For exa.mple, in the ABBQ
calculation for He, a negative F; is obtained.

In case (a), i.e., for a nonzero, positive a, the model
then has immediate implications.

The susceptibility 7 diverges owing to m'/m~ diverg-
ing. In other words, the quantity

p.,'~1K (0)
1

1+Fo
(5. 1 1)

remains finite independent of the value of U, p,z being the
effective magnetic moment of the fermion. Then, since
the mass diverges without the onset of ferromagnetic or-
dering, this is equivalent to the metal-insulator transition
of the Mott type.

In the induced-interaction model, the suppression of
ferromagnetic ordering is a consequence of the feedback
mechanism inherent in Eqs. (4.3) and (4.4). The onset of
a ferromagnetic phase transition is signaled by a diver-
gence in the scattering amplitude 3 0 where

Fa
0~o= —oo

1+Fo Fo —]
(5.12)

This scattering amplitude must be fed back into the equa-
tion for f'„which comes via the induced term. In gen-
eral, Fo will depend only weakly on the direct interaction.
For the choice, Eqs. (4.6) and (4.7), as we push U~+ ao,
together the equation for fez decouples from the potential
as outlined above and assumes a value independent of U.
The detailed derivation is given in Eqs. (A12) —(A16) in
the Appendix. Thus, looking for a ferromagnetic instabil-
ity by simply looking at the divergence in a single chan-
nel, i.e., 3 o would miss this feedback effect.

As an example, it may be noted that liquid He in this
model looks much more like a Gutzwiller solid, which we
shall discuss later, than as if it were close to going fer-
romagnetic, since Fo is not so close to —1. If the system
were close to going ferromagnetic, all the FI'/2l + 1

would be large. Here, in fact, is one of the significant
features of the model; namely, if one includes the correla-

tions in both particle-hole channels to all orders, then a
system with a short-ranged potential will not go ferromag-
netic no matter how strong the potential.

This does not mean that a Fermi liquid cannot go fer-
romagnetic. It simply means that it cannot get there with
a short, though, finite-ranged potential. Clearly, we are
building in a certain amount of physics by introducing a
short-ranged potential for the direct scattering between
the quasiparticles It is plausible that a systematic in-
clusion of the higher-order moments in the direct and in-
duced interaction will push one closer to the ferromagnet-
ic instability. However, one has to bear in mind the in-
herent feedback mechanism of the model. Thus, as one
gets closer to the ferromagnetic instability, the direct in-
teraction will also have higher-order partial waves. The
reason is that it contains, among other things, the ex-
change of two or more spin fluctuations in the particle-
particle channel. As these become "soft," it will produce
more structure in the direct interaction thereby generating
higher order partial waves. At this point it is not possible
to be more precise about the nature of the ferromagnetic
transition within the context of the model.

In the above sense, our model is different from that of
Rice and Ueda, who evaluated the periodic Anderson
model with a Gutzwiller approximation. Rice and Ueda
find that the heavy-fermion liquid is stable against mag-
netic order only in rather special cases.

VI. COMPARISON WITH OTHER MODELS

It will be of interest to understand the connection and
difference between our model, the usual Gutzwiller mod-
els ' and the recent ones of Rice and Ueda. ' Velocity
dependence enters in a more explicit way in our model,
driven by the D'~ and the D&. In the Gutzwiller model,
the numerator of Eq. (3.2) is obtained from Z~, Eq. (3.3).PF'
These are just differences of form. The chief difference of
physics is in the importance in our model of the exchange
Coulomb interaction, which produces the large Fo. The
Coulomb interaction is probably also responsible for the
input velocity dependence. Considerable study ' has
been given to the Gutzwiller variational solution to the
Hubbard model as the interaction strength U become
large, and this has been used as a model for heavy-
fermion systems. Gutzwiller introduces a simple
Jastrow-type correlation to partially empty out doubly oc-
cupied sites, arriving at a simple expression for the
ground-state energy per lattice point

~=Z'~, +Z'~, +Ud .

Here Z is the discontinuity at the Fermi surface; d is the
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probability of a site being doubly occupied. As U ap-
proaches a critical value U„Z ~0 and d~O. For this
U„every lattice point is singly occupied; i.e., the particles
are localized.

More explicitly, in the neighborhood of U„

(6.2)
m 1 —(U/U, )'

From (3.2) and (3.3) one sees that Z ~0 as U~ U„
where U, = 8 eo

~

and e, = c, , = eo in zero field. From the
general relation that Z represents the discontinuity in oc-
cupation number n& at the Fermi surface, we see that nk
is continuous here in the limit m ~oo. This is what
would be expected from localization of the quasiparticles,
a complete localization in space implying a complete
spread in quasiparticle momenta.

Obviously, perturbation theory wouldn't work in this
situation, because as Z~O, therer are no quasiparticles
left. This is reminiscent of the Skyrme model for the nu-
cleon which can be achieved in the chiral bag model
by letting the bag radius ~0. In this limit, the quarks
(quasiparticles) disappear, the origin becoming a nu-
cleation point, and the nucleon becomes all meson cloud.
Quantum numbers are, however, preserved. We believe
the situation to be similar with the induced interaction
equations. Enough general requirements, in particular,
the Landau sum rule, are built in so that they seem to
remain sensible in the limit Z ~0.

There are important differences between the Gutzwiller
solution and our Fermi-liquid result. Firstly, the Hub-
bard model to which the Gutz wilier solution applies,
treats fermions on a lattice. Depending upon the particu-
lar type of lattice one obtains an antiferromagnetic state
for a value of U less the U, . Liquid He is a liquid, and it
is not clear why this model should give a reasonable
description; one does not expect magnetic ordering in the
liquid. Although there may be tendencies towards anti-
ferromagnetic ordering in the systems we discuss, these do
not seem to be important for the main features.

In this discussion, the behavior of Fo which diverges as
(m*/m) as U~U, in the usual Gutzwiller model '
(exactly half-filled band) is relevant. This means that the
compression modulus ~, which goes as Fo/m* for large
m*, goes to oo as U~U, . In our model ~ remains finite
as m'~oo. In a jellium model, as we will show in Sec.
VII, where the motions of the lattice and electrons are
simply tied together, the Debye frequency OD goes as
[(m*/m~)/(1+Fo)]' . In the Gutzwiller model,
OD~ oo, as U~U„ indicating that the electrons localize
on a static incompressible lattice. From the results of the
induced interaction model 8D is finite in the large m
limit. This is consistent with the heavy-fermion systems
where the OD's are not very large; they are several hun-
dred degrees Kelvin. It should be noted that in the recent
Gutzwiller model of Rice and Ueda where the bands are
not exactly half-filled, Fo ~ m '/m as in our model.

Another important difference between the Gutzwiller
solution to the Hubbard Hamiltonian and our model is
F& ~ In the Gutzwiller approach, the effective mass m* is
obtained by relating it to the discontinuity at the Fermi
surface, Z ' ccm*. From Eq. (2.5) it is then possible to

extract F &. However, there is no equivalent procedure for
obtaining F& within this approach. It has been obtained
for example by Vollhardt '

by using the forward scatter-
ing sum rule, this gives F; = —0.75 when U~U, . In
contrast, the induced interaction model calculates F~ and
all of the higher-order Landau parameters. In fact, we
find that F& —,'F~ as m *~~, although this depends on
our assumption that D& ——D& as discussed earlier. These
values may change if, for example, we include the
momentum dependence of the Landau parameters or a
nonlocal term in the direct interaction. As argued by
Bedell and Quader'' there is no a priori reason to believe
that F& will remain finite when U~U„ i.e., m'~oo.
This depends on how close Fo is to —1. The closer Fo
gets to —1, the larger F& and the other partial waves
must become to satisfy the sum rule.

VII. ELECTRON-PHONON INTERACTIONS
IN METALS

We shall discuss the case where the phonon-induced in-
teraction will be considerably modified due to the many-
body correlations. In the context of the jellium model for
the phonons we can obtain explicit expressions for the
sound velocity, S~h, as well as the phonon-mediated in-
teraction between the electrons. From the former we can
define the Debye frequency, OD ——kDS~h, where
kD=(3/Z)'~ k~. From the latter we should be able to
study the role the phonons will play in the superconduct-
ing transition. We should emphasize from the outset that
there is no reason to expect the jellium model to be ap-
plicable to the heavy-fermion systems: As we will see,
however, it does provide a reasonable estimate for the De-
bye frequency in these systems.

To calculate S~h we must first determine the renorrnal-
ized phonon frequency co~, where'

rv =II(— jv'i 1—
P 4 2 9 &(q 0)

(7.1)

The ion plasma frequency is given by

4~n;(Ze)

where n; is the density, I the mass, and Z the valence, of
the ion. The bare electron-ion coupling is given by

(4~Ze )
(7.2)

The dielectric function for the electrons, e(q, cv), includes
the Fermi-liquid corrections and the dynamic-mass
effects. In the limit co=0 this takes on the simple form, '

2

e(q, 0)= 1+ (7.3)
S q

with co~~ =4~n, e /m g and m qS = —', E~( 1+Fo ). Note
that m~ and not the optical mass, ' m, „„appear in Eq.
(7.3). The reason is that m, ~, appears in high-frequency
conductivity, whereas Eq. (7.3) is evaluated at co=0. If
the band mass is large in the heavy-fermion systems, then
m, „, will also be quite large. This would result in a plas-
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2SP
Z S (7.4)

This result, Eq. (7.4), differs from the usual jellium result
for simple metals in several important ways. The first is
the fact the m~ and not m appears in Eq. (7.4). Addition-
ally, the Fermi-liquid corrections are included in the usual
way. ' In the simple metals these effects are not very
large, however, in the heavy-fermion systems they are cru-
cial. We can write Eq. (7.4) as

ma frequency that is small compared with simple metals.
A measurement of the plasma frequency could in princi-
ple give us some insight into the size of the band mass.

If we now plug Eqs. (7.2) and (7.3) into Eq. (7.10} we
find, that

2= 2 2
coq =Sphp'

where

In the absence of other mechanisms it is this interaction
that would determine the superconducting transition.
But, as we will see, there are other interactions that will

compete with this in the heavy-fermion systems.
From either the induced interaction model or the

Gutzwiller model we see that the phonon induced interac-
tion is strongly screened since F0)) 1. That this interac-
tion V(q, O) should be screened can be understood rather
simply. The phonon induced interaction is basically a de-

formation potential. As such, the electrons interact via
this potential by producing a fluctuation in the ion densi-

ty. However, since the electrons in a jellium model are
tied to the ions, the density of the electrons will also be
deformed. To do this we must overcome the incompressi-
bility of the electrons which brings in the screening factor,
(1+F0). This screening will have an important conse-
quence in the superconducting transition in the heavy-
fermion systems, and should not be ignored in models
that have phonon mediated pairing.

2 Z kF 1+F0
SPh =

3M m m*/m
(7.5) VIII. SUPERCONDUCTIVITY

eff
Uq

I
Uq

( 1 iF() )e(q, O)
(7.6)

It is clear that OD ——S»kD will, as previously noted,
diverge in the usual Gutzwiller ' model while it ap-
proaches a finite value in the induced interaction ap-
proach.

We can make some simple estimates for the Debye fre-
quency of UPt3 and UBe~3. Assuming that m~/m=10,
we find 8D ——277 K for UPt3 and OD ——440 K for UBe~3.
Here we have taken the ionic mass to be that of the urani-
um ion with a valence of Z=3. The experimental values
of OD are 210 and 620 K for UPt3 and UBe~3, respective-
ly. If we naively apply this to the U~ (Mn, Fe,Co,Ni)
compounds we get a OD —500 K, where the experimental
value is 100 K. Although this difference is large in the
U~ compounds, we believe that this is most likely due to
the simple assumption that only one of the uranium
atoms is involved in the vibration. If we assume that all
six uraniums vibrate together we get a OD=250 K, the
precise value depending rather weakly on Z.

To obtain the phonon induced interaction we must first
take into account two modifications of the bare electron-
ion interaction, Uq. The first is the screening of this in-
teraction due to the presence of the other electrons,
U~le(q, O). ' The other correction comes when we take
into account the Fermi-liquid corrections to the electron
ion vertex. If we put this all together we have,

T, = 1. 13T*e (8.1)

where T*=aTF and a«1. The pairing amplitude gI
for triplet pairing is given by

g) ———,', (AD+ AD —A', —A;), (8.2)

where AI'" FI'"l( I +F1'"l2——1+1). Two approximations
are involved here. The first is the s-p approximation.
Truncating at I= 1 waves, the Landau amplitude is taken
from 0' to 180' by reversing the sign of the 1=1 ampli-
tudes. Since the sum of the four 3's is zero, by the Lan-
dau sum rule, we can write

It has been suggested that the superconductivity in the
heavy-fermion compounds is caused by Fermi-liquid
effects" ' " which favor formation of spin-1 pairs,
analogous to the situation in liquid He. For the heavy
fermion, as in liquid He, the spin fluctuations should
favor triplet pairing. An electron going through the ma-
terial polarizes the electrons it passes so that their spins
tend to be parallel with its spin. A second electron, pass-
ing through with its spin in the same direction, benefits
from this polarization. Of course, this requires that the
Fermi-liquid interaction is attractive in spin-1 states.

To determine the pairing we make use of the Patton-
Zaringhalam approximation. For now we will ignore
the phonon contribution to pairing. We only remark that
the phonons will tend to favor singlet and suppress triplet
pairing. In this approximation we have

We define now the phonon induced interaction, g, = —,'(A0+ A0) (8.3)

V(q, co)=
~

U'
—CO

2 2
q

N (0}V(q, O) =— 1

( I+F0)

In the limit co~0 we obtain

(7.7)

(7.8)

which may be more directly useful, because Ap ——1 for
large FD. At least in the case of UPt3, 3 0 can be obtained
directly from the T lnT term in the specific heat. One
need not stick with the s-p approximation, nor need one
truncate the series in A~ at 1=1. The induced-interaction
equations are designed for calculating the large-angle
scattering, truncation in I being made only in the driving
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terms D~. The idea is (as explained in ABBQ), that the
direct terms describe the short-range interaction, for
which this truncation should be justified, whereas the F&'s

coming from the long-range phonon-exchange interaction
included in the induced interaction, will not converge as
rapidly. It has been shown that in the case of liquid He
such a solution of the induced interaction equations
represents a great improvement over the s-p approxima-
tion for the viscosity and spin-diffusion coefticient, which
involve the large-angle scattering.

The basic approximation in the Patton-Zaringhalam ap-
proach is the incorrect inclusion of the phase space from
E=O to aT+ in the At' s; this should be excluded because
the A~'s are later to be used in this "model space" to
compute the pairing. The lowest energy scale entering
into the At's is the spin-fluctuation energy

EsF=(1+Fo)E+ . (8.4)

The incorrect inclusion of the model space of dimension
aTJ; in the interaction to be used later for the pairing cal-
culation leads to errors of order aT+/Esz. Now crT& is a
cutoff, analogous to the Debye cutoff in BCS theory,
which reflects the fact that the interactions we consider
(spin fluctuations) are highly frequency dependent, and
the expression used for the effective interaction is valid
only for a restricted range of energies T* in the immedi-
ate vicinity of the Fermi surface. Choosing the cutoff so
as to obtain the correct value of T, at zero pressure, one
finds a =0.01. Thus, a Tz /Esz = —,', and the Patton-
Zaringhalam approach should be good. A detailed dis-
cussion of the superconductivity in UPt3 is given in Ref.
32. Inclusion of Fermi-liquid parameters for higher I, i.e.,
FP' for l &2 (see Table II) would decrease T, by only
—5%%uo.

It is more significant here that g& will saturate. Thus,
for values of m /m~ & 5, g] will not change very much.
The transition temperature should then scale with T*
which in turn varies inversely with m'. This agrees to a
good approximation with the T, trend as we go from
UPt3 (UBe» and CeCu2Siz), to UzPtCz, to U6Fe. This in-
creasing of T, with decreasing mass will not continue. At
some point the phonon mechanism will begin to turn on
since F0 is decreasing with decreasing m *, thereby, reduc-
ing the screening of V(q, O). As the phonon mediated in-
teraction becomes more important it will tend to favor the
singlet pairing and suppress the triplet. The pairing in-
teraction will then be affected causing a rapid decrease in

T, . This, Bedell and Quader" argued, is why systems
such as Pd and TiBe2 may not go superconducting. In
these systems there are strong spin-fluctuation effects as
well as strong phonon effects. They will tend to cancel
each other out thereby pushing T, to very low tempera-
tures or suppressing superconductivity altogether. This
led Bedell and Quader" to speculate that there should be
a class of systems with effective masses smaller than U6Fe
but larger than TiBe& that are superconducting but with a
transition temperature less than that in U6Fe. Subsequent
experiments by DeLong er al. on U6 X (X=Mn, Fe,
Co, Ni) have shown a trend consistent with these specula-
tions.

IX. CONCLUSION

In this paper, we have shown that ihe induced interac-
tion model can be used to describe strongly interacting
Fermi systems. One of the important qualitative features
of this model is that it can account for systems with a
wide variation in energy scales. These large variations in
energy scales are typical of such systems as He and the
heavy-electron metals. As a result, Bedell and Quader"
had applied this model to the heavy-fermion systems.
Here, we have provided further details, and extensions of
that work. Additionally, we have tried to give a
comprehensive discussion of the various features of the
model in general, with allusion to other strongly interact-
ing systems.

An important feature to be emphasized is the onset of
localization, and the suppression of long-range ferromag-
netic ordering in the large U [=X(0)u] limit. As we
have shown, in this model for a short-range effective po-
tential, localization sets in before the onset of ferromagne-
tism.

A virtue to the induced interaction approach is that
with a small number of parameters, it enables one to cal-
culate consistently the static, as well as, transport proper-
ties of interacting Fermi systems for T « TF. Thus,
starting with a coherent Fermi liquid as the ground state,
a wide variety of excitation properties of such systems can
be described adequately. The induced interaction calcula-
tions in various systems, ' ' and the subsequent exten-
sion to finite momentum transfers ' have provided very
good accounts of the thermodynamic, transport, and pair-
ing properties of unpolarized and spin-polarized He. Our
discussions here, and those in Ref. 11, show that though
quite suggestive, it is not possible at present to make as
detailed a comparison between theory and experiment for
the heavy-electron systems. Calculations that take into
consideration more than one band, and hybridization be-
tween them are under study.

ACKNOWLEDGMENTS

We would like to thank Phil Allen, Sudip Chakravarty,
Steve Koonin, Tony Leggett, Chris Pethick, and Davd
Pines for useful and informative discussions. This work
was supported in part by the National Science Foundation
under Grant No. DMR 82-15128 and in part by the U.S.
Department of Energy under Contract No. DE-AC02-76
ER12001.

APPENDIX A

In Sec. V we discuss the schematic solutions of Eqs.
(4.3) and (4.4). This contains the essential features of the
complete self-consistent solution model which we outline
in this appendix. First we can write Eqs. (4.3) and (4.4)
as

F;, =D;, + -,
' [1"(q')+3y'(q')1+ —,

' [&'(q')+ 3P'(q')],

(A 1)

F&&
——Dzz + —,

' [y'(q') —y'(q')]+ ,' [/3'(q') —/3'(q')], (A—2)
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where

y"(q') =

and

(Fo')'Up(q')

1+F]]'Up(q')

2l +1
y~ —— dxP~ x y' q'

2 —1

P] —— f dxP](x)P'(q'),2l +1
2 —I

(A11)

(F]') U](q')P"(q') = (1+x)
1+F']' U] (q ')

(A3)

Uo(q') = — 1+1 q'

2 4kF

kF —q'/2
ln

kF +q'/2
(A4)

U](q')=—1 3

2 8

kF kF kF
, 2 + ,3 +2q' 2q' 4q'

3q
32kF

kF —q/2
~ln

kF+q'/2

In the large-U limit we have,

1y'(q')—=Fo 1—
FoU (q')

with q' =2kF(l —x); x =cosOL. The functions Up(q')
and U, (q') are given by

and

Fo=2Do+ D ]+3 yo +y ]+](3po+p])
—

—,'(2co+do) —
—,'(2c, +d] ),

F, = , D', +2y]+—p]——,'(2c]+d] ),
Fp = —(D ] + —D ] )+yo+y]+ —'(po+p] )

——,'(2co+d]]) ——,'(2c, +d] ),

(A12)

(A13)

(A14)

Ci = dx
2 —] Up(q')

2l+1 y] d
(1+x)

2 —] U, (q')

In the large enhancement limit, Fo will, II1 geI1eral, de-
pend only weakly on the direct interaction, and for the
choice of the direct interaction given by Eqs. (4.6) and
(4.7), it will decouple from the direct interaction. To see
how this comes about we eliminate Fo and F~ from the
right side of Eqs. (A6) —(A10). Thus

and

P'(q') =F'] (1+x) 1— 1

F', U, (q')

(A5)
F;=D;+ ,'D', —

—,'(2c—,+d]) . (A15)

Now in the local potential model [i.e., with Eqs. (4.6) and
(4.7)], in the limiting case, F;~ ao and Fp becomes

2 —1

(A6)

We now substitute Eqs. (A5) into Eqs. (Al) and (A2) to
obtain the moments FI" where, Fp =(Dp+Dp+D] +D ] )+yo+y]

—(co+dp+c] +d] )

=yp+'y] —(co+do+c] +d]) (A16)

For Fo' and F'&' we than have,

Fo ——Do+ ,'Fo+ ,'F'] + —,'(2co—+—do)+—', y]']+ —,'Po,

F] =D']+ ,'F] ——.'(2c]—+d])+-',y]+ .'p]—
Fp Dp+ 'Fp+ ~F——] —

&
(2—co+do) —

z yp —4Pp,

F;=D;+ ,'F; ——„'(2c, +d,—)——,'y', —
—,'P;,

where

(A7)

(AS)

(A9)

(A10)

where we have used g& oD&'+D]' 0. ——
We can see from Eq. (A14) that in general Fo is decou-

pled from the l=O moment of the direct interaction; how-
ever, it will depend on the l=1 and higher-order rno-
ments. Note however that F& could be made negative by
the proper choice, for example with a nonlocal potential
even though F& would still be very large. This in turn
would make Fo smaller in magnitude. The features have
been explored to some extent in ABBQ.
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