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First-order spatial dispersion has a considerable impact on phonon focusing in the vicinity of the
acoustic axes of crystals, even for frequencies well below 1 THz. Subject to certain symmetry re-
quirements, the degeneracy of the transverse sheets of the acoustic slowness surface is removed at
‘finite wave vector and frequency. As a result, the phonon intensity anticaustic associated with a con-
ical degeneracy is transformed into a similarly shaped caustic. Intersecting line caustics associated
with a tangential degeneracy at a fourfold axis break apart and form cusps. Lines of wedge-shaped
degeneracy in hexagonal crystals are removed, thereby giving rise to pairs of circular caustics. It is
shown that a simple treatment of first-order spatial dispersion is well able to explain a number of

anomalies in the published phonon images of quartz.

I. INTRODUCTION

There is a great deal of interest at the present time in
the ballistic transport and focusing properties! of large-
wave-vector dispersive phonons in crystals.>~® By using
superconducting tunnel-junction detectors and taking ad-
vantage of the strong frequency dependence of phonon-
scattering processes, investigators have had considerable
success in obtaining monochromatic high-frequency pho-
non focusing patterns for crystals such as Ge,’ GaAs,*
and InSb.’> Comparatively little attention has, however,
been given to the effects of linear spatial dispersion’~!° on
phonon focusing at lower frequencies. Because of time-
reversal invariance, dispersive effects are normally quadra-
tic in k in leading order, and so only become important at
higher frequencies. However, along acoustic axes and
subject to certain symmetry requirements, lifting of the
transverse mode degeneracy occurs at finite k, resulting in
changes to the shape of the acoustic slowness surface
which are linear in k. These changes in turn have a con-
siderable impact on the phonon focusing pattern of a crys-
tal, even for frequencies well within the regime of conven-
tional phonon imaging based on bolometric detection
techniques. Various effects come about, depending on the
type of degeneracy. The phonon intensity anticaustic as-
sociated with a point of conical degeneracy is transformed
at finite k or frequency v into a similarly shaped caustic.
A commonly occurring pattern of intersecting line caus-
tics, associated with the tangential degeneracy at a four-
fold axis of symmetry, breaks apart to form a set of four
cusps. Lines of wedge-shaped degeneracy in hexagonal
crystals are removed, thereby giving rise to pairs of circu-
lar caustics.

Linear spatial dispersion derives from the first-order
terms in the power-series expansion of the wave-vector-
dependent elastic moduli Cyj;,(k). The coefficients of
these terms constitute the acoustic gyrotropic tensor
dijimn- In this paper we show that a simple treatment of
first-order spatial dispersion, based on a single component

36

of dijimn, is well able to resolve a number of anomalies in
the published phonon images of quartz.'"!> We do so by
tracing out the evolution of the pattern of phonon focus-
ing caustics with increasing k, and by means of Monte
Carlo simulations of the phonon intensity based on the as-
sumption of a Planck distribution of phonons with cutoff
at 0.1kgz, where kg is the c-axis zone boundary wave
vector, and heat source temperature ranging up to 10 K.

II. THE ELASTIC WAVE EQUATION
INCORPORATING DISPERSION

The onset of phonon dispersion can conveniently be
treated in the context of continuum elasticity theory by
expanding the elastic moduli Cjj,, (k) in power series in k
and retaining only the leading terms of a low order. In
this way one significantly extends the range of applicabili-
ty of continuum elasticity theory, thereby delaying the
stage at which it becomes necessary to cross over to the
use of lattice-dynamics models. The advantages of this
approach are especially appealing where one is dealing
with materials which have complex unit cells and thus a
large number of branches to their phonon dispersion rela-
tion. Subject to certain symmetry requirements, disper-
sion in phonon velocities is linear in k in the vicinity of
acoustic axes, and this gives rise to effects which are
measurable at frequencies even as low as 1 GHz. At
thermal phonon frequencies vX 100 GHz, the effects of
linear dispersion can be substantial.

The equations of motion for a dispersive elastic medium
admit plane-wave solutions of the form u=U exp[i(k-x
—wt)], which are governed by the Christoffel equations”’

(D —pw’8y)U =0, (M

where p is the density of the medium and §; is the 8 func-
tion. The Christoffel coefficients I';; may be decomposed
into terms comprising successive powers of k, thus

=Y+ +TP+ -, ()
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where

Fg?):cijlm kjkm ’ (3)
and

I‘E'I“=idij1mn kjkm kn s 4)

etc., where Cjj,, are the elastic moduli and djjj,, is the
acoustic gyrotropic tensor. The crystal classes which al-
low linear dispersion, with the exception of class 432, also
permit the piezoelectric effect. Piezoelectric stiffening of
the elastic constants!® is taken into account by setting

Cijtm =Clim + ﬁs—f’—’;‘c——']‘(—k— , )
papKyq

where C,-f}m are the elastic moduli at constant electric
field, e, is the piezoelectric stress tensor, and €, is the
permittivity tensor at constant elastic strain. I'{}’
comprises the first-order terms in the expansion of
Cijim (k). Because of  time-reversal invariance,
Cijim(—k)=Cjm;j(k), from which it follows™® that
dijimn = —djmijn. Since the stress and strain tensors are
symmetric, djj., is symmetric with respect to interchange
of i and j and of / and m, and so it can be written in con-
tracted Voigt notation'* as djj,. Crystal symmetry re-
stricts the number of independent components of dyj,. In
particular, the presence of a center of inversion causes the
tensor to vanish identically. Kumaraswamy and Krish-
namurthy'® have listed the nonvanishing components of
dyj, for the noncentrosymmetric crystal classes.

The validity of the power-series expansion of elastic
constants in k comes into question where there are long-
range interatomic forces at play. These can give rise to
nonanalytic terms in k, the fully study of which has not
yet been undertaken.” DiVincenzo® concludes that the
effects of nonanalyticity are small for acoustic dispersion,
at least in the case of GaAs. The published results on
acoustical activity and related phenomena are, moreover,
all well accounted for without invoking nonanalytic
terms.

For small k, I'V>> T T@ 55 -+ and so the
Christoffel equations may be solved initially by retaining
I"? only, and then treating I''"” and I'® etc. by pertur-
bation theory. DiVincenzo® has shown that when the un-
perturbed velocities are nondegenerate, 'Y contributes
only in second order while the subsequent term
I = fimnrkjkmky k, survives in first order of perturba-
tion. Both terms, as a result, give rise to velocity changes
which are quadratic in k. It is to this normal absence of
linear dispersion that one can, to a large extent, attribute
the success of continuum elasticity theory in successfully
accounting for most of the published phonon focusing pat-
terns in which the phonon frequencies range up to ~0.5
THz.

This paper is, however, specifically concerned with pho-
non focusing in the vicinity of acoustic axes (i.e., direc-
tions where two or more unperturbed velocities coincide).
Here the energy denominators in the second-order pertur-
bation expressions for I''! are small and so these terms
become large in comparison with the first-order perturba-
tion terms for T'?. To a good approximation the latter
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terms may then be neglected. Precisely along an acoustic
axis, perturbation theory shows that the degeneracy of the
velocities is lifted to first order in k by the I''", For small
k, these linear shifts are far greater in magnitude than the
quadratic dispersion of I''?, and they give rise to observ-
able effects even at frequencies on the order of 1 GHz.

The perturbed modes that emerge from the lifting of
the degeneracy are, in general, elliptically polarized (circu-
lar polarization if k lies precisely along a direction of
threefold or higher symmetry). This gives rise to the
phenomenon of acoustical activity (the rotation of the
plane of polarization of a plane polarized wave).

First-order spatial dispersion has been studied using a
variety of techniques including inelastic neutron scatter-
ing,'®!7 Brillouin scattering,'® acoustical activity,'®%°
acoustic time-of-flight measurements,?! Bragg reflection of
light,”? and heat pulse techniques,'® and certain com-
ponents of their gyrotropic tensors have been experimen-
tally determined for quartz, NaClO;, and Bi;;GeOyy. In
addition, on the basis of lattice-dynamics models dg;; has
been calculated for GaAs by DiVincenzo® and ds4y for
tellurium by Portigal and Burstein.’

For the lower-symmetry classes djj, tends to have a
large number of independent components (a maximum of
30 in the case of triclinic 1). Measurements of acoustical
activity, in principal, yield the value of one component or
a combination of components of dy;, for each inequivalent
acoustic axis. Since the number of isolated acoustic axes
that a crystal can have is strictly limited (in the case of or-
thorhombic media, for instance, Musgrave?> has shown
that there can at most be 16 acoustic axes, many of which
belong to equivalent sets), a complete determination of the
dy;, tensor from acoustical activity measurements alone is
evidently impossible for many of the crystal classes.

Directions of threefold, fourfold, and sixfold symmetry
are pure mode directions with the two transverse modes
being degenerage in the limit k—0. Taking the X; axis
to be along this direction, symmetry consideration’ shows
that for k|| X;

riy=ri’=o, (6)
and
MY=—TW=id 333k} =idsask3 . (7

When k deviates from the X; axis, I'sy I'{}, and T'{} ac-
quire terms of the form k k3, k,k3, etc. Provided that
the angle of deviation is small, these terms can be ignored.
The calculations reported in this paper are all based on
this approximation.

(;l)'he secular equation for Eq. (1), retaining only I''Y’ and
I“,y , is

| T+ T —pew?sy | =0 . (8)

On expanding the determinant, one obtains a cubic equa-
tion in ®® which has real coefficients. The solutions are
conveniently expressed in terms of trigonometric func-
tions.** The phase velocities for the modes are then given
by v=w/k and the group velocities V=0w /3dk are readily
obtained by implicit differentiation from the cubic equa-
tion. The method that has been used is an extension of
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that developed by Every and McCurdy?® for piezoelectric
crystals.

III. PHONON FOCUSING

Phonon focusing is a phenomenon that occurs as a re-
sult of the nonspherical shape of phonon constant fre-
quency or slowness surfaces of crystals.?® Phonon ray
vectors V=0w/dk are constrained to be normal to their
constant frequency surfaces, and so they become bunched
up in direction or focused where these surfaces are rela-
tively flat. The degree of focusing or phonon intensity is
inversely proportional to the Gaussian curvature of these
surfaces?’ ~%° in the long-wavelength limit or for a mono-
chromatic phonon source. At parabolic lines separating
regions of negative and positive Gaussian curvature, the
curvature is locally zero and the focusing thus mathemati-
cally infinite. This is the origin of the caustics which are
a prominent feature of most phonon images.! The pat-
terns these caustics form have been extensively investigat-
ed by a number of authors.?? 32

Phonon images display the complex directional depen-
dence of the phonon flux emanating from a localized heat
source. They are generated experimentally by raster scan-
ning either the heat source or detector.'??”33 Monte-
Carlo-simulated images are constructed’’ by taking a
smooth distribution of phonon wave vectors and sorting
their associated ray vectors in directions to form a polar
plot of phonon intensity or a plane projected image.

The existence of dispersion causes the shape of the
slowness surfaces to be w or k dependent, and the phonon
focusing patterns and the caustics they contain thus also
depend on @ or k. At the opposite extreme to infinite
focusing is the infinite defocusing that occurs at points of
internal conical refraction where two sheets of a slowness
surface meet in the form of a double cone as depicted in
Fig. 1(a). The Gaussian curvature diverges at the point of
contact, and so the phonon intensity tends to zero. This
coincides with the fact that the rays associated with an
infinitesimal neighborhood of the conical point are distri-
buted over a finite elliptical cone (or circular if the conical
point lies on an axis of threefold symmetry). This ellipse
or circle of zero phonon intensity is called an anticaustic.

The lifting of the degeneracy at finite w or k causes the
two sheets of the slowness surface to become separated
and rounded off as depicted by the dashed or dotted
curves in Fig. 1(a). The outer ST sheet now possesses a
small concave region which is bounded by a parabolic line
passing through the inflection points 1 and 2 (or 1’ and
2’). This results in the formation of a caustic which re-
places the original anticaustic. Initially this caustic is
very faint. With increasing o the splitting of the two
sheets widens and the parabolic line expands outwards (as
depicted by the movement of the inflection points from 1
to 1’ and 2 to 2’). This causes the caustic to grow more
intense and contract inwards (note how the rays at 1’ and
2’ are more nearly parallel). Figure 1(b) shows a phonon
intensity pattern for NaBrO; (crystal class 23) in the vi-
cinity of the (111) acoustic axis, taking ds543k/
C44=0.0022 (the prime indicates transformed axes with
X;]|{111)). The position of the original circular anticaus-

tic is shown by the dashed circle. The caustic which has
evolved from it, and which is labeled A4, is no longer per-
fectly circular. The much more intense caustics labeled B
are present for w,k,—0 and are not significantly affected
by dispersion.

In order to experimentally follow the evolution of caus-
tic A one would need to employ either a monochromatic
source of phonons or else precise wave-vector selection,
exacting demands which are not easily met in practice.

FIG. 1.
showing the meeting of the T sheets at a conical point (solid

(a) Schematic section through a slowness surface

curves). At finite frequency the two sheets are separated as
shown by the dashed curves (small k or w) or dotted curves
(larger k or w). (b) ST and FT polar phonon intensity pattern
for NaBrOs; centered on the (111) acoustic axis
(C11:C12:C44 =3.66:1.18:1, d 543k /C44=0.0022). Darkness of the
grey scale denotes the phonon intensity. Dashed line indicates
the circle of conical refraction.
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Under more realistic conditions the observed phonon
focusing pattern will be a superposition of a continuous
distribution of constant-frequency focusing patterns. The
result of this will be a focusing pattern in which the pho-
non intensity builds up smoothly from the circle inwards.

A more complex situation arises where there are para-
bolic lines which penetrate through a conical point from
one slowness sheet to the other. A large class of cubic
crystals display this phenomenon®~3! and it is also com-
mon in trigonal crystals.’® This produces caustics that
meet the anticaustic tangentially, fading in intensity to
zero as they do so. The discussion of how these caustics
evolve at finite k is deferred to Sec. IV A, where focusing
in the region of the ¢ axis of quartz is treated.

In directions of fourfold and sixfold symmetry the
transverse sheets of the w—O0 slowness surface meet
tangentially. The curvature of both sheets remains finite
in the vicinity of the point of contact (although the curva-
ture at the point of contact is undefined), and so an anti-
caustic does not develop here. In the case of a fourfold
axis, for certain ranges of elastic constants there can be
sets of symmetry equivalent parabolic lines on either or
both the T sheets which pass through their point of con-
tact. This gives rise to sets of intersecting line caustics, a
common feature in many cubic crystals. At finite @ the
gyrotropic coupling causes the two sheets of the slowness
surface to come apart and the parabolic lines join up in
pairs without reaching the fourfold axis. Figure 2 shows
a polar phonon intensity pattern for NaClOs, taking
dsa3k /C44 =0.0043. Dashed lines indicate the location of
the caustics for w—0. For finite w these caustics ter-
minate in cusps before reaching the cube axis.

A third form of degeneracy takes the form of two
sheets of the slowness surface intersecting along a line.3%3*

FIG. 2. ST and FT polar phonon intensity pattern for Na-
ClO3 centered on the (100) acoustic axis (C;;:Ci2:Cas
=4.28:1.27:1, dsa3k /C44=0.0043). Dashed lines indicate the
caustics for k—0.

These lines of wedge-shaped degeneracy are quite com-
mon in hexagonal crystals, where they derive their
structural stability from the transverse elastic isotropy.
They also occur in cubic and other crystals for special
values of the elastic constants.’® For the crystal classes 6
and 6m2 piezoelectric stiffening of the elastic constants re-
moves this line degeneracy, leaving in its place a finite set
of points of conical degeneracy.’® In the other noncen-
trosymmetric hexagonal classes this line degeneracy is lift-
ed at finite k by acoustic gyrotropy. All the nonvanishing
components of dj;, need to be taken into account in order
to properly determine the changes to the transverse veloci-
ties and how the lifting of the degeneracy varies with
direction. We will consider as a specific example, the spe-
cial case where ds4350, while all other inequivalent com-
ponents of djj, are zero. This preserves the transverse
isotropy but lifts the degeneracy uniformly over the entire
circles where the transverse sheets of the slowness surface
intersect at k =0. This results in bands of elliptical acous-
tic birefringence centered on the original circles of inter-
section. Pairs of circular caustics develop in a manner
analogous to the global formation of caustics when a tri-
gonal distortion lifts this degeneracy.’® In the latter case,
however, there is a threefold pattern of cusps which is not
present here. Figure 3 shows a polar phonon intensity
plot for a hypothetical hexagonal medium with
dsq3k /Cq4=0.1. The circular caustics referred to above
are labeled 4 and B.

IV. PHONON FOCUSING IN QUARTZ

Quartz has featured prominently in investigations of
first-order spatial dispersion,'®'*=22  phonon focus-

ing,'"'23¢ and ballistic heat pulse propagation.' Detailed

FIG. 3. ST and FT polar phonon intensity pattern for a hy-
pothetical  hexagonal medium with C;1:C33:C12:C13:Cas
=4:4:1.8:1.6:1 and ds43k /C44=0.1.
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phonon focusing patterns were first predicted for a quartz
by Rosch and Weis.’® Overall, their predictions have
been borne out in the experimental phonon images of
Eichele e al.'?> and Koos and Wolfe.!! However, the
latter authors, who will hereafter be referred to as KW,
pointed out some striking anomalies in their phonon im-
ages which could not be reconciled with theory, even al-
lowing for quite substantial adjustments to the low-
frequency elastic constants. It is noteworthy that these
anomalies all occur in the vicinity of the conical points of
quartz. We show below that first-order spatial dispersion
is well able to explain a number of these anomalies.

The crystal point group of a quartz is 32, which allows
eight independent components for dyj,.!> Only three of
these are, however, accessible to dynamical measure-
ment’’ and, in the event, only ds43 has actually been ex-
perimentally determined. The reason for this is that in
the past studies of acoustic gyrotropy in quartz have been
confined to the conic point lying on the ¢ axis. At finite
frequency v, the relative splitting between the phase veloc-
ities of left and right circularly polarized modes propaga-
ting along this axis is given by?*!

K—Jr—_i:— =yv, 9

v

where ¥ =2mds43/C440, is the gyrotropic constant. y has
been determined by various methods,'®2°~22 and the pub-
lished values range from (2.8-3.7) 10~* GHz™!. In our
calculations we have taken ¥ =3.0x 10~* GHz !, a value
decided on after consideration of the reported accuracies
of the various experimental techniques. We have used the
same values for the elastic constants, piezoelectric stress
coefficients, permittivity, and density as have KW (Ref.
11) in their calculations. From these values one obtains
7=(Cy/p)'/*=4726 m/s and ds;3=13.4 N/m. The
electromechanical coupling in quartz is small, and we find
that the inclusion of piezoelectric stiffening of the elastic
constants has a negligible effect on our results, even with
dispersion included.

Jouffroy and Levinson'® have invoked the idea of first-
order spatial dispersion to explain their heat pulse results
in quartz. They confine their attention, however, to three
specific directions near the ¢ axis and develop their
analysis in the approximation that there is cylindrical
symmetry around the ¢ axis. Our treatment goes beyond
this approximation and explores the detailed evolution of
the phonon focusing pattern with dispersion. We also ex-
amine the effects of acoustic gyrotropy on the other coni-
cal points, a topic which has not been broached before.

A. Phonon focusing caustics near to c axis

Figure 4(a) depicts the limiting low-frequency ST and
FT caustics and circular anticaustic in the region of the ¢
axis of quartz. The six-cusped triangular-shaped struc-
ture, labeled E, is the unfolded form of the external coni-
cal refraction caustic that emerges with reduction from
hexagonal (transverse isotropy) to trigonal symmetry.
The pattern of alternating ST and FT caustics, labeled S
and F, that touch the circular anticaustic at six points is
mapped from a parabolic line that weaves back and forth
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. .), ST caustics (
and FT caustics (— — —) near the ¢ axis of quartz in the limit

FIG. 4. (a) Circular anticaustic (- - )

k,v—0. (b) Evolution of the FT caustics with increasing k:
, k=2x10*m~! (v~150 GHz); — — —, k=4X10® m~!
(v~300 GHz); and - - - -, k=6X10® m~! (v~450 GHz). (¢
Evolution of the ST caustics with k.
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through the conical point. This line separates alternating
regions of positive and negative Gaussian curvature of the
slowness surface surrounding the conical point. The three
fairly-straight-line cautics, labeled C, are due to parabolic
lines on the FT slowness sheet which pass fairly close to
the conical point.

Figure 4(b) shows the evolution of the FT caustics and
Fig. 4(c) that of ST caustics as k is increased and the two
sheets of the slowness surface move apart. Immediately
dispersion is introduced, the separated segments F of the
FT caustic become joined together by very faint
connecting-line caustics that follow the path of the origi-
nal anticaustic, and the ST caustics S undergo a similar
transformation. As k increases further, the faint connect-
ing portions of S and F contract rapidly inwards, growing
in intensity as they do so, while the original segments
move inwards more slowly so that both these caustics be-
come roughly triangular in shape. With further increase
in k both caustics continue to contract inwards and even-
tually become enmeshed with the intense caustic E.

Because of the rapid contraction of the caustics F and S
with increasing k, when the phonon intensity patterns for
a distribution of k’s are superposed, F and S do not sur-
vive as singular features. The main result of the superpo-
sition is a gradual buildup in phonon intensity towards
the central region near the ¢ axis. The retreating FT
cusps deposit an especially large concentration of phonon
intensity in their wake, and integration over a broad dis-
tribution of k’s yields the intense three-spoked structure
located at the center of Fig. 5(a). This structure matches
up well with an hitherto unexplained feature in the early
time (800 ns) phonon image of quartz reported by KW
[their Fig. 5(a)]. The main contribution to this structure
arises from modes with kK >2X10% m~! which have fre-
quencies v> 150 GHz, and group-velocity components
V3>4900 m/s. For k’s in excess of 2 10® m~!, the lift-
ing of the degeneracy reduces V; for the ST modes to
below 4500 m/s. The increased separation between ST
and FT mode velocities helps to explain why the three-
spoked structure is such a prominent feature of the early-
time image KW [Fig. 5(a)], but is almost totally absent
from the later-time images KW [Figs. 5(c) and 5(d)].
Moreover, there is no sign of the ST focusing structures in
the early time image.

With increasing k the three FT line caustics C undergo
lateral displacements which bring their points of intersec-
tion inwards towards the ¢ axis. The displacement is least
at the extremities of the lines and greatest near the center.
These shifted central portions are, moreover, composed of
FT phonons which have had their velocities increases by
the lifting of the degeneracy. The consequences of this
are evident in the early-time image KW [Fig. 5(a)] in the
form of a progressive blurring of the FT line caustics to-
wards the center. In the later-time images, KW [Figs.
5(b) and 5(c)], which one would expect to give greater
weight to lower-velocity smaller k phonons, the blurring
is much less, and the FT caustics have their predicted
low-frequency shape.

With increasing k the ST structure E contracts gradual-
ly inwards, retaining is shape essentially unchanged. This
structure is composed of phonons with velocities in the

FIG. 5. (a) Polar phonon intensity pattern for quartz restrict-
ed to transverse modes with V3 >4800 m/s. The phonon tem-
perature is T=10 K, dss3=13.4 N/m, and kmax=1.162% 10°
m~'. (b) Corresponding pattern for the transverse modes with
V3>4000 m/s and T=3.3 K.

range 4000 < V3 <4500 m/s and therefore, as expected, it
shows up most prominently in the medium- and later-
time images KW [Figs. 5(b) and 5(c)]. These images are
composed of lower-velocity phonons as well as a propor-
tion of higher-velocity phonons which have been delayed
before emission. The effects of dispersion are therefore to
a large extent masked and thus more difficult to recog-
nize, as compared with the early-time images. The 1100-
ns experimental image KW [Fig. 5(d)] is dominated by six
short bright segments of ST precursors. These structures
are composed of phonons with k’s lying far from the
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acoustic axis, and are well accounted for without invoking
dispersion.

B. Monte Carlo simulation of phonon intensity
near to c axis

The qualitative points made in Sec. IV A are confirmed
by Monte Carlo simulations of the temperature-dependent
phonon focusing pattern of quartz. We assume that a
Planck distribution of phonons is emitted from the heat
source. The spectral energy distribution of these phonons
peaks at v~2.8kgT /h, and has a tail extending to higher
frequencies. One has also to consider the effects of pho-
non scattering. In general, depending on the precise
mechanism, the rate of scattering increases rapidly with
frequency (e.g., isotope and point defect scattering as v*,
etc.). The result of this is that towards 1 THz and beyond
there is a rapid falloff in the proportion of phonons that
maintain ballistic trajectories through the crystal and ar-
rive within the time gates of the detector.

In our calculations we have assumed a sharp cutoff for
ballistic propagation, restricting acoustic phonon wave
vectors to a sphere of radius Amax=0.1kpz = X27/c
=1.162%10° m~', where c=5.404 A is the c-axis cell di-
mension. This cutoff corresponds to a maximum phonon
frequency Vi =Kkmaxt /2m~0.9 THz. Having this cutoff
also serves another important purpose: The neutron
scattering results of Joffrin et al.'® indicate that at about
k=0.1kg; the slope of the FT dispersion curve
(=0w/dk;="V;) reaches a maximum whereafter the curve
bends over and levels off. This effect arises from higher-
order terms in the expansion of C;,(k) which we have
not built into our calculations. Interestingly, clear evi-
dence for the existence of this maximum in the phonon
group velocity is provided by the heat-pulse experiments
of Jouffroy and Levinson.!° Assuming a heat source tem-
perature of 10 K, which is fairly typical in phonon imag-
ing,*® the peak in the phonon spectral energy distribution
occurs at v~0.58 THz. This is sufficiently far below the
cutoff frequency that the precise position assumed for the
cutoff does not drastically affect the final results.

Our Monte Carlo image construction process consists
in generating a uniform random distribution of k’s within
the cutoff sphere and solving the wave equation to obtain
the frequencies and group velocities of the modes belong-
ing to each value of k. Each mode is then given a weight-
ing proportional to 7ifiw=#w[exp#w/kgT)—1]"", and
the weighted ray vectors are sorted in direction to form a
polar plot of the phonon intensity.

Figure 5(a) shows a polar phonon-intensity diagram for
quartz, restricted to transverse modes with group-velocity
components V3 >4800 m/s. This intensity pattern is in
good agreement with the phonon image of KW [Fig. 5(a)]
obtained with an early (800 ns) setting of the time gates.
The three-spoked structure at the center, and the progres-
sive blurring of the FT line caustics towards the center
match up well with corresponding features in the experi-
mental image. Since the average value of V3 for the
modes in this diagram is ~5000 m/s one infers that the
thickness of the sample used by KW was /=5000
m/sX 800 ns=4 mm, whereas KW have actually given
the value as 3 mm.
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When the cutoff is set at ki = = X 27 /¢, which corre-
sponds to a frequency cutoff v,,~0.6 THz, the central
region of the three-spoked structure all but disappears,
and the blurring of the FT line caustics is considerably re-
duced. Similar changes take place when the heat-source
temperature is lowered appreciably. In both cases agree-
ment with the 800-ns image is no longer nearly as good.
One concludes from this that a significant proportion of
acoustic phonons in the frequency range 0.6 <v <0.9 THz
have been able to propagate ballistically under the experi-
mental conditions, and secondly that the heat-pulse tem-
perature in the experiment of KW could not have been
much less than ~10 K. It would be of interest to see
whether the detailed predictions of this model for the
effects of changing temperature could be verified experi-
mentally by varying, for example, the laser excitation in-
tensity in a phonon imaging experiment.

The abnormal dispersion of the FT branch also pro-
vides a means for frequency filtering to obtain phonons in
the spectral range ~0.6-0.9 THz. The inner portions of
the three-spoked structure, as we see have seen, are com-
posed almost entirely of these phonons.

In the phonon images of KW [Figs. 5(b) and 5(c)] ob-
tained with later settings of the time gates, the caustics are
much sharper than before, and they conform more closely
to their predicted low-frequency limiting shape. Evidently
therefore these images are composed of a much narrower
spectrum of phonons which have been delayed and emit-
ted during the cooling cycle of the metal heater film. On
assuming an effective phonon temperature of 3.3 K at this
stage, we obtain the polar phonon intensity plot shown in
Fig. 5(b). It is in reasonably good agreement with KW
[Fig. 5(b)]. This does not remain so if the temperature is
taken much higher or lower than 3.3 K.

C. Phonon focusing near to nonsymmetry acoustic axes

There are also significant discrepancies between the ex-
perimental and predicted low-frequency phonon focusing
patterns of quartz in the general vicinity of the direction
(0=65°, $=30°). There are three acoustic axes located in
this region, which lie along the directions (65.50°, 30°),
(64.28°, 36.89°), and (64.28°, 23.11°). These are not high-
symmetry directions and so the conical points are of the
elliptical variety. Experimental investigations of first-
order spatial dispersion and acoustical activity in the past
have been restricted exclusively to acoustic axes lying in
directions of threefold and fourfold symmetry. It is
doubtless that the added practical difficulties of applying
the existing techniques where there is not the advantage of
symmetry has been a major deterring factor. Phonon im-
aging, on the other hand, does not suffer from this draw-
back and should yield information on nonsymmetry coni-
cal points just as readily as for those along symmetry
axes.

The theoretical interpretation of first-order spatial
dispersion at nonsymmetry concial points is complicated
by the involvement of all three matrix elements (Y, %,
and T'§}. Considerable simplification is, however, gained
by orienting the X; axis along the polarization direction
for the isonormal longitudinal mode. In this case the lift-
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ing of the degeneracy is effected by I'j, alone, and for k
close to the X3 direction I'\Y'=dss3k3. Thus, as before,
there is only one component of the gyrotropic tensor to
consider. Figure 6(a) shows the limiting kK —0 phonon in-
tensity pattern for quartz in the vicinity of the direction
(65.5°% 30°). The three nonsymmetry conical points men-
tioned above and their elliptical anticaustics all fall in the
field of view. Since these three conical points are fairly
close together, we have assumed that rotating the X; axis
into the direction (65.5°, 30°) and adopting just a single
dispersion term 'Y= T =idsk3 provides an ade-
quate approximation to the different terms that cause the

FIG. 6. ST and FT phonon intensity pattern for quartz cen-
tered on the direction (6=65.5°, $=30°). (a) In the k—O0 limit.
(b) For T=10 K, d53=13.4 N/m and Kmax=1.162X10° m~!,
with no restriction on the velocities of the modes.

lifting of the degeneracy of each of the three conical
points. Figure 6(b) shows the phonon intensity pattern
obtained by taking dssz=dss;3=13.4 N/m,
Kmax=0.1X2m/c, and T=10 K. A considerable blurring
of the focusing structures occurs as a result of dispersion.

The experimental image obtained by KW (Fig. 6) for
their Y-cut specimen actually bears closer resemblance to
the theoretical k—0 focusing pattern, particularly in re-
gard to the sharpness of the caustics. This could imply
that d 543 is much smaller than ds43. The correct interpre-
tation must, however, take into account the extremely
wide time gate (800 ns) used in recording the experimental
image. Much greater weighting has thereby been given to
phonons emitted during the cooling cycle of the heat film,
and so the effective temperature for that image is much
less than 10 K.

An important feature not accounted for by the low-
frequency simulation is a diffuse V-shaped structure near
the center of the experimental image. This bears some
resemblance to the structure marked A in Fig. 6(b) and so
could be a relic of the focusing of higher-temperature pho-
nons. The sharp-cusped structure labeled B which is
present in both theoretical phonon intensity plots is unac-
countably absent from the experimental image.

Narrow time-gated phonon imaging on quartz samples
with faces cut at an angle to the ¢ axis would be of great
value in helping to resolve these points.

V. CONCLUSIONS

First-order spatial dispersion has been shown to ac-
count for a number of anomalies in the phonon focusing
pattern of quartz. Even at the relatively low frequencies
encountered in conventional phonon imaging based on
bolometric detection techniques, there are pronounced
changes to the focusing pattern near to the acoustic axes.

Phonon imaging is placed in an advantageous position
to probe spatial dispersion at nonsymmetry acoustic axes.
Although the agreement between our calculations and ex-
periment for such axes in quartz is less than satisfactory,
time-resolved imaging is needed before a proper compar-
ison can be made.

The absence of a center of inversion is a prerequisite for
first-order spatial dispersion.** Since most of the crystals
subjected to phonon imaging in the past have been cen-
trosymmetric, this would explain why the influence of
spatial dispersion on phonon focusing has not been widely
appreciated before now. However, as more noncen-
trosymmetric crystals come to be examined dispersion is
likely to become an important consideration.

Useful returns that could emerge from a study of the
effects of first-order spatial dispersion on phonon focusing
are practical means for measuring phonon temperatures
and for frequency filtering of thermal phonons.
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