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Exciton-polaritons in Inp: MagnetoreAectance investigation
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The fine-structure parameters of the free exciton in InP are determined from low-, intermediate-,

and high-field magnetoreflectance investigations. First, a reconsideration of the linear Zeeman split-

ting at the low-field limit allowed us to obtain the g factors of the conduction electron and of the
valence-band hole. Second, taking into account both the field and the wave-vector dependences of
the exciton levels, a systematic calculation of the reflectance spectra has been performed for a wide

range of field. After a close comparison between the experimental data and that calculation, we ob-

tained the following set of valence-band parameters: y&
——5.22, y2 ——1.83, y3=2. 34, and ~=0.89.

For the g factor of the electron, we found g, = 1.23.

I. INTRODUCTION

In most zinc-blende-type semiconductors, the exciton
ground state is eightfold degenerate at the I point due to
the twofold spin degeneracy of the conduction band (1 6)
and the fourfold degeneracy of the valence band (I &). In-
cluding the exchange interaction, the I 6-I q exciton splits
into the dipole-allowed I q state and the I 3 and I 4 states. '

In the presence of an external magnetic field or other an-
isotropic perturbation, the behavior of the exciton states
are different from each other and the admixture of these
states gives rise to new eigenstates of the system and pecu-
liar selection rules. The quantitative analysis of the
variation of these states, both energy levels, and oscillator
strengths, can reveal the fine structure of the exciton.

Magnetoreflectance measurements are suitable experi-
mental methods with which one can simultaneously deal
with the variation of the energy levels and the oscillator
strengths of the exciton states. In the low-field limit, the
variation of the exciton energy levels can be obtained in
the framework of the perturbation theory. From the
works of Altarelli and Lipari and Cho, one finds useful
descriptions of the Zeeman splittings and the diamagnetic
shifts of a real exciton in cubic semiconductors, but few
experimental investigations supply sufficient information
in order to achieve a complete analysis of the fine struc-
ture of the exciton. In the high-field limit, the adiabat-
ic approximation was proved appropriate. The detailed
description has also been worked out by Altarelli and
Lipari. Using this theory, Bimberg et al have successful-
ly interpreted their high magnetoreflectance spectra and
derived the Luttinger parameters in the case of InP and
GaAs " in these papers the exchange interaction has
not been taken into account. Finally, concerning the
intermediate-field regime, the solution of the problem has
shown a great variety in variational calculations by as-
suming different trial functions to describe the system un-
der investigation. In the simplest case of an isotropic hy-
drogenlike system, there has been a lot of interest in
finding the field dependence of the energy levels, but the
application of the method to a real exciton, an anisotropic

hydrogenlike system in semiconductors, has not received
enough attention. Ekardt et al. have recognized such a
situation and proposed a new type of trial function. '
Including the exchange interaction, this calculation has
been applied to the analysis of the magnetoreflectance
data for the case of GaAs and InP. They have obtained
very small exchange energies and resolved a series of Lut-
tinger parameters slightly at variance with the findings of
the adiabatic approximation in the high-field cases. ' "

Since the reflectance spectroscopy in the vicinity of the
frequencies of the exciton resonance must be in the polari-
ton picture where the exciton dispersions are essential,
one can improve the accuracy of the determinations by
considering the following facts: In the case of a degen-
erate valence band, a simple model leads to two exciton
bands for K~i[100] (K being the wave vector of the exci-
ton). ' The kinetic energy of the center-of-mass motion is
then given by fi K /2MI, in the case of the heavy exciton
for which the periodic part of the wave function is

~

+—,', +—,
' ) and fi E /2MI for the light exciton for which

the periodic part of the wave function is ~+ —,', +—,'). '

The exciton effective masses M~ and MI can be derived
from the Luttinger parameters. In the presence of the
magnetic field, the degeneracies of the exciton states for
K=O diminish but the resonances always appear as dou-
blets and the exciton dispersion curves are different for
different polarizations (cr+, cr, ~). Consequently, the
exciton-photon interaction gives rise to three-branch po-
laritons, different for each polarization. To be brief, a
complete analysis of the magnetoreflectance data can only
be reached after (i) an accurate evaluation of the field-
dependent energy levels and oscillator strengths, including
the exchange interaction, and (ii) a line-shape analysis of
the reflectance spectra taking into account the appropriate
K-dependent exciton bands and the multiple-mode polari-
ton effect. Both the field and the K dependences are func-
tions of the Luttinger parameters; a careful investigation
of the problem cannot consider them separately.

In this paper we report a systematic analysis of the
magnetoreflectance spectra of InP in the case of low-,
intermediate-, and high-field ranges. Since there are about
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nine exciton parameters [the effective mass (m, ) and the g
factor (g, ) of the conduction electron; the Luttinger pa-
rameters (y], y2, y3, ~, and q); the exchange energy (6)
and the longitudinal-transverse splitting (ELr)] in the
description of the fine structure and their field depen-
dence, ' it is meaningful to remove some of these adjust-
able parameters by other experimental findings. Recently,
we have determined the exchange energies 6 and EL~ by
performing uniaxial stress experiments on a high-purity
epitaxial InP sample and we plan to elucidate the prob-
lem of g factors (g„~, and q ) from our
magnetoreAectance measurements of low-field cases.
Moreover, we have reported a variational method to study
an isotropic hydrogenlike system under arbitrary magnetic
field which well described the field dependence of the non-
degenerate exciton states. ' Therefore, taking the above
points into consideration, it is possible to give more accu-
rate values for the remaining exciton parameters (y], y2,
y3) by means of a theory-experience comparison of the
magnetoreAectance spectra in intermediate —high-field
ranges.

The paper is organized in the following way. Section II
presents the theory of the exciton states in the intermedi-
ate magnetic field regime, and we derive some general for-
mulation to obtain the eigenenergies and the eigenfunc-
tions by a variational approach somewhat similar to that
developed by Ekardt. ' Next, Sec. III gives a theoretical
description of the magnetoreflectance due to two K-
dependent exciton resonances. After a short note on the
experiment in Sec. IV, we present the numerical results in
the last part of the paper. First, using the low-field
magnetoreAectance data, we determine the g factor of the
electron and the hole. Second, the best fit of a systematic
search of the magnetoreflectance up to 20 T allows us to
determine the Luttinger parameters (y], yq, and y3) more
accurately than in the previous works. Some discussion
and comparisons are finally gathered at the end of this
part.

II. FORMULATION OF THE EXCITON STATES
IN A MAGNETIC FIELD

In the presence of an external magnetic field, the rela-
tive motion of the electron-hole pairs can be described
within the effective-mass approximation. The correspond-
ing Schrodinger equation can be written as follows:

Hex+ex=E+ex ~

and the Hamiltonian consists of all contributions of the
system:

dielectric constant e; and the last term denotes the ex-
change interaction. The explicit Hamiltonian of the elec-
tron and of the hole, H, and H~, respectively, is given by

Ak
H, (k) = +g,pg8

2me

and"

(3)

H], (k—) = (y]+ —,yp) —yp(k„J„+C.p. )
k

Pt2 0
2 2

—2y3(Ik, ky I I J„Jy I+c.p. )

——xJ B— q(J„B—„+c.p. )
c c

(4)

where we have separated the center-of-mass motion and
replaced it in the next section. Thus Eq. (1) is actually a
8)&8 system of equations with the eight envelope func-
tions [g;(r)I. To resolve this eigenproblem, we consider
a general case of arbitrary magnetic field and choose the
following representation for the spin- —,

' state:
r

0
&3/2

0

&3/2
0

0
&3/2

0
&3/2 (6a)

0
&3/2i

0
0

—&3/2i

0
&3/2i

0
—&3/2i (6b)

where m, and g, are the effective mass and g factor of the
electron; y i, yq, y3, ~, and q are the Luttinger parameters;
and mo is the free-electron mass; J, J~, and J, are the
(4)& 4) angular momentum matrix for a spin —,

' state;

Ixy ) =(xy+yx )/2; and c.p. means the cyclic permutation
of the preceding term.

Neglecting the exchange interaction, the exciton state
for zero field has eightfold degeneracy. So the wave
function in Eq. (1) should be an eight-component func-
tion. Using the Bloch functions of the spin —,

' of the
electron and the spin —,

' of the hole as the represen-
tation basis, e.g. , i) =

~
m], , m, )—:

~
—,', m], )

~

—,', m, )
(m], ——+—', , + —,';m, =+—,'), the exciton states in the mag-
netic field can be written as follows:

~

0,„& = g P;(r)
~

i& (i=1,2, . . . , 8),

e e eH,„=H, p+ —A H], —p+ —A —— +H,„,h,c C e r

(2)

0

0 l

0 0

0 0

where r and p are, respectively, the relative coordinate
and its conjugate momentum. A is the magnetic vector
potential and we choose the gauge A = —,

' BX r;
—e /e

~

r
~

is the Coulomb interaction with the static

0 0

0 0 0 3
2

The exciton Hamiltonian can be then expressed as

(6c)
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H„=
Ho+ H'+ g,p~BI

0 g p jPI + exch

where Ho and H'( =H+Hq), respectively, are the (4&4)
I

diagonal matrix and nondiagonal matrix and I is the uni-
tary matrix. Taking the effective Rydberg,
Ro ——poe /2A e as a unit of energy, the exciton radius,
ao ——eh' /poe (1/po= 1/m, +y~/mo) as a unit of length,
and using a reduced magnetic field parameter
@=ed/2pocRD, the above Hamiltonians show the fol-
lowing forms:

Hp 0 0 0

0 HI 0 0

0 0 HI 0

0 0 0 Hq

po(y, +y, )/2 zII.,—II
II' —g11'

11' —gll',
II' —glI'

(9)

H
Hp =2&3poy3 0

—H

—H (10)

where

Hh, i =(po/ph, i)[p'+(y'/4)(x'+y') j —2/»

+po(1/pt, t
—1/ph, i ~p'

+ypo(2/m, —I /pf, i )L, —2ypo(a J, +qJ, )

I/pl, i = 1/m, + (y t+yz)/mo,

I/phr= 1/m, +(y~+2yq)/mo .

(14a)

(14b)

Concerning the exchange interaction, the resulting
configuration has been given in a phenomenological
way

and
H~zch =

8 A(3 —4J'S)+ELT51,1(5M,O (15)
11=iV+y/2(B Xr),

H =H„+iH (13)

In Eqs. (9) and (11), we have introduced an anisotropy
factor g=(y3 —yz)/(y3+yq) and used four effective-mass
parameters

where the exchange energy (b, ) and the longitudinal-
transverse splitting (ELT) correspond, respectively, to the
energy difference between the J= 1 triplet state (dipole-
allowed) and the J=2 quintuplet state (dipole-forbidden)
and the energy difference between the longitudinal exciton

~
1,0) and the two transverse ones

~

1,+I ). Here, we ex-
press H,„,h in the

~
mh, m, ) basis as follows:

0

0
5/4

0
0

—&35/4
0

0
0

6'/2

0
0

—5'/2

0

0
0

36/4
0
0

—&35/4
0

0
—&35/4

0
0

36/4

0
0

—6'/2

0
0
0

—v 35/4
0
0

5/4
0
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«= X C~l~j
J

(17)

' "4;(P;0 &;n v ) (18)
—a,where e ' is the Landau exponential factor and P, are

the hydrogen functions, including one variational scaling
parameter (P;). Thus, the wave function 7, has an aniso-
tropic real-space extension but recovers the hydrogen
function when a;~0 and P;~l (low-field limit ) ~0).
Including the symmetry argument, P/(u =P;g, v =P;rI, g)
can be written as follows:

Pi(u, v, y)= Aje' ~e '(uv/nj )

X[1+(—1) ~P„„]

X~( +il~ (u/nj)XJ +I (v/n~), (19)

where 5=5,+ —,'(l —1 )Et T and 5'=b, +—3(l+2)ELr. Fol-
lowing the discussion of Bonneville and Fishman' the
delocalization parameter I is 1 for a Wannier exciton and
0 for a Frenkel exciton, respectively.

Since the exciton wave function is a linear combination
of the product of the Bloch functions and the envelope
functions of the electron-hole relative motion [Eq. (5)], the
main problem at the present time is to find the field
dependence of these envelope functions and the intensities
of coupling between these functions. From a general con-
sideration, we hope that all «. ( r ) have a hydrogen-
function-like behavior at the low-field limit and a
Landau-level asymptotical change in the case of high
fields, respectively. It has been shown that such a behav-
ior of the envelope function can be achieved by simply ex-
pressing them as the product of a hydrogenic function and
of the Landau exponential factor (the lowest Landau
state) as a trial function, submitted to a variational treat-
ment. ' As a first step we establish our basis set taking
the symmetry of the system into account. In fact, after
we introduced the magnetic field, the system is z-axis ro-
tation invariant, so the z component of the enve1ope angu-
lar momentum (m ) is a good quantum number. The sys-
tem is also invariant under reflection with respect to the
origin of the coordinates; this gives a definite parity (~.) to
the eigenstate. In addition, we express these trial func-
tions in the parabolic coordinates:

for a given z component of the angular momentum are
~

0+,O, m = even) and
~

1+,O, m = odd). Among all of
these states, the lowest one is ~0+,0,0). On the other
hand, the z component of the total angular momentum of
the exciton is

1 1 1+——+—
4

p' = '
(g+g) ag

+ a„

a2

Btp

a
ag

(24)

II+ ———i &grje —'& 2 a a
ag a&

+

a
2 'g~ a&

(25)

M=m+mg+m, . (20)
The optical transitions are defined as LM = —1, 0, and
+ 1 corresponding, respectively, to the o. , ~, and 0+

polarizations. By incorporating the properties of the y-
dependent part of the functions and of the p, H~, and p,
operators in the matrix elements of the Hamiltonians, for
the three polarizations we use the envelope functions
given in Table I.

In fact, the elementary envelope functions have the fol-
1owing simple forms:

~

0+ 0 m even) 2A (P /„) lm le™m(g&1lm I
~

X exp[ a;grl —p;(g+—rl)/2n;],

(21)

~

1+,O, m = odd) = A;(g;/n; ) +e™~(g—g)(g'g)

X exp[ a;grj —f3;(g+—rI)/2n;] .

(22)
Writing the Hamiltonians Ho, H&, and H2 in the parabol-
ic coordinates, one has to consider the following opera-
tors:

4 a a a a
ag ag

+ a„"a

where P„„ is a permutation operator for (u, v) and vr refers
to the parity of the given consideration (B.=+1);
XJ,+

I
I(u/n, )and Xg +

I

l(. v/n~) are the associated

Laguerre polynomials (N„N2=0, 1,2, . . . ) and n, =N&
+N2+

~

m
~

+1; A; is a normalization constant. Please
note that here the index j stands for an ensemble of quan-
tum numbers m, %., N&, and N2, hence we represent P~ by
the Dirac symbol

~
N &,N2, m ).

Now let us consider the optically allowed states for the
o. , cr+, and ~ polarizations; we have to use eight of the
lowest even-parity envelope functions for each of these po-
larizations. As a good approximation, in the case of
"not-too-high" magnetic fields, one can only use the main
term of the expansion (17) as trial functions, i.e., let
CJ.=5,1 and « =X;. This considerably simplifies the cal-
culation. Thus, the lowest eUen parity envelope functions

mq, m,

3 I
2'2
I I
2'2
I I
2'2
3 I
2'2

3 I
2' 2
I I
2' 2

I I
2' 2

3 I
27 2

i
1+,0, —1)

i
0+,0,0)
1,0, 1)

~

0+,0, 2)

~

0+,0,0)
[
I+,0, 1)

(

0+,0, 2)

(

1+,0, 3)

[
0+,0, —2)

f

1+,0, —1)
f

0+,0,0)
f

1+,0, 1)

i

1+,0, —1)
/

0+,0,0)
/1+ 0 1)
/

0+,0, 2)

~

1+,0, —3)
~

0+,0, —2)

~

1+,0, —1)
[
0+,0,0)

[0+,0, —2)

(

1+,0, —1)
(

0+,0,0)
(

1+,0, 1)

TABLE I. Connection between the envelope functions
(

i
N|,N2, m ) ) and the Bloch functions (

~
mq, m, ) } for the

three polarizations.
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After some straightforward manipulations, all the matrix
elements of the Hamiltonian can be expressed with the
following integrals:

Jf(a, b)= I"I"g'ri" exp[ ag—ri b(—g+ri)]dgdri
0 0

exciton-photon interaction gives rise to new normal modes
of the system, the so-called excitonic polaritons which re-
sult from the admixture of excitonlike and photonlike
states. ' The exciton-photon coupling can be basically
stated by the following expression:

and
(26) c K ico =e(~,K), (28)

&& exp[ agni—b(g—+ri)]dg dr),

(27)

where a =a; +a, and b = 1/2(P; In; +P, In, ). Further-
more, all these integrals can be derived by some recurrent
relations from two initial integrals Jo(a, b) and Y~(a, b).
The first one (Jo) can be expressed by the standard ex-
ponential integral E;(x). ' The second one can be com-
puted numerically.

Now we are able to calculate all the elements of the
Hamiltonian. We consider the following algorithm for
the computation procedure. First we calculate the eigen-
functions and the eigenvalues of every diagonal matrix
element using a standard variational approach. Next, tak-
ing the determined eigenfunctions we evaluate all the off-
diagonal matrix elements. In the presence of the off-
diagonal terms the solutions of Eq. (1) are found as some
mixture of the solutions of the problem when only consid-
ering the diagonal terms. Thus, given a magnetic field we
finally find the eigenvalues and the eigenfunctions of the
exciton.

2 47Tf; CO;e=e„+ g
i ai;+(fun; /m; )K —co —icoI;

(29)

where the background dielectric constant e„contains the
nondispersive contribution of the other oscillations; m;
and f; (i = 1,2) are, respectively, the frequencies of reso-
nance and the oscillator strengths of the excitons which
depend on the applied magnetic field; m; (i = 1,2)
represent the exciton effective masses which characterize
the center-of-mass motions. Equations (28) and (29) hold
formally for each of the three polarizations (o+,ir); co;
and f; can be found from the work of Sec. II (see also
below).

The finite values of the exciton effective mass are re-
sponsible for the spatial dispersion of the dielectric func-
tion. Following Kane' and Fishman, ' we supposed that
the exciton bands in the

~

mq, m, ) basis can be expressed
by

where co is the frequency, K is the wave vector of the
center-of-mass motion of the exciton, c is the velocity of
light in vacuum, and e(co, K) is the co- and K-dependent
dielectric function, determined by the macroscopic electric
properties of the medium. In the vicinity of the frequen-
cies of the exciton resonance:

III. FORMULATIONS OF THE
NIAGNETOREFLECTANCE NEAR

THE EXCITON RESONANCES
Eg =Acog+A JC /2M',

E(=fxol+A K /2MI,

(30a)

(30b)

In the above section we have displayed a general con-
sideration to obtain the magnetic field dependence of the
exciton states in a cubic semiconductor. Detailed calcula-
tions show (see next section) that, increasing the field
strength, all the exciton levels shift toward high energies
due to the diamagnetic effect, and split due to the Zeeman
effect and the exchange interaction. Hence, a reflectance
spectroscopy of multioscillators is necessary for a sys-
tematic study of the line shapes of the experimental
reflectance data.

We consider three peculiar polarizations for the
normal-incident light. In the Faraday configuration (cr+
and cr ), the spectra were measured in the case of circu-
larly polarized light with AM=+1, respectively. In the
Voigt geometry (n), the spectra were collected in the case
of linearly polarized light; the electric vector of the light
was perpendicular to the direction of the magnetic field.
For each of the three polarizations, one has only two opti-
cally active transitions, involving the exciton states of
m =0 envelope functions displayed in Table I. Of course
the other m&0 states can also lead to nonzero contribu-
tions on the optical spectra, but this contribution is very
small on the very-high-energy side and is out of the scope
of this work.

Now let us look for the dispersion law of the propaga-
tion modes in the crystal. In the polariton picture, the

where col, and co~ are the field-dependent frequencies of
resonance of the heavy exciton (

~

+—', , +—,
' ) ) and the light

exciton ( ~+—,', +—,')), respectively; Mq and MI are the
mass constant, ' which are function of the Luttinger pa-
rameters (yi, yq, and y3), and we will neglect their
changes with the strength of the magnetic field. We note
that, for example, in 0.+ polarization, the optically active
exciton states are derived from the

~

—,', —,') and
~

—,', ——,')
electron-hole Bloch functions; therefore, the two masses
used in Eq. (29) should be Mi and Mq, respectively.
Similarly, in the case of the two other polarizations we
will take Mq for

~

——,', —,') and MI for
~

—
—,', —

—,') in o'

polarization, and Mi for both
~

—,', ——,') and
~

——,', —,') in m'

polarization. We emphasize this remark about the spatial
dispersion effect in magnetoreflectance, because it can pro-
vide a useful criterion for the deduced Luttinger parame-
ters from the field-dependence analysis of the exciton lev-
els. In other words, the Luttinger parameters must de-
scribe not only the field dependence of the whole exciton
levels, but also the K dependence of each exciton state.

An equivalent description of the oscillator strength is
referred to by the longitudinal-transverse splitting, which
gives the strength of the exciton-photon interaction. As
the optically active transitions occur principally with the
following Bloch states:

~

—,', —,'),
~

—,', ——,') (o+);
~

——,', —,'),
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I+-'„+-,' & =+&3/2
I

1,+»+-,'
I
2, +»,

I+,', +-,' & =+-,'
l
l, +»+&3/2

I
2, +1&,

I

+—,', + —,
' ) =+1/v 2

I
1,0) + 1/&2

I
2,0),

one gets

I o+;) = —,'[( —a;i+&3ai2)
I

1, 1&

+«3a i+«z) l»I)]

(32a)

(32b)

(32c)

(33)

Since only the
I

1, 1) state is optically active for the given
polarization, the oscillator strength can be written as

f+, = —,
'

I

—a; i(0)+&3a;2(0)
I fo, (34)

where fp is the oscillator strength of the unperturbed exci-
ton state

I
1, 1). The ratio of the osciHator strength is

given by

f+i
f+2

I

—
a i i(0)+&3a i2(0)

I

I

—a2i(o)+&3a»(o)
I

(35)

If the field strength tends to zero and the admixture of the
states

I
—,', —,

' ) and
I

—', , ——,
' ) can be neglected, the ratio is

1:3. The consideration is the same for the polarizations
o and m, and the corresponding constant ratios are 1:3
and 1:1,respectively.

To be brief, a dielectric function with two interacting,
co- and K-dependent oscillators will be used in the
analysis of the exciton reflectance spectra for various mag-
netic field strengths. One can calculate from (28) and (29)
the effective refractive index and, consequently, the
reflectivity coefficient of the crystal. For a given polariza-
tion, three transverse solutions can be found which give
rise to three polariton modes in the material. The calcula-
tion of each reflectivity spectrum will be done in this for-
malism using the uniform exciton free-layer model of
Hopfield and Thomas. '

1 —2, —
—,') (n); and

I

——', , —,'),
I

——,', ——,') (cr ), in the

presence of the magnetic field and/or the exchange in-
teraction, the mixture of each pair and their envelope
functions determines the optical transition intensity. The
different state with different confinement of the electron-
hole relative motion gives a different oscillator strength.
Considering, for instance, the polarization o.+, let the
lowest optically active states,

I o+~) and
I o+2), be ap-

proximately

I

o'+, ) =a;i(r)
I

—,', —,')+a;~(r)
I

—'„——,') (i =1,2), (31)

where a;i(r) and a;2(r) are the corresponding envelope
functions. Using the transformation relations between the
electron-hole and the exciton representations:

After a special etching in dilute solution of bromine in
methanol, the sample was mounted strain free in a
helium-flow exchange-gas cryostat and cooled down to 4
K.

The reflectance spectra were taken under normal in-
cidence using a tungsten wire lamp. A sensitive GaAs
photomultiplier has been used behind a Jobin- Yvon
monochromator and a standard 1ock-in system. The reso-
lution of the monochromator was typically set to 0.3—0.5
A/mm. The magnetic field was produced by a conven-
tional superconducting magnet. The maximum field
strength of this magnet was 6 T. In order to measure the
polarization-dependent reflectance, the light beam passed
through a circular or a linear polarizer before entering
into the monochromator.

V. RESULTS AND DISCUSSIQN

Nine parameters are necessary for the description of the
fine structure of the exciton in InP: m„g„yi, y2, y3, ~,
q, 6, and EL~, it does not seem appropriable to find them
accurately and simultaneously from a simple analysis of
the low- or high-field-limit magnetoreflectance spectra.
Instead of this, we will use some well-defined parameters
and then consider separately two procedures in order to
find the remaining ones. In fact, the effective mass of the
conduction electron, m„ is the less-discussable parameter
since it has been determined from several experiments.
The values of the exchange energy 5 and the
longitudinal-tranversal splitting EL~ are also well estab-
lished by Mathieu et al. from the uniaxial stress investi-
gation on InP epilayers; the numerical values are
6=0.04+0.02 meV and EL~ ——0.17+0.04 meV, a
finding comparable with the determination of Ekardt et
a/. In addition, the anisotropic g factor of the hole, q,
has a very small value and can be neglected in the case of
InP. Using the values given above, we now have to study
the remaining parameters.

A. Low-field limit: linear Zeeman splitting

The behaviors of the 1s exciton state in the low-field
limit can be described in the degenerate perturbation
scheme. Both theoretical and experimental treatments
have demonstrated the possibility to elucidate the g factor
of the electron and the hole from low-field
magnetoreflectance data. Following Altarelli and Lipari
and Cho, we introduce two effective g factors giving the
splitting between the heavy-hole exciton and the light-hole
exciton, respectively,

AEjh =gjh pB~ (36)
IV. EXPERIMENT

The samples used in this work were very-high-purity
vapor-phase-epitaxial InP layers grown on a (100)-
oriented substrate produced by Royal Signal and Radar
Establishment (RSRE), St. Andrews Road, Great Mal-
vern, and kindly provided to us by D. S. Robertson.
The carrier concentration of the epilayers were —10'
cm with very high mobility (-10 cm /Vs at 77 K).

gc ~(g3/2 g 1 /2 ) /2 (g3/2 +g 1 /2 ) /4

+ Ml/3(1 3 )/p)(Po/riip ) (37)

jr =(g3/2+g 1/2)/8+ ", My 21 3(p—o/~o), (38)

Consequently, the g-factor parameters of the electron and
the hole are given by
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FIG. 1. Observed variation of energy shifts of the reflectance
minima of (a) o. spectra and (b) ~ spectra of the exciton in InP as

a function of magnetic field.

FIG. 2. Typical magnetoreflectance spectra for B=5.5 T and
for the o. ( ), o.+ ( ———), and ~ ( ———) polariza-
tions.

where M=0. 2812, and A, =1, in the case that the ex-
change energy and the diamagnetic shifts are small
enough and the g factors are not appreciably affected.

In Figs. 1(a) and 1(b) we have plotted the energy shifts
of the measured reflectance minima as a function of mag-
netic field for the o.+, o. , and ~ polarizations. Up to
about 3 T (y-0.6), the strong components reveal a linear
Zeeman splitting, and then by increasing the field, a
second structure (weak component on the lower-energy
side) in the o and m spectra could be observed. Figure 2
shows typical magnetoreflectance spectra for B=5.5 T
and for the three polarizations. The transverse energies of
the exciton states and the energy differences AEVI, can be
determined after an analysis of the line shapes by taking
into account the polariton effect and the different disper-
sions of the exciton states. The effective g factors g3/2 and

gii2 can be then derived from the fittings in the linear
splitting region. We have determined the effective g-factor
parameters of the exciton g3iq ——2.4+0.2 and
gii2 ——0.35+0.2, which are in agreement with the experi-
mental value deduced by Willmman et al. Connecting
these data and the Luttinger parameters yi, y2, and y3 of
Ref. 5, we get g, =1.24+0.40 and ~=0.75+0.40. These
values are to be compared with the results obtained by
photoluminescence, optical pumping, and two recent
rnagnetoreflectance experiments; ' the agreements are sa-
tisfactory (see Table II). On the contrary, concerning the

Luttinger parameters yi, y2, and y3, because of the com-
plexity of the splitting and mixing pattern of the energy
levels and wave functions, only significan results can be
obtained from a detailed analysis of the
magnetoreflectance spectra under a sufficiently strong field

range.

B. Intermediate field regime: general description

Here we study the variation of the exciton states from
magnetoreflectance spectra for a large intermediate-field
region. Since only a few of the parameters (y&, yz, and

y3 ) now remain adjustable, their determination will be re-
liable. Some experimental curves for a range of magnetic
field up to 20 T have been recorded by Bimberg et al. for
all three polarizations. ' Examples shown in Fig. 3(a)
display the behavior of the reflectance spectra for the
different field strengths and for the ~ polarization
(Bii(100) and EiiB). The polariton structure shifts and
increases monotonically with the magnetic field. Again
when the field is strong enough, two components in the
reflectance appear, which reflect the variation of the ener-

gy levels and of the wave functions of the excitons. How-
ever, as is well established by the polariton theory, the en-

ergy minima E; of the reflectance curves do not corre-
spond exactly to the exciton energies of resonance E;.
The energy differences E;—E; depend on the oscillator

TABLE II. Summary of the band mass parameters and g factors and the exciton effective masses in InP.

gc

1.20

1.15
1.8—2.0
1.48
1.2
1.26
1.31
1.31
1.24

pl

6.73
6.37
6.28
5.04

5.15

4.95
4.95
5.22

2.65
1.39
2.08
1.56

0.94

1.65
1 ~ 85
1.83

r3

2.65
2.05
2.76
1.73

1.62

2.35
2.55
2.34

1.47

0.72
0.7—0.9
0.12
0.86(k)

0.97
0.97
0.89

0.01

0.20
0.21
0.22
0.23

0.25

0.25
0.26
0.24

1.69
0.45
1.18
0.83

0.46

1.80
10.33
1.78

Reference

24 (calc.)

25 (calc.)

26 (calc.)

27 (expt. )

28 (expt. )

9 (expt. )

29 (expt. )

8 (expt. )
30 (expt. )

10 (expt. )

5 (expt. )

This work
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FIG. 3. Magnetoreflectance spectra for various field strengths

in vr polarization. (a) Experimental spectra obtained at 4.2 K by
Bimberg et al. (b) Theoretical spectra from a systematic calcula-
tion, both the field and the wave-vector dependences of the exci-
ton states have been taken into account. The transverse energies
of the exciton are marked.

strengths, the damping parameters, and the dead-layer
depth, and all of the states vary from each other. Only a
theoretical fit of the experimental spectra allows to get an
accurate determination of the exciton states as a function
of the magnetic field.

This is done in Fig. 3(b), where we display the repro-
ductions of the corresponding calculated reflectance spec-
tra. They can be compared with the experimental data of
Fig. 3(a). A systematic search based on the theory of Sec.
II has been used for the fit. The increase of the amplitude
of the structures with the field denotes the increase of the
oscillator strength or of the longitudinal-transverse split-
ting for each exciton state, which have been taken into ac-
count automatically by using exciton eigenfunctions. The
same comparison between the experimental and calculated
reflectance spectra in the vicinity of the exciton resonances
for the other polarizations can be performed too. Clearly,
as it is shown in Fig. 3(b), the transverse energies of the
excitons do not correspond with the energies of the
reflectance minima; any attempt to get the fine-structure
parameters from a crude estimation of the curve minima
may lead to serious errors (the vertical bars E; indicate
the position of the transverse eigenenergies). In Fig. 4(a)
and 4(b), the variations of the calculated minima energies
have been drawn together with the experimental measure-
ments of Bimberg et al. for both Faraday and Voigt
configurations. Again, the accordance is satisfactory for
this intermediate- and high-field regime. Among the
different parameters used in the calculation, most of them
were taken from the previous experimental data; the
remaining three Luttinger parameters y~, y2, and y3 are
introduced as fitting parameters. The best values with the
slightly modified ~ value are listed in Table II and are
compared with the other ones.

Now let us make some additional remarks concerning

11 - InP
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FIG. 4. Variation of energy shifts of the reflectance minima of
(a) o spectra and (b) m spectra of the exciton of InP as a function
of magnetic field. Solid lines are present calculations and experi-
mental points are taken from Ref. 10.

this problem.
(i) The exciton in InP can be qualitatively referred to as

an anisotropic hydrogenlike system. The degeneracy of
the exciton bands gives rise to the linear Zeeman splitting
when it is immersed in an external magnetic field. In the
absence of the field the relative motion of the electron-
hole pair is held only by the Coulomb potential, when the
field is introduced the relocalization of the movement is
due to both the Coulomb force and Lorentz force. As a
consequence, the exciton becomes small in size and the
binding energy and the oscillator strength increase. The
observable exciton resonances is the effect of the variations
of the band structure and the binding energy, but the
change of the oscillator strength is more directly related
to the field strength.

(ii) The splitting of the energy levels at low fields
remains an almost linear function of 8, since the magni-
tude of the exchange interaction is not comparable to the
Zeeman splitting in the case of InP. On the other hand,
in the intermediate- and high-field range, the mixing of
the wave functions are rather sensible to the value of the
exchange energy (the longitudinal and transverse splitting
too). A comparative study of these parameters favors our
earlier finding from uniaxial stress investigations.

(iii) Concerning the Luttinger parameters y„y2, and
p 3 the fitting values of this work lead to values in agree-
ment with the results of the most accurate experimental
determinations. However, a small discrepancy can lead to
a significant difference between the calculated exciton
masses M~ and Mz (see Table II) when the parameters of
the different findings are used, especially in the case of the
heavy-hole exciton one (Mi, ). These two exciton masses
can be directly used for the calculation of the polariton
dispersion and of its reflectance spectrum. A more-direct
experimental determination of the masses values is re-
quired at the present time. Nevertheless, although
reflectance spectroscopy is not a most direct method to
study the polariton dispersion, the overall agreement for
both the Faraday and Voigt configurations leads us to
support the present theoretical framework and gives reli-
able values for the Luttinger parameters.
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