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In the hot-electron, ballistic transport regime, we have calculated the distribution function f (U, x)
for electrons in a submicron N+-N -N+ GaAs structure by directly solving the coupled Poisson and
Boltzmann equations using simple relaxation-time models. Ballistic electrons cause both the dom-
inant peak in f (U, x) throughout much of the N region and additional structure, ballistic echoes, be-

cause of intervalley transfer. Both phenomena can be traced to simple features of the potential ener-

gy curve which should occur in many device geometries. The structure in the distribution function
responds to changes in the parameters —mobility, voltage, and lattice temperature —in the way ex-

pected for ballistic electrons: a larger mobility, a larger voltage, or a lower temperature makes the
structure more prominent. By integrating over the distribution function, we calculate as a function of
distance the current and the width of the distribution, expressed as an effective "temperature. " The
I-V characteristics are nearly linear for all the cases studied (as well as for the experiment) showing
that the current is not a sensitive probe of ballistic structure. In fact, the current as a function of mo-

bility saturates in the ballistic regime (high mobility) where the injection over the initial barrier deter-
mines the current. The distribution functions we calculate are far from being drifted Maxwellian in

form so a thermodynamic temperature cannot be defined. However, in the near-equilibrium regime
we show that "heating" and "cooling" are first order in the applied voltage in contrast to bulk behav-
ior where heating is second order in the field. At higher voltages, the width of the distribution func-
tion varies dramatically from less than the equilibrium width at injection to much larger than the
equilibrium width.

I. INTRODUCTION

The transport properties of small solid-state structures,
those having a submicron dimension, have recently re-
ceived increasing attention because of the surprising new
phenomena in both semiconducting and metallic systems.
For example, experiments have revealed transport via lo-
calized states in narrow inversion layers, ' noise caused by
single traps, current modulation caused by optical-
phonon emission, and carrier cooling rates which are
substantially different from the bulk values. An especial-
ly intriguing transport mode, ballistic transport, involves
carriers traversing a submicron region without scattering.
Detailed theoretical predictions for the distribution of
electrons in the ballistic regime, including a suggestion for
the most practical way to see the effect, have recently
been confirmed directly by experiments, ' though not
under optimal ballistic conditions.

Transport in submicron semiconducting structures
differs from transport in bulk material in three important
ways: (i) the ease with which far-from-equilibrium situa-
tions are created because of the large electric fields in
small structures, (ii) the importance of ballistic electrons
once dimensions are of the same order as the mean free
path, and (iii) the new eff'ects introduced by the close
proximity of boundaries where the electron density is usu-
ally varying rapidly. Thus, any calculation of transport in
submicron semiconducting structures must include hot
electrons, ballistic electrons, and spatial gradient effects.
Here we present a calculation of transport in a simple
semiconducting structure, concentrating on ballistic effects

in a regime where hot electrons and spatial gradients are
important. We extend the theoretical understanding of
ballistic electrons with the first solution of the Boltzmann
equation in a submicron structure in which the conduc-
tion band has the two valleys necessary to describe the
semiconducting materials used experimentally, in particu-
lar GaAs.

The majority of previous work' on transport in sub-
micron semiconducting structures used the drift-diffusion
equation' in which the current is a sum of a drift term
which employs a field-dependent mobility and a diffusion
term with a field-dependent diffusivity. While this ap-
proach is simple and hence practical for complex device
geometries, the physical basis of a field-dependent mobili-
ty and diffusion constant is questionable. ' An alternative
to the drift-diffusion equation is Monte Carlo simulation'
in which one generates typical histories of many electrons
and then averages over the ensemble to find the quantities
of interest. While ideally very accurate, this approach
suffers from uncertainty in the large number of input pa-
rameters and the considerable computation time needed to
acquire enough statistics. A possible way to bridge the
gap between the drift-diffusion approach and Monte Carlo
simulation is to generate a hydrodynamiclike theory using
velocity moments of the Boltzmann equation. ' ' It is
necessary in this approach to truncate the hierarchy of
moment equations by making an assumption for the form
of the distribution function. Often the distribution is as-
sumed to be a drifted Maxwellian distribution ' we will
see below that this assumption is questionable in lightly
doped submicron structures in part because of the pres-
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ence of ballistic electrons.
Here we fill in some of the middle ground between the

drift-diffusion equation and Monte Carlo simulation by
using a direct, numerical solution of the Boltzmann equa-
tion within the relaxation-time approximation. The use of
the Boltzmann equation in our situation is perhaps prob-
lematical because of the large, rapidly varying electric
field and the ballistic electrons. The Boltzmann equation
has been rigorously justified on the basis of quantum
transport theory only for slowly varying potentials;-' how-
ever, it is not clear on what length scale the potential
must be slowly varying. Some work suggests that the ap-
propriate length scale is the thermal wavelength
[=(iri /2m*kT)' =0.005 pm], which is certainly a
lower bound on the length scale at which the Boltzmann
equation breaks down, in which case our use of the
Boltzmann equation is appropriate. Since no evaluation
of the corrections to the Boltzmann equation in the spa-
tially varying case has been made, it is difficult to deter-
mine the spatial scale at which the Boltzmann equation
breaks down, and we therefore use the Boltzmann equa-
tion until future workers clarify this point. We note in
support, however, that the Boltzmann equation works
well in at least one other situation where the electric field
varies rapidly on a length scale less than the mean free
path, namely in explaining the anomalous skin effect. '

Within the Boltzmann-equation approach we make the
relaxation-time approximation that all the scattering pro-
cesses can be characterized by one or two scattering rates
(per valley). As this approximation is not strictly valid for
GaAs, our goal here is to present a completely solved
model calculation rather than a microscopic calculation as
in the Monte Carlo approach discussed above. Our use of
relaxation-time models, in addition to making the prob-
lem tractable, makes the structure caused by spatial inho-
mogeneities (such as ballistic electrons) obvious and more
easily studied. In addition, one can easily vary the pa-
rameters in our models to look for trends, something
users of the more sophisticated Monte Carlo simulation
have not done. We consider two particular relaxation-
time models in this work: one in which there is a single
valley with 1/~ independent of velocity, and a second in
which there are two valleys with one of the four 1/~ de-
pending on the velocity parallel to the field while the oth-
er three rates are constant. The use of rates which are in-
dependent of velocity is consistent with our emphasis on
the effects of spatial inhomogeneities rather than the de-
tails of the scattering processes. The fact that the rates
depend at most on the velocity parallel to the field (rather
than on the energy, for instance), implies that the distribu-
tion of velocities perpendicular to the field is Maxwellian;
thus, all the nonequilibrium effects occur in the distribu-
tion parallel to the field and in this sense our treatment is
one dimensional in velocity. Because our two-valley mod-
el reproduces the experimental velocity-field curve over a
substantial field range, this model contains at least as
much information about the scattering processes as the
drift-diffusion or hydrodynamic theories discussed above.

Our approach complements recent analytic work using
the Boltzmann equation including a solution for optic-
phonon scattering in a non-self-consistent potential, " and

a solution for small spatial and time perturbations from a
large-uniform-field situation. Some of our results have
been presented previously. ' Here we first describe the
universal aspects of both the structure we study and our
previous results (Sec. II), then we describe the model used
in the calculation (Sec. III with more details in Appen-
dixes A and 8). The results we concentrate on here are
the variation of the distribution function with the model
parameters (Sec. IV), the I Vcha-racteristics (Sec. V), and
"heating" and "cooling" effects (Sec. VI).

II. N+-N -N+ STRUCTURE: UNIVERSAL ASPECTS

The N+-N N+ stru-cture (doping profile shown in in-
set to Fig. 1) has been intensively studied ' ' ' ' as
a simple, prototypical submicron structure. We idealize
the experimental N+ -N -N+ GaAs structure as a thin
layer (0.4 pm) of lightly doped material (N =2&(10'
cm 3) between two slabs (2 pm wide each) of highly
doped material (N+ = 10' cm ). The scattering pro-
cesses in the structure are modeled using relaxation times
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FIG. 1. The electron potential energy U(x) (solid line) and
U(x)+ 6 (5=0.3 eV, dashed line) for V, =0.47 V and To =300
K within the two-valley model. Electrons injected over the po-
tential maximum at x& =0.054 pm are energetically able to
transfer to the L valley once their energy lies above the dashed
line. At x~ =0.323 pm electrons with v =v~(x) can transfer to
the L valley (intersection of dashed and double-dotted —dashed
lines) where vz(x) is the minimum ballistic velocity defined by
mi*-vz(x)/2= U(xl ) —U(x). Echo electrons created by L~I
transfer have a minimum (absolute) velocity given by
mr*vs(x)/2= U(0.45 pm)+ 6—U(x), and reAect from the po-
tential barrier near xE=0.295 pm. The inset shows the total
electron density (solid line), nr(x) (dashed line), nL(x) (dotted
line), and the doping profile (dotted-dashed line). I ~L transfer
causes a dramatic increase in the total charge for 0.3&x &0.4
pm. In the actual calculation the structure extends from —2

pm to 2.4 pm to allow sufficient space for nL to decay.
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accelerated by the electric field in the N region transfer
to the L valley, where they have a small kinetic energy be-
cause of the large effective mass and scattering rate. (ii)
The small electric field in the N+ region can no longer
maintain the I -to-L density ratio of the N region thus
causing a net flow of electrons from L to 1. (iii) Elec-
trons scattered from L are injected isotropically into I
with kinetic energy greater than b„ the L Isp-litting. (iv)

The v &0 electrons travel towards the barrier ballistically
producing an echo peak, examples of which are shown in
the v &0 region of Fig. 4. (v) At the turning point, near
xE, the electrons reAect from the potential barrier and re-
turn towards the N+ region producing another echo peak
for v ~0.

The presence of echo peaks in the distribution function,
like the presence of ballistic electrons, depends only on
general features of the potential energy profile. First, a
large density of L-valley electrons is needed; in a submic-
ron structure the voltage drop [U(xi) in Fig. l] must be
greater than the energy difference between the valleys, A.
Second, the electric field driving I ~L transfer must
abruptly end in order to allow intense L ~I transfer. As
we will see below, L~I transfer occurs within 0.05 pm

of the right-hand doping step (Fig. 4), thus the change in
electric field must occur over a shorter distance. The
well-known structures listed above as potential ballistic-
electron structures should also show echo-electron effects.

Having presented a summary of the universal aspects of
our previous work, we now present the models used in
this work.

III. MODELS AND METHODS

We use the Boltzmann equation to calculate the distri-
bution of electrons, f (v, x), using two models for the col-
lision term. First, we use a single-valley, single-
relaxation-time model —the simplest model possible, but
one in which ballistic electrons are evident. Then we con-
sider a two-valley, four-relaxation-time model ' for
GaAs that includes the most important band-structure
effect within a one-dimensional approximation for the ve-

locity dependence of the relaxation rates. While our use
of relaxation times is not strictly valid for GaAs, we feel
these simple, structureless scattering models are useful for
these preliminary investigations of inhomogeneous effects
within the Boltzmann equation, in addition to making the
problem tractable.

For either model, the stationary-state Boltzmann equa-
tion in terms of the electric field E(x) and collision term
(af/ar), is

.E af, af,
+v

m, * Bv Bx

where i refers to the I or L valley in the two-valley model
and is superfluous in the single-valley case. An effective
mass characterizes each valley which are both assumed to
be parabolic. The Boltzmann equation must be solved
self-consistently with the Poisson equation for the electric
field produced by the doping profile ND(x) and electron
density n (x)

4~e
[ND(x) —n (x)],

0 .I

-10 E7-5 0 5
Velocity (IO cm/sec)
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where e is the static dielectric constant. The electron den-
sity is related to the distribution function by

n(x)= f dvf(v, x) .
FIG. 4. Unnormalized velocity distributions for I -valley elec-

trons showing formation of echo peaks. The distributions all
show a prominent ballistic electron peak at large positive velocity
as in the region before transfer to the L valley (x4=0.254 pm,
dotted-dashed line). At small velocity, the hump near u =0
present at xi=0.294 pm (dotted line) splits into two ballistic
electron echo peaks at x6=0.298 pm (dashed line) and x7 ——0.34
pm (solid line), one traveling with v &0, one with v &0. As the
echo electrons are accelerated to more positive velocity, the mag-
nitude of the peak, as indicated by the size of the sharp edge, de-
creases because of scattering out of the peak as the electrons
travel towards the potential barrier (u & 0) and back (v ~ 0). The
inset shows the difference in densities, nL(x) —nL, „„„t(x),which
drives L~I transfer. I ~L transfer occurs when

nL —nL„„„„«0 as in the region 0.3 &x &0.4 pm, while the
strong L~I transfer for 0.4&x &0.45 pm produces the echo
peaks in the distribution function.

In the single-valley model we assume that f relaxes to a
local equilibrium (LE) distribution, fLE(v, x), at a rate r
which is independent of energy or position. For the local
equilibrium distribution we take a Maxwellian at the lat-
tice temperature, Tp, normalized to the electron density,

m'
fLE(v, x)=n (x)

2~kTp

1/2

2kTp
(4)

Thus the collision term in the single-valley case is

f (v, x) f LF (v,x)—
We wish to call attention to four features of this collision
term. (i) The current continuity equation (dJ/dx =0) is



36 BALLISTIC STRUCTURE IN THE ELECTRON DISTRIBUTION ~ . . 1491

&rL(v)=rrl. e, (m rv /2 —6), (6)

that depends only on the velocity parallel to the electric
field; this reduces the problem to one dimension in veloci-
ty which is consistent with our neglect of L-valley degen-
eracy above. Note that as in the single-valley case, be-
cause ~ ' is independent of the velocity perpendicular to
the field; f is simply a Maxwellian in the perpendicular
velocity.

The basic equations for the two-valley model have been
presented previously; ' Appendix A contains a more de-
tailed discussion than is available in either preceding
work. We take three parameters in our model from ex-
periment: m i- ——0.069m„6=0.3 eV, and pi-i- ——e~~~/
m i- ——7500 cm /V sec which corresponds to

explicitly obeyed because we use the true electron density
in normalizing fLF. (ii) The average energy of the distri-
bution f(v, x) is not necessarily that of the distribution
fi,E(v,x); hence, the collisions are inelastic. (iii) The use
of a Maxwellian distribution for fLF(v, x) is not strictly
applicable to the degenerate X+ regions. We note that
our method could be extended to the degenerate case by
using a Fermi-Dirac function for the local equilibrium
distribution; however, we believe that this would only
modify the barrier height and behavior in the N+ regions
slightly. (iv) For a constant relaxation rate, the depen-
dence of f (v, x) on velocities perpendicular to the electric
field factors out of the Boltzmann equation: f is simply a
Maxwellian in the perpendicular velocities.

Turning now to the two-valley model, we can study
within our Boltzmann equation approach transferred elec-
tron effects which are crucial in high-field transport in
III-V materials. Our model for CsaAs (Refs. 23 and 26)
includes two valleys in the conduction band of GaAs: the
conduction-band minimum at I in the Brillouin zone and
the next to lowest energy valley at L which is 5=0.3 eV
above the I minimum. While there are four degenerate
L valleys in GaAs, we include only a single, generic "L
valley. '*

The electrons in each valley have a separate distribution
function, fr(v, x) and fL, (v, x), and electron density, nr(x)
and nL, (x). An intravalley and intervalley scattering pro-
cess for each valley requires four relaxation times ~i-q,
rrL, rLL, , and rL, r where the first (second) index indicates
the valley from (to) which the electron scatters. Each pro-
cess relaxes the electrons to a local equilibrium character-
ized by the lattice temperature Tp and a chemical poten-
tial determined by particle-conservation conditions. We
assume the I ~I process conserves I electrons, the
L ~L process conserves L electrons, and the sum of the
I ~L and L~I processes conserves the total electron
density. The chemical potential for the I ~L and L~l
processes is the same and provides the coupling between
the two valleys. Thus the intervalley processes relax the
electrons to an equilibrium between the two valleys, a
joint local equilibrium.

Three relaxation times, ~i-i-, ~L,L, and 7Lp, are taken to
be constants, independent of energy; ~i-L and ~Lq are re-
lated by detailed balance. The I ~L process turns on
when I ~L transfer is energetically possible. We assume
a I ~L scattering rate form,

~i-z- ——2.9 & 10 ' sec. ' The remaining three parame-
ters are set by fitting to the experimental velocity-field
curve ' in bulk CsaAs for which our model is analytical-
ly soluble: ' '

mL*, ——1.2m„~~L', /r~~ ——2, and
(&LL, +&ir)/&rr =10.8. In the case of the single-valley
model, we use the l -valley mass and ~i-i- given above.

The solution of these models proceeds via numerical
iteration [(1)—(5) for the single valley model ]; details of
our method can be found in Appendix B.

IV. VARIATION OF f{v, x) WITH MOBILITY,
TEMPERATURE, AND VOLTAGE

There are two parameters in the models described
above which can easily be varied experimentally —the lat-
tice temperature Tp and the applied voltage V, . Howev-
er, before presenting our results for the effect of these two
parameters on the distribution function f (v, x), we discuss
the role of the scattering parameter within the single-
valley model, w or the mobility p =e rim *, so as to
demonstrate clearly the ballistic effects. In varying the
mobility, we discovered that the mobility in the X+ re-
gion has little effect on our results. Hence we restrict
ourselves here to varying the mobility in the N region
(the mobility in the N+ region is fixed at 7500
cm /V sec).

E+ect of mobility One .expects, of course, that an in-
crease in the mobility will lead to an enhancement of the
ballistic effects. This expectation is borne out in Fig. 3
where we have plotted the distribution function at two
different values of x and for two different mobilities in the
N region (7500 cm /Vsec and 40000 cm /V sec). An
increase in the mobility sharpens the distribution at the
top of the potential barrier (xi ——0.05 pm) bringing it
closer to the thermionic emission limit (a Maxwellian for
v ~ 0 and zero for v & 0). Further down the structure at
x2 ——0.3 pm, the ballistic peak is larger for the higher mo-
bility; 72% of the electrons at x2 are in the ballistic peak
for p=40000 cm /Vsec compared to 24% for p=7500
cm /V sec.

E+ect of temperature. The effect of varying the lattice
temperature, Tp, within the single-valley model is shown
in Fig. 5. By controlling the emission over the initial bar-
rier at x&, Tp controls the width of the ballistic electron
peak in energy —it is fixed at kTp. Thus lowering the lat-
tice temperature from 300 to 77 K results in a narrower
ballistic electron peak (Fig. 5). Accompanying this nar-
rowing of the ballistic peak is an increase in the height of
the peak; however, the fraction of electrons in the ballistic
peak at the point x2 actually decreases as the temperature
is lowered (from 0.24 at 300 K to 0.14 at 77 K) because
of increased scattering near the potential maximum where
the average velocity of electrons is lower for T =77 K (cf.
pp. 85 —87 of Ref. 36).

Variation near the echo turning point. The second easi-
ly varied parameter in the models is the applied voltage,
V, , and we will study the effects of V, on fr(v, x) within
the two-valley model in order to see the inhuence V, has
on the echo peaks. Throughout this work, we concentrate
on changes in fr(v, x) rather than fL(v, x) because devia-
tions of fL, from a drifted Maxwellian are very small (cf.



1492 HAROLD U. BARANGER AND JOHN W. WILKINS 36

l. 2

x 0.8—

Vg = 0.47V
p, = 7500

To = 77K
---- T = 300 K0

x2 = 0.3p.m

x&= QQI7pm

0.4—
0

x, = 0.05@.m

I ~J
0 5 IQ l5

Velocity (lo cm/sec)7

FIG. 5. Velocity distribution functions normalized by
n (x)/vth at two dift'erent temperatures. Distributions for To = 77
K (solid lines) and for To=300 K (dashed lines) are compared at
the maximum of the potential energy curve for each temperature
(0.017 pm for To=77 K, 0.05 pm for To ——300 K). The lower
lattice temperature produces stronger but narrower ballistic
peaks in the distribution function; however, the fraction of elec-
trons which are ballistic is less for T =77 K (0.14) than for
T =300 K (0.24) because of increased scattering near the poten-
tial maximum in the T =77 K case.

Q Q

p. 178 of Ref. 36); in fact, even the temperature variation
in the L valley is small —less than 8%%uo for V, =0.47 V at
Tp =300 K. The basic mechanism for electron echoes
was discussed previously and reviewed above (Sec. II);
however, before proceeding to the dependence of fr on
V„we present in Fig. 4 a detail of fr(v, x) near the echo-
electron turning point x~ ——0.295 pm, the point where
echo electrons are rejected to move in the positive-x
direction. To the left of the echo-electron turning point
(x4 ——0.254 pm &x~), the distribution looks surprisingly
like the single-valley distribution, whereas far to the right
of the turning point (xi=0.34 pm&x~) f (v, x) has the
classic three-peak echo form. At x =x7, 14% of the
electrons are in the echo peaks compared to 11% in the
ballistic peak. For x only slightly to the left of xz
(xq =0.294 pm &x~) the echo electrons with greater than
the minimum energy spill over and cause a hump in f
around v =0. In contrast, for x slightly to the right of x~
(x6=0.298 p, m&x~) the two echo peaks have just
formed. The sharp edges of the echo peaks are caused by
the sharp turn-on of the I ~L transfer within our model
[Eq. (6)]; these sharp edges fall at the velocities +v~(x)
where

mrvg(x)/2= U(0. 45 pm)+6 —U(x) .

The size of the discontinuity in fr at the echo velocity is a
measure of the quantity of echo electrons. The decrease
in the echo discontinuity as the electrons travel towards
the barrier (v &0) and away (v &0) shows that scattering
of the echo electrons does take place.

Our explanation for the formation of echo peaks sug-
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FIG. 6. Unnormalized velocity distributions for I -valley elec-
trons at x =0.36 pm for three applied voltages (V, =0.32 V,
dashed line; V, =0.47 V, dotted line; and V, =0.82 V, solid
line). A larger applied voltage enhances both the ballistic and
the echo peaks. It causes the ballistic peak to move to higher ve-
locity. In contrast, it moves the echo peaks towards v =0 be-
cause the potential energy, U(x), increases while the initial ener-

gy of the echo electrons remains fixed at approximately the ener-

gy separation of the I and L valleys. In addition, the increase in
U(x) with larger applied voltage inhibits the di6'usion of thermal
electrons from the right-hand %+ region, causing the Maxwelli-
an part of the distribution function near v =0 to decrease.

gests that the L~I transfer occurs very close to the
right-hand N /X+ step. To verify this point, we show
in the inset to Fig. 5 the density difference which drives
L ~ I transfer, nl. (x) —nl. ,„„,(x) [see Eqs. (A 1) and
(A4)]. The negative value of this quantity for
0.3 &x (0.4 pm indicates 1 ~L transfer while its large
positive value for 0.4&x &0.45 pm indicates particularly
intense L~I transfer in this narrow region. We believe,
therefore, that the echo-electron peaks are formed in the
region 0.4(x &0.45 pm and that the transition from
high-field to low-field region must occur in a distance less
than 0.05pm in order to produce echoes.

Effect of voltage Tu.rning now to the effect of the ap-
plied voltage on f (v, x), we expect that an increase in V,
should enhance both the ballistic peak (increased accelera-
tion) and the echo peaks (more I ~L transfer resulting in
more L~I transfer). The distributions shown in Fig. 6
bear out these expectations. Indeed, the echo peaks are
particularly dramatic at high voltage where the large bar-
rier to electrons diffusing from the N+ region depresses
the number of electrons with v=0. In contrast, at low
voltages the Maxwellian distribution of electrons diffusing
from the N+ into the N region dominates the distribu-
tion. Also note in the high-voltage distribution function a
discontinuity in the derivative of f at +v, = ( 2h /m r )

'

caused by intervalley transfer as in the homogeneous field
case.

Ballistic electrons. The importance of ballistic electrons
in the distribution functions shown in this section
demands further characterization of this part of the distri-
bution. To do this, we define ns(x) to be the density of
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those (I valley) electrons with u & 0 and with energy
greater than the maximum of the potential energy curve
U,„=U(xI) (Fig. 1). Once a ballistic peak has formed
(x &x~), ng(x) is the density of ballistic electrons, while
for x &x~, na(x) is simply the density of electrons which
are energetically able to surpass the potential barrier. Fig-
ure 7 shows na (x) for both the single and two-valley
models at To ——300 K and V, =0.47 V. Also in Fig. 7 we
plot nII(x)/n(x) which downstream from the potential
maximum gives the fraction of electrons which are ballis-
tic.

The curves of ng(x) in Fig. 7 for the single-valley and
two-valley models are surprisingly similar in both shape
and magnitude. The main deviation occurs once transfer
to the L valley becomes significant in the right-hand por-
tion of the N region. The point x~, defined in Fig. 1 to
be the point at which the electrons in the entire ballistic
peak become energetically able to transfer to the L valley,
gives a good estimate of where n~(x) for the single-valley
model starts to deviate from ng(x) for the two-valley
model. There are additional small deviations for x &x~
caused by the quicker decay off (u) in the two-valley case
for u&(2b, /m f-)'~ (cf. pp. 171—175 of Ref. 36). The
plots of the fractional effect show that in both models a
significant fraction of the electrons is ballistic.

V. I-V CHARACTERISTICS
AND AVERAGE VELOCITY

Having calculated the distribution functions for several
sets of parameters for both scattering models as reported
in the preceding section, we can now perform averages
over these distributions to find other quantities of interest,
such as the current and average velocity. The current
density is given by

I = —e J duuf (u, x), (&)

which is closely related to the average velocity,

u(x)= I/en —(x) .

Because our collision integrals conserve particle number, I
as defined above should not depend on x; in fact, our cal-
culational method (see Appendix B) results in less than
1% variation of I in the single-valley case and about 4%
variation in the two-valley case. Figure 8 shows the I-V
curves for the single-valley model for two mobilities of the
N region at each of two temperatures, the I-V curve for
the two-valley model at 300 K, and the experimental I-V
curve at both temperatures.
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FICx. 7. The logarithm of the density, n&(x), of those (I-
valley) electrons with total energy greater than the maximum of
the potential energy and the ratio of this density to the total den-
sity for both the two-valley (solid lines) and single-valley (dotted
lines) models. For x downstream from the potential maximum,
x & x1 (xl defined in Fig. 1), nz(x) is the density of ballistic elec-
trons, while for x & xl, n&(x) is the density of electrons which
are energetically able to be injected over the barrier. The surpris-
ing similarity in shape and magnitude of the single-valley and
two-valley results indicates that the single-valley calculation pro-
vides a good estimate of the size of ballistic electron eA'ects. De-
viations occur for x &x~ (where xg is defined in Fig. 1) because
the entire ballistic peak becomes able to scatter to the L valley at
this point. The fraction of electrons which are ballistic is
significant for both models, the greatest deviation occurring near
the echo turning point xE (defined in Fig. 1).
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FIG. 8. Comparison of the experimental (Ref. 32) I-V charac-
teristics to those calculated for the one-valley model at two tem-
peratures and two mobilities and for the two-valley model at
TO=300 K. At 300 K (top panel) the experimental curve (dot-
ted line) lies below both the two one-valley results (p=7500
cm /V sec, solid line; @=40000 in the N region, dotted-dashed
line) and the two-valley result (dashed line). All the curves are
nearly linear over the entire voltage range, and the current is not
greatly aftected by either the temperature or mobility. Use of the
two-valley model improves agreement between theory and exper-
iment for applied voltages where transfer to the L valley is im-
portant (V )0.2 V).
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Several features of the curves in Fig. 8 require com-
ment. (i) The most striking feature is that all of the
curves are nearly linear despite the dramatic structure in
the distribution. This disappointing property of the N+-
N -N+ structure indicates that the current is determined
by boundary effects —essentially by emission over the
barrier '—rather than by effects in the region where the
distribution function has structure. (ii) The theory for the
two-valley model showed improved agreement with exper-
iment. In the results of the two-valley model there is a
small change in slope of the I-V curve starting at about
0.2 V. This corresponds to the applied voltage needed to
initiate transfer, V, „, f„,

V, „,„,r,„=b.—[U(xi) —U(0)], (10)

where the term in square brackets approximates the bar-
rier height seen by the electrons coming from the left. (iii)
The value of To does not have a large effect on the
current. This result while initially surprising for emission
over a barrier follows simply from the fact that the barrier
height, P~, scales with To since P~ itself depends on spill-
over of electrons from the N+ into the N region. In
fact, Ps at 300 K is 0.086 V while at 77 K, Ps is 0.018 V.
(4) Neither does the value of the mobility affect the
current greatly. This is related to a small change in the
barrier heights; Ps decreases by only 2% when the mobil-
ity of the N region changes from 7500 cm /Vsec to
40000 cm /V sec.

To illustrate this latter effect, we plot in Fig. 9 the
current versus the mobility in the N region (the mobility
in the N+ region is fixed throughout at 7500 cm /V sec)

for two applied voltages in the single-valley model. At
low mobilities, I scales linearly with p as one would ex-
pect based on bulk behavior (I = e—npE) H. owever, for
both voltages, the current saturates at high mobilities.
That is, the current becomes insensitive to the material
properties of the N region in the ballistic regime,
presumably because the current is controlled by boundary
effects such as emission over the initial barrier.

The average velocity at To ——300 K and V, =0.47 V for
both the single-valley model and the two-valley model is
shown in Fig. 10. For the two-valley case, the contribu-
tion of each valley is shown, Pr(x) and uL, (x). In the
highly nonequilibrium situation considered here, it is not
surprising that both the single-valley result and the aver-
age velocity in the I valley exceed the thermal velocity,
U,h =(kTO/m*)' =2.6X 10 cm/sec, by a substantial
amount. Once substantial transfer takes place (x ~xs, x~
defined in Fig. 1), the very small value of UL, (x), due to
both the higher effective mass and the higher scattering
rate in the L valley, produces a sharp drop in U(x) for the
two-valley model. The sharp dip in Ur(x) near the echo
electron turning point (xE) results from the substantial
number of slow moving echo electrons near this point.

VI. "HEATING" AND "COOLING"

It is clear from the distributions plotted in Figs. 3—6
that the width of the velocity distributions varies greatly
across the structure. This width of f(v, x) can be easily
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FIG. 9. The current as a function of the mobility in the N
region for two applied voltages ( V, =0.47 V, dots, and V, =0.06
V, pluses). The mobility in the N+ regions is fixed at 7500
cm /Vsec. For low mobilities, the current varies linearly with
mobility, as expected from the result for a uniform system,
I = —enEp. At higher mobilities, the current saturates, becom-
ing insensitive to the value of the mobility in the submicron re-
gion. The higher applied voltage enhances the insensitivity of I
to p because boundary effects become more important as the
electron velocity increases.

FICx. 10. The average velocity as a function of distance at
V, =0.47 V for all electrons (solid line), the I -valley electrons
(dashed line), and the L-valley electrons (dotted-dashed line)
compared to the single-valley result (dotted line) ~ The large
effective mass and scattering rate in the L valley cause the aver-
age velocity of L-valley electrons to be small. Thus, when sub-
stantial transfer to the L valley occurs, the total average velocity
decreases dramatically. The velocity of I electrons dips sharply
near x~ ——0.295 pm, the point where echo electrons reflect from
the potential barrier.
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Figure 11 shows T*(x) for several voltages and two
mobilities within the single-valley model.

First, at the lowest voltage, T"(x) Tp v—aries quite
significantly and is nearly antisymmetric about the middle
of the N region, x =0.2 pm. This indicates that heating
(and cooling) here is a first-order effect in the applied volt-
age (or current) rather than the well-known quadratic
dependence of T* on E (or current) in bulk material. In
fact, heating is generally first order in an inhomogeneous
system as seen by the following argument. The power in-
put by the field is

P =JE = enU(x—)E (x) . (12)
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FIG. 11. The "temperature" as a function of distance defined
as the width of the distribution, kT*(x)=m*((U —U)'), for
three applied voltages and two mobilities within the single-valley
model. Even at the lowest applied voltage ( V, =0.06 V,
p=7500 cm /Vsec, solid line), the built-in electric field (Fig. 2)
"cools" and "heats" the electrons indicating that "heating" and
"cooling" in an inhomogeneous structure are first order in the
applied voltage. At higher voltages with the same mobility

[V, =0.17 V (dotted line), and V, =0.47 V (dashed line)) T*(x)
becomes asymmetric, the heating being much larger than the
cooling. For a mobility of 40000 cm /Vsec in the N region
(V, =0.47 V, dotted-dashed line), the width of the distribution
function approaches the thermionic emission limit [T =110 K,
see Eq. (131] at the top of the potential barrier. The inset shows
the full T (x) for V, =0.47 V and p =7500 cm /V sec.

calculated from an average off (v, x), much as the average
velocity was in the preceding section, and is closely relat-
ed to the average energy. The structure in the distribu-
tion functions in Figs. 3—6 shows clearly that no thermo-
dynamic temperature exists for these systems since a
drifted-Maxwellian distribution' is not a good approxi-
mation. However, it seems reasonable to study the width
of the distribution by expressing it as a temperature,
T"(x),

kT'(x)=m'((v —U) ) .

In an inhomogeneous system there is a built-in, nonzero
field even when the applied voltage V, is zero. Thus the
leading order in the power, or heating, comes from the
first-order dependence of v on V, . The nearly antisymme-
trical nature of T*(x) in our case comes from the
antisymmetrical nature of the field for V, =0 as shown in
Fig. 2.

At higher voltages, T*(x) becomes very asymmetric-
the width of the distribution in the region where there is a
ballistic electron peak is very large. At the larger mobility
(Itt =40000 cm /V sec in the N region) changes in T'(x)
become even more dramatic. At the top of the potential
barrier, T*(x) approaches the thermionic limit; for a large
V, and a long mean free path, the distribution should be
Maxwellian for v ~ 0 and zero for v & 0 so that

Th~= (U —U )=Tp 1 ——=110 K .
k

(13)

is reached in the limit of large applied voltage.

VII. CONCLUSION

In this work we have presented results of a Boltzmann
equation calculation of the distribution function in a N+-
N -N+ structure. The structure in the distribution func-
tion evident in our case —a ballistic peak and echo
peaks —should be present in other small devices because,
we argue, such structure depends only on general features
of the potential energy profile. The necessary conditions
for the ballistic peak are a rapid change from a low field
to a high field near the potential maximum followed by a
drop of several kTO within a mean free path; for the
ballistic electron echoes, one must have a large density of
L-valley electrons in a region where the electric field
abruptly decreases.

As a function of the basic model parameters (p, T, and
V, ), the features of the distribution scale in the expected
way: the peaks are enhanced by a higher mobility or ap-
plied voltage and narrow as the temperature is decreased.
We should note at this point that the one-dimensional na-
ture of our model undoubtedly enhances the echo effects;
in a three-dimensional model the current traveling back
towards the potential barrier is smaller than in the one-
dimensional case. The distribution functions calculated
for different applied voltages show, however, that a larger
applied voltage greatly enhances the echo peaks. While
there is a suggestion of echo effects in a three-dimensional
Monte-Carlo Calculation, the large size of the effect in
the present one-dimensional case suggests that a further
investigation in three dimensions would be highly reward-
ing. Another weakness of our model is its neglect of
electron-electron scattering —all collisions in our model
bring the electrons towards an equilibrium with the lat-
tice. In the lightly doped region considered here, we ex-
pect that this neglect is not serious; however, in more
heavily doped material other effects such as plasmon emis-
sion or electron-electron scattering will be important
and may broaden the distribution.

Despite the presence of the ballistic and echo peaks in
the distribution function, the I-V characteristic for a11

cases considered here is linear. The plot of the current
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APPENDIX A

In this appendix we specify in detail the two-valley
model described brieAy in Sec. III. Our approach has
three key ingredients. (i) The I"-valley and L-valley elec-
trons are treated as separate species each described by a
distribution function, fr(u, x) or fL(u, x). (ii) Both intra-
valley and intervalley scattering are modelled as relaxa-
tion to local equilibrium functions. (iii) Particle-
conservation conditions determine the chemical potentials
in the local equilibrium functions, and indeed how many
independent chemical potentials there are.

The collision integral for the single-valley case [Eq. (5)]
is replaced by two collision integrals, one for fr and one
for fL, as follows,

fr —fr, I.E fI fI,joint LE

&I L
(A la)

dfr.
Bv

fL fL,LE fL fL,jointLE

LI
(A lb)

The local equilibrium functions can be simply expressed
as Fermi functions with respect to appropriate chemical
potentials. Because the I ~I process conserves the num-
ber of I electrons, the L ~L process conserves the num-
ber of L electrons, and the intervalley processes conserve
the total number of electrons, we use three independent
chemical potentials: pr (x), ittl. (x), and ttt, „„t(x) for the
I ~I, L~L, and intervalley processes, respectively. In
terms of these chemical potentials, the local equilibrium
functions as a function of k and x are

versus mobility (Fig. 9) shows, however, that the N+-
N -N+ is not a simple resistor since the current becomes
independent of mobility at large mobility.

Finally, heating and cooling in the X+-N -N+ are
first order in the applied field, a result which should be
valid for all structures with built-in fields. Thus, any ap-
proach which neglects thermal gradient effects, such as
the drift-difFusion equation, will fail in describing the
linear response. In fact, in our earlier work where drift
diffusion and Boltzmann equation results were compared
for the same scattering model, the drift-diffusion equation
over-estimated the current by about a factor of 2 for all
applied voltages. For larger applied voltages, the terms
heating and cooling cannot be applied in their thermo-
dynamic sense since the distribution function deviates so
strongly from a drifted-Maxwellian distribution. Howev-
er, it is clear that the width of the distribution varies
dramatically across the structure, being smaller than the
equilibrium width near the top of the potential barrier and
larger than the equilibrium width throughout much of the
N region.

f;,LE(k,x)= I 1+exp[E;(k)+ U(x) —IM;(x)]/kTO]

(A2a)

Ak
+6;LA

2mi

and i =I or L throughout.
We have assumed that the chemical potential is the

same for both intervalley processes in order to mimic re-
laxation of the electrons to the joint equilibrium state of
both the I and L valleys. (In the I valley, only electrons
with energy large enough to transfer to L are involved as
only these electrons can "communicate" with L.) This as-
sumption is a reasonable one for intervalley scattering
since any such process should act (roughly) to partition
the electrons between the two valleys according to a local
equilibrium. Notice that our assumption is not equivalent
to assuming that ~rL rnimics a I ~L scattering rate, for
in that case fz,„„tLEwould depend only on the distribu-
tion of I -valley electrons while fr,„„,LE would depend
only on the properties of L-valley electrons. In contrast,
in our case both joint local equilibrium functions depend
on the distributions in both valleys as will be made expli-
cit below [Eq. (A15)).

In the case of nondegenerate statistics considered in this
paper, the local equilibrium functions considered in (A2)
can be expressed (as a function of u and x) as a density
times a normalized Maxwellian, f; (u)

1/2
m; m

i =I,L, (A3)
2kTp

fM(u) exp

where the density is related to the chemical potential. For
example, for the intervalley processes we have

Mfi,joint LE(urX ) —ni, joint(X )fi

where

(A4)

n;,„.„,(x)= exp[pj„.„t(x)—U(x) —b, P; L ]/k7 0

X (2m.kTom;*)'~ /III'. (A5)

The fact that tttjo, «(x) is the same for both nr j»nt(x)
and nL,„„,(x) implies that their ratio is the same as the ra-
tio of the (global) equilibrium densities, n r(x) and nL, (x),
which we will call P,

n I,joint(X )

nL, joint(x)

n Or(x)

nl. (x)

1/2
mr

P (A6)

In this equation, by using the square root of the masses
and neglecting the degeneracy of the L valley, we have
specialized to the one-dimensional, single-L-valley case
considered in this paper and our previous work.

A particle-conservation condition determines the value
of each chemical potential. Thus our use of three in-
dependent chemical potentials above requires three-
particle conservation conditions. First, the number of I

fi join«E«x) = [ I+exp[E «)+ U «)—IMj. .«x)]/k2 0]

(A2b)

where
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electrons is conserved by the I ~I process. This and an
analogous requirement for the L valley yield

nL
0 nr'

&L I &rL

anr0

IL
(A14)

f du
' =0, 1=I,L .

Qo 7 jj
(A7) Used in the expression for nl „„„,(x) (A13), (A14) implies

In the intervalley terms, the chemical potential character-
izing the two local equilibrium functions is set by conser-
vation of total particle number,

nl. ,oint(x) = —,
'

[nL, (x)+n r (x)/aP],

n r „„„,(x)= —,
' [n r (x)/a+Pnl (x)],

(A15a)

(A15b)

fi fi,joint LE

TgJ
(AS)

which are the expressions we use in solving the
Boltzmann equations. This completes our discussion of
the two-valley model; Eqs. (Al), (A3), (A4), (A9), and
(A15) completely specify the model.

As noted in Sec. III, for an easily solved model, we
choose ~rr, ~LL, and ~Lr to be constant. The rate ~rL

—],

turns on when electrons are energetically able to transfer
from I to L; we take rrl.'(u)=rrl. 'e(mru /2 —b, ) where
v is the velocity parallel to the electric field and 8 is the
step function. With this choice for the r s, (A7) implies
that

f;LE(u, x)=n;(x)f; (u), i =I,L . (A9)

n r( )x= f dve(E —b, )fr(v, x), (A 10)

and the equilibrium ratio, a, of this density to nr(x),

nr' (x)a= = f dv 8(s—b, )fr (u)
n r(x)

=erfc[(h/kTO)'~ ] . (A 1 1)

With this notation, (AS) becomes

n r (x) anr j—oint(x) nI (x) nL, joint(x} =0.
IL &Lr

(A12}

The relation (A6} between nr, „„,(x) and nl. j„„(x)tleads
to

n L (x ) + n r (x}rl.r «rl.
nL j„„t(x)= 1+aPrl. r

/farl.

(A13)

Equation (A13) provides an expression for n~j„„(x) tin
terms of simple integrals over the distribution functions.
However, because there is no independent experimental
information for ~Lr, we eliminate this additional free pa-
rameter by relating ~Lr to ~rL using detailed balance.
Within the relaxation-time approximation, detailed bal-
ance is of questionable validity and should not be used
when information about ~Lr becomes available. A rela-
tion between global equilibrium quantities, detailed bal-
ance requires that the applied voltage be zero. Since, the
relaxation times we use are independent of the field, it is
easy to assume that the relation between ~Lr and ~rL de-
rived from detailed balance applies at all applied voltages.

Detailed balance in the intervalley processes simply
states that in equilibrium the number of electrons transfer-
ring from the L valley to the I valley is equal to the num-
ber transferring from I to L:

Now we must use (AS) and (A6) to solve for nr j t(x)
and nL, i to(xn) in terms of fr and fl. . To simplify the no-
tation, we introduce the density, n r (x), of I"-valley elec-
trons which are energetically able to transfer to L

APPENDIX B

In this appendix we describe the method used to solve
the coupled Boltzmann equation [Eq. (1)] and Poisson
equation [Eq. (2)] in the N+ N-N+-structure. We start
by describing the procedure for the single-valley model
and then present the changes necessary for the two-valley
model. Since our method is iterative in the density, it is
convenient to call the input and output of the ith iterate
n "(x) and n "'(x), respectively.

The basic procedure used in the single-valley case fol-
lows; each point in the outline is then discussed in a sec-
tion of this appendix. (i) Guess an initial density n'1" (x)
and generate fLF and E(x). (ii) Change variables in the
Boltzmann equation from x and v to x and the total ener-
gy w =v /2m" + U(x). (iii) Solve the resulting set of in-
dependent ordinary differential equations on a grid in en-
ergy and space. For boundary values of f at the edge of
the structure, use the solution ' for a homogeneous field
Eo where Eo is taken to be the boundary value of E(x)
calculated in step (i). (iv) Obtain an output density,
n'"'(x)= f dvf(u, x) (v) Scal.e n'"'(x) to maintain total
charge neutrality. (vi) Use a simple screening procedure
to damp charge oscillations and hence improve conver-
gence. (vii) Finally, mix 1%—5% of n "'(x) with n "(x) to
generate the next initial density and from that the field
E (x), and local equilibrium distribution, fLE. Steps
(iii) —(vii) are repeated until the desired degree of conver-
gence is achieved (typically a few hundred times).

Guess an initial density. We obtain our initial guess for
the density of electrons and simultaneously for the electric
field from the drift-diffusion equation within the single-
relaxation-time approximation. Taking p =e~/m and
using the Einstein relation D/p =kT0/e to relate D to the
lattice temperature, T0, we obtain the following drift-
diffusion equation,

e w kTo dn
n (x)E(x)+er

m m* dx
(8 1)

Equation (Bl) is solved self-consistently with the Poisson
equation [Eq. (2)] for n (x) and E (x) using a finite-
difFerence method. As boundary conditions we fix the
current JDD at the desired value and set the density equal
to N+ at the edges of the structure. The spatial mesh
used here and throughout this work concentrates points
near the doping steps [by using the transformation
z =a sinh(ax)] and uses about 500 points.

Change variables in the Boltzmann equation. Given our
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initial guesses for fLE and E(x), the Boltzmann equation
becomes a first-order linear equation for f(v, x) allowing
us to use the method of characteristics to transform the
Boltzmann equation to a family of ordinary differential
equations. This method is equivalent to changing vari-
ables from the usual x and v to x and the total electron
energy, w = v /2m *+U (x). Because the velocity
squared appears in the expression for w, the variables x
and w do not fully specify the distribution function as the
information about the sign of v is lost. We therefore in-
troduce a new index, letting f+(w, x) be the distribution
of electrons with v &0 and f (w, x) be the distribution
with v & 0. Transforming Eq. (1) to the variables w and x
gives

df~(w, x)
+v (w, x)

f+(w, x) —fLE(w, x)
(82)

where v and fLE are calculated from

v (w, x)= [2[w —U(x)]/m *
I

'

1/2

(83a)

fLE(w, x)=
2~kTp

—[w —U(x)j]/kTo (83b)

The Boltzmann equation, now (82), is thus a family of or-
dinary differential equations in the position variable with
the total energy w simply a parameter.

The simplification embodied in Eq. (82) has a physical
justification as follows. The left-hand side of the
Boltzmann equation expresses the change in f along the
trajectories of the particles when collisions are neglected.
Because the total energy w is conserved along a particle
trajectory in the collisionless case, the total energy appears
in (82) only as an index to the trajectories, not as an in-
dependent variable. In these variables, we are integrating
along the particle trajectories in space in a way similar to
the well-known Chambers trajectory method where one
integrates along the trajectories in time. In actually calcu-
lating the distribution function, we find the deviation of f
from fLE rather than f itself in order to improve the accu-
racy of the calculation.

Solution of the Boltzmann equation Our basic a. p-
proach is to choose a mesh of total energies w and solve
the Boltzmann equation (82) sequentially for each of
these energies. The spacing of the energy mesh is
different depending on whether w is greater or less than
the maximum of the potential energy, U,.„. For
w ~ U „, the spacing of energies is uniform, while for
w ~ U „, the energies are spaced so that the velocities
v =[2(tv —U,„)/m']' are uniformly spaced. Typical-
ly, we use a maximum energy of U,„+10kTp, 10 energy
mesh points per kTp for w ~ U,„,and 30 mesh points for
w & U „.Thus we use, for example, 200—300 points for
T =300 K and 800—900 points for T =77 K at V, =0.47
V.

The first step in solving the Boltzmann equation is to
decide what boundary conditions to apply to f at the edge
of the structure (x = —2.0 pm and 2.4 pm). We have
used long N+ regions in order to damp out the effect of
the boundaries and therefore use as the boundary condi-
tion at the edge of our N+-N -N+ structure the analytic
solution for f in a homogeneous field ' given by E at the

boundary. The boundary condition is applied to trajec-
tories pointing towards the N region, v ~0 at x = —2.0
pm and v ~0 at x =2.4 pm; these trajectories are then
followed until each crosses a boundary again either by
crossing the entire structure (w & U,„) or by reflecting
from the potential barrier and recrossing the initial
boundary (w & U,„).

Having chosen the energy mesh and fixed the boundary
conditions, we integrate the differential equation (82) us-

ing a standard predictor-corrector or Runge-Kutta tech-
nique. In the case w & Um„, the integration proceeds un-
til the trajectory leaves the structure, while for w & U,„
we integrate to a point close to the classical turning point.
At the turning point, v =0 and (82) cannot be integrated
through this (integrable) singularity using standard
methods. However, using a parabolic approximation to
U(x) near the turning point, it is straight forward to
derive a connection formula between f+ (w, x) and

f (w, x) in this region. Such a formula is used to reverse
direction of integration at the turning point after which
standard methods are again used to integrate along the
trajectory until the boundary of the structure is reached.
Repeating this procedure for each energy w yields the dis-
tribution function everywhere in the structure.

Obtain an output density. Once the distribution func-
tion is known by solving the Boltzmann equation, one
must generate the density, n "'(x), which will be used to
find the input density to the next iteration,

n "'(x)= J dv f (v, x) . (84)

In order to save storage space, the integral over f is per-
formed as f is calculated. Since the input to each integra-
tion is simply the density and potential energy, the full
distribution function on all approximately 150000 mesh-
points need never be stored.

Scale the dens&ty to maintain total charge neutrality.
Having obtained the output density from the distribution
function„we now force the total charge of the structure to
be zero in order that the long-range electrostatic force of
the ions and of the e1ectrons balance. We accomplish this
simply by multiplying n "'(x) by a constant a where

a = dxnD x Gxn. x (85)

and the integrals extend over the entire N+-N -N+
structure. The value of a is typically 1+10;hence, the
effect of this scaling on the density profile is entirely negli-
gible. The effect on the boundary electric field used in
calculating the boundary value of f is, however, large-
for a =1+10, the excess charge creates a boundary
field of about 3.6 kV/cm. This field is large compared to
the boundary field calculated from the current carried
(=40 V/cm), thus the charge-neutrality correction per-
formed is essential.

Solve the screened Poisson equation. The next step in
the iteration procedure is to use the density which has
been corrected for charge neutrality to generate a new po-
tential energy U "'(x). The simplest way to do this is, of
course, to solve Poisson's equation which can be written
in terms of the difference between the "in" and "out"
density and potential energy as
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d 4 2

( pout Uin) (
out in)

dx
(B6)

We found that using (B6) led to oscillations of the charge
density on successive iterations which severely impeded
convergence; in particular, charge oscillated between the
two N+/N interfaces. In order to damp out these oscil-
lations, we introduce some additional screening by adding
the term

needed for the single-valley model depending on how
effectively chosen are the two values of the mixing param-
eter. We look at three quantities to check the conver-
gence: the change in density between input and output,
the current as a function of distance, and the value of
f (v, x) at the edges of the structure.

The main test of convergence is to find the average
change in density between input and output which for
iteration number i is

(
Uout Uin)

I (B7) ~~tttn;
~~

= g [n "'(x, ) n—"(xj)] (B9)

to the right-hand side of Eq. (B6) where A, is a screening
parameter. We solve the new equation using a simple
Careen function and A. =L/2 where L is the length of the

region in order to suppress oscillations between the
two doping steps. Notice that near self-consistency when
the difference between the out and in quantities is small,
the additional screening has little effect on the result.

Mixing Th.e determination of n +i(x) and U+i(x)
from the output quantities (a procedure known as mixing)
is closely related to the way in which U "'(x) is generated
in order that the density and potential at self-consistency
satisfy Poisson s equation. In fact, we use a mixing pro-
cedure such that n " and U " satisfy Poisson's equation for
every i as follows:

U + i(x)= U "(x)+b[U "'(x)—U "(x)],

n "+i(x)=n "(x)+b n "'(x)—n "(x)

(B8a)

[U "'—U "(x)]
4~e A,

(B8b)

where b is a small mixing parameter used to suppress os-
cillations. Usually we use different values of b for
different iterations in order to increase the average feed-
back per iteration (b ). One successful choice is b =0.35
on every tenth iteration while 13=0.01 otherwise
((b ) =0.043).

While this is the mixing scheme which we use, we can-
not argue that it is the best, or even a very good, scheme
to use. In fact, a mixing scheme which led to faster con-
vergence would be very welcome since the number of
iterations needed with our scheme is high because of the
small value of (b). One possibility we have tried is to
solve for U "' directly instead of the difference between
U" and U "' using a screened equation and then simply
to mix back U "'—U,'" and n "'—n ". This method has
performed well in surface electronic structure calcula-
tions. We find for our problem that while the conver-
gence rate is improved near self-consistency (by about a
factor of 3), this method is much less stable for the initial
iterations than the method presented above. We have not
tried more sophisticated mixing procedures based either
on more than one past iteration ' or on Broyden's
method. Both of these types of procedures have proved
useful in some electronic structure calculations ' and
may be worth pursuing in the present case.

Convergence. The iterative procedure presented above
must be repeated many times before convergence is
achieved. Typically, between 120 and 300 iterations are

We typically iterate until ~~An;~~ &4X10' cm from an
initial value about 100 times larger. When this criterion
is satisfied, b,n; (x ) is largest in the X region but is
everywhere less than 1&10' cm while the relative
difference, hn; /n ", is less than 1% everywhere.

The second test of convergence is to find the current
from the distribution function at each point in space,
J(x)= —e f dvuf(u, x). Because the Boltzmann equation
that we use [Eq. (1) or (B2)] satisfies current continuity,
J(x) must be independent of x for the true solution. In
fact, the current that we calculate varies slightly with dis-
tance, giving an indication of the degree of convergence.
At Tu ——300 K, the variation of J(x) is about 1%, with
most of the variation occurring near the doping steps.
However, for the To ——77 K results, the convergence of
this quantity was substantially poorer for the same degree
of convergence of the density: J(x) varies by about 4% at
To ——77 K

The third and final test of convergence is to look at the
distribution function at the edge of the N -N -N+ for
velocities pointing away from the X (u &0 on the left-
hand edge and v &0 on the right-hand edge). We apply a
boundary condition to every trajectory pointing towards
the X region from the edges but the values off (u, x) for
trajectories pointing away from the N are uncon-
strained. We have assumed in applying the boundary
condition that the N+ region is long enough so that the
distribution function at the edges of the structure is sim-
ply the homogeneous field distribution, fh, (v). We
therefore test whether this is in fact the case for particles
traveling away from the N region. The largest deviation
of f from fh, , which we will denote b f, comes from the
residual ballistic electron peak on the right-hand side of
the structure where typically hf is 10 times the max-
imum value of f. While this is a very small absolute er-
ror, the relative error is very large since f is small for this
velocity (f=10 of the maximum value of f). A more
sensible way to evaluate bf is to compare it to the
difference between fh, and the local equilibrium distribu-
tion, fLF as this is the electric-field-induced change in the
distribution. We find that hf is about 1% of the max-
imum in fh, —fLF, i.e. , the distribution is indeed nearly
that for a uniform field so that we are justified in using
fh, for a boundary condition.

Two valleys: changes in the iterative procedure. Our
treatment of the I valley follows closely the method for
the single-valley case presented above. The use of the
method of characteristics again results in a family of ordi-
nary differential equations in x parametrized by the total
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1/2
mg

f~(v, x)= n~(x)
7T Q

mr*[U —ur (x)]
(810)

2 TQ

One can derive two coupled ordinary differential equa-
tions for n~( )xand ur. (x) from the Boltzmann equation,
namely the current continuity equation and drift-diffusion
equation. We rewrite these equations in terms of the vari-
ables nr. (x) and r)(x) =nq (x)U~ (x),

Q exp

dg nL, —nr

dx &LI.

inng jQiIII

LI
(8 1 la)

dna eE 1 1 mz,
ng —g + (8 1 lb)

dx kTp kTp

These equations can be readily solved using the same
finite difference technique as that used for the coupled
Poisson equation and drift-diffusion equation above [(Eq.
(81)].

Equations (Bl1) do not suffer from the same small
length scale as the Boltzmann equation noted above be-
cause the distance over which nr. (x) and g(x) vary is the
important scale. This scale is governed either by the vari-

energy w. Formally, the equation for the I valley is simi-
lar to (82). the main difference is the presence of two
scattering rates on the right-hand side, one of which (the
I ~L rate) depends on vr and hence on x through an
equation similar to (83a). Two small changes in method
are necessary. (i) The boundary condition on f is that ap-
propriate to the two-valley model, given in Ref. 23. (ii)
When integrating the Boltzmann equation at constant w,
one must treat with care the points at which the I ~L
rate turns on.

Our method of solution of the L-valley Boltzmann
equation is substantially different from the single-valley
method. We are forced to use an alternate method be-
cause the method used in the single-valley case requires a
spatial mesh that is prohibitively fine. The spatial scale
that enters the solution of the Boltzmann equation written
in the variables w and x is a typical velocity times the
scattering time, as can be seen from (82). If we take a
typical velocity in the L valley to be v = (2k TO/
m~ )'~ =6X 10 cm/sec and use the intravalley scattering
time ~qq = 3 X 10 ' sec, we obtain vwq~ =0.002 pm.
The small value of this quantity compared to the corre-
sponding value for the I valley (0.4 pm) indicates that a
much finer spatial mesh is needed in the L valley because
of the high effective mass and small scattering time.

However, the large effective mass and scattering rate
also imply that the distribution is not strongly affected by
either the applied field or the inhomogeneities; the short
mean free path will suppress any nonequilibrium effects.
We therefore assume that fq (U,x) can be parametrized by
two quantities, the density nz, (x) and the average velocity
U~(x), in the following way,

ation in E(x) which is the Debye screening length or by a
typical velocity times the intervalley scattering time ~~I-
which is much larger than the intravalley time ~q~. Thus
our mesh size is adequate for the solution of Eqs. (Bll).
Once we have reached self-consistency with this method,
we do a few iterations using the Boltzmann equation for
the L valley and a finer spatial mesh in order to check our
results and calculate moments of the distribution. There
is little difference between the Boltzmann equation results
and the results of Eqs. (811) for the voltages and tempera-
ture (TO=300 K) considered in this work.

Once the output densities are found, the iterative pro-
cedure in the two-valley case is analogous to that for the
single-valley case given above.

Two valleys: convergence. As in the single-valley case,
the degree of convergence is tested by three quantities, the
difference in output and input densities, the uniformity of
the total current, and the deviation of fr(U, x) and fq(v, x)
from the uniform-field result at the edge of the structure.
In contrast to the single-valley case, the number of itera-
tions needed is very large which suggests that other mix-
ing schemes ' should be investigated.

The degree of convergence of the density in the two-
valley model is better than in the single-valley case
throughout most of the structure; the norm of the devia-
tion is ~~bnr~~ = ~bnr.

~~
=2X10' cm . The region of

greatest deviation is near the downstream N+/N step
where Anq and Anq are nearly of equal magnitude but
opposite sign. Clearly the problem in this region is
transfer between the I and L valleys which is not driven
by a strong force (such as the electric field drives the total
charge). In the region x &0.4 pm there should be some-
what less transfer to the L valley while for x &0.4 pm
there should be more transfer to L. As for the single val-
ley case the absolute differences correspond to relative
differences of less than 1% for all x.

The uniformity of the current is much worse in the
two-valley case than for a single valley, and it is because
of this poor behavior that the two-valley mode1 required
so many iterations. The deviation of J(x)=
—e f dU U [fr(v, x)+fr. (u, x)] is largest near the down-

stream N+/N step, again presumably due to I ~L
transfer. The total spread in J(x) is about 4% for the
two voltages 0.47 and 0.32 V, but is 6% for 0.82 V.

The final test of convergence is the deviation of the dis-
tribution function from the homogeneous field distribu-
tion, fh, , for trajectories pointing away from the N re-
gion. The deviation for the I valley is about a factor of
three smaller than for the single-valley above. For the L
valley, the deviation relative to f,„ is at the same level as
in the single-valley case neglecting the ballistic peak,
hf~ = 3 X 10 f~,„. However because the drift velocity
in the L valley is so small, the deviation of fh, from
fq tE is small so that bfq =0.2(fh, m —fr. t.E)~,„. The
small values for all three of these convergence criteria
show that the calculation is indeed converged and that the
N+ region is long enough.
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