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Phonon focusing in piezoelectric crystals
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Striking changes are predicted in acoustic wave propagation and the phonon-focusing properties of
piezoelectric crystals as a result of the piezoelectric stiffening of the elastic constants. Phase and
group velocities and phonon enhancement factors have been calculated using a general method appli-
cable to crystals of any symmetry. Monte Carlo phonon-focusing patterns are presented for a nurn-
ber of the more strongly piezoelectric crystals on which the required material constants are available.
The effects of piezoelectric stiffening are generally only pronounced when one or more of the elec-
tromechanical coupling constants exceeds 0.1, but become important at much smaller values of the
coupling if the elastic anisotropy is small. An important consequence of piezoelectric stiffening is
that the degree of the equation of the slowness surface is raised from 6 to 12. As a result the inner-
most sheet of this surface need not be entirely convex, and fast phonon-branch focusing caustics are
permitted. Rochelle salt and BazNaNb50» are two crystals which possess this property.

I. INTRODUCTION

In strongly piezoelectric crystals the coupling between
elastic and electric variables has a profound influence on
the nature of the acoustic modes and on phonon trans-
port. Through this coupling the strain field accompany-
ing an acoustic wave gives rise to an electric field, and this
in turn leads to an enhancement of the stress field. The
material thus appears elastically stiffened, and the phase
velocity and other characteristics of the wave are
modified. It is well known that the effect can be treated
by replacing the elastic moduli in the Christoffel wave
equations by a set of "stiffened elastic constants" which
are functions of the wave normal. ' Account has to be
taken of this effect in interpreting ultrasonics data,
phonon-focusing patterns, boundary-limited thermal con-
duction in crystals, ferroelastic mode softening, and oth-
er such phenomena in any medium with a sizable
piezoelectric effect. In a crystal like LiNbO3, for instance,
the relative changes in velocity brought about by
piezoelectric stiffening are as large as 28%%uo in some direc-
tions. Furthermore, Koos and Wolfe have shown that
the phonon-focusing pattern of this crystal is dramatically
altered by piezoelectric stiffening. The fast transverse
(FT) phonon branch acquires a prominent set of caustics
and the caustics of the slow transverse (ST) phonon
branch are considerably changed in appearance. Also, the
directions of most of the acoustic axes are shifted appreci-
ably.

The aim of this paper is to demonstrate that piezoelec-
tric stiffening is an important consideration in treating
phonon focusing in a wide variety of crystals. To this end
we describe the changes brought about by piezoelectric
stiffening in the phonon-focusing patterns of a number of
strongly piezoelectric crystals on which the required data

is available. Our examples are drawn from many of the
crystal classes, showing that strong piezoelectric influence
is a widespread phenomenon and not restricted to any
particular crystal symmetry. An important consequence
of piezoelectric stiffening, which we report, is that the de-
gree of the equation of the slowness surface is raised from
6 to 12. As a result, the innermost sheet of this surface is
allowed to possess negatively curved regions and so fast
phonon branch caustics are permitted. Examples of crys-
tals having this property are provided later in this paper.

Our analysis assumes the long-wavelength acoustic lim-
it and is based on continuum elasticity theory incorporat-
ing linear electromechanical coupling. We outline a con-
venient method of solving the stiffened Christoffel equa-
tions and calculating phonon group velocities and phonon
enhancement factors. Our procedure is quite general and
is applicable to crystals of any symmetry class.

II. THE ACOUSTIC WAVE EQUATION
IN PIEZOELECTRIC MEDIA

In a piezoelectric medium the electric and elastic vari-
ables are coupled, and this has an important effect on the
dynamics of the system. The constitutive relations ex-
pressing this coupling may be written in the form'

E0 IJ ClJ)m ~1m eij r+r

Dr eijr~ji++r/Et

where E is the electric field, 0 is the electric displacement
vector, o.

;~ is the elastic stress tensor,

S 1 jul au

2 a-. + a-,

is the elastic strain, and u(x, t) is the displacement field of
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the medium. These quantities are related through the
elastic modulus tensor at constant electric field C;JI, the
piezoelectric stress tensor e;~„and the permittivity tensor
at constant strain e„~. The contracted Voigt notation is
used to represent these tensors as matrices CIJ, e,I, and
ezq. The forms that these three matrices take for the
different crystal classes is shown in Table I, the entries be-
ing arranged as follows:

where p is the density of the medium. These equations
admit plane wave solutions of the form

i(cot —k.x) (4)

Acoustic phase velocities U =co/k are typically 5 orders of
magnitude smaller than the velocity of light c, and so the
electric field accompanying an acoustic wave may be
treated as quasistatic, i.e., derivable from a scalar poten-
tial P, and the magnetic vector potential and induction ig-
nored. Since P must have the phase dependence of U,

C]1

i.e.,
C66 e16

(cut kx )'—
it follows that the electric field

33

E, =( Vy), =—tk, y,e"" k"'-
In the absence of body forces and torques the local

force on the medium is given by the stress gradient, and
the equations of motion are

is constrained to lie in the direction of k. One further as-
sumes that there are no free charges, so that

KEY:
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Lines join nurnerica I equalities except
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0 indicates negative of ~
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~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~ ~
~ ~ ~ ~ ~
~ 0 ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~Triclinic

system
~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ Trigonal

system
~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~
[ ~ ~ ~

~ ~ ~ ~
~ ~ ~ ~

f
~

3m 3m

NI
322/m

~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~

~ ~
~ ~
~ ~

~ ~ 0
~ ~ ~

~ ~
~ ~
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Hexagonal
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NI
4/m

I NINI I I

Tetragonal
system

42m422 4/mmm

4I
4mm

43m 432 m3 m3m23
I NI

Cubic
system

TABLE I. Elasto-piezoelectric-dielectric matrices for the 32 crystal classes, adapted from Ref. 9.
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V D=O.
On combining Eqs. (1)—(7) one arrives at the stiffened
Christoffel equations

(I ii pu—6ii)Ui=0,

where 6;l is the 6 function and

(8)

lJr r Ims s
ClJlm ClJlm +

( Epq np il q )
(10)

The stiffening of the elastic constants, represented by
the second term in Eq. (10), is a function of the permit-
tivity and piezoelectric coefficients, and also depends on
the wave normal n. The relative changes to the phase ve-
locities and other attributes of the wave depend on the
size of this term in relation to the elastic moduli. Elec-
tromechanical coupling constants E defined by expres-
sions of the form

1/2

K;,i (n)= l Jr r lms s

E
~pq np n q Cij lm

are commonly employed as measures of the strength of
the piezoelectric coupling in media, and will be made use
of here as well.

Since the stiffening of the elastic constants is quadratic
in the piezoelectric coefficients, a simultaneous change in
sign of all the e;J„ leaves the Christoffel equations un-
changed. For cubic and certain other crystal classes
where there is only one independent piezoelectric
coefficient, it follows that the bulk dynamical properties
depend only on the magnitude of this coefficient.

One may go beyond the quasistatic approximation by
formally considering the coupling between acoustic and
electromagnetic waves in a piezoelectric medium. As
shown by Auld, ' this leads to a slight admixing of acous-
tic deformation in the electromagnetic waves (which thus
become quasielectromagnetic waves) and reciprocal contri-
butions of the electromagnetic field to the acoustic waves
(which thus become quasiacoustic waves). However, it is
easily shown that this results in corrections to the acoustic
velocities which are of the order of a factor v /c smaller
than the effect of the piezoelectric stiffening. This, for our
purposes is too small to be of any consequence, and so
this coupled wave mechanism will not be pursued any fur-
ther.

The first stage in solving the Christoffel equations is to
set the secular determinant to zero, i.e.,

i
I;i —pu 5;i

i

=0 . (12)

This equation, which is cubic in v, has three solutions
which are associated with three modes with mutually or-
thogonal polarizations. One of these modes is usually
quasilongitudinal in character and the other two are
quasitransverse, although on occasion a different form of
identification is more appropriate. These directionally

rl'l =ClJ'lm njnm

are the Christoffel coefficients. Here n=k/k is the wave
normal and C;Jl are a set of "piezoelectrically stiffened
elastic constants" given by

dependent velocities can be represented by a surface of
three sheets called the phase velocity surface.

Substituting for I;i with Eqs. (9) and (10) and multiply-
ing each element of the determinant by e=ezqnpnq, Eq.
(12) takes on the form

2
~
+iljmrsnj&mnrns pU &rsnrns~ii

~

(13)
Ewhere E;lJmrs =Cijlmers+elJrelms. If we now multiply each

element by v, recognizing that un&
——(v)z, we obtain the

equation for the phase velocity surface:

4
~

+ijlmrsi~jvmUrUs p&rs~iiU Urvs (14)

which is of degree 18 in the components of v.
The slowness surface represents the directional depen-

dence of the slowness S=(1/v)n. It is obtained in a simi-
lar way, in this case by dividing each element by v:

III. SOLUTION OF THE WAVE EQUATION

A. Solution for special directions

When the wave normal n lies in a crystallographic mir-
ror plane or in a plane which is perpendicular to a two-
fold axis of symmetry, one of the three modes is pure
transverse, polarized normal to the plane, while the other
two modes are mixed modes with polarization vectors ly-
ing in the plane. Similarly, when n points along a twofold
axis or normal to a mirror plane, the one mode is pure
longitudinal and the other two are transverse. Without
any loss of generality we may take the axis or normal to
the symmetry plane to lie along the x2 direction. Since
the polarization vector U = (0, 1,0) of the pure mode is an
eigenvector of the Christoffel equations, it follows that
r» —r32 —0. The corresponding eigenvalue is

pvo =r222= (16)

On factoring out this root from the secular equation, a
quadratic equation for the remaining two roots remains,
the solutions of which are

2pu =(I „+I)+[(I„—I ) +4I, ]' (17)

When n lies along the special axis in the x2 direction,
the nonvanishing Christoffel coefficients are

and

r 2=C22,

r33=C44
(18)

r 13 C46

For n lying in the plane, i.e., n = ( n i,0, n 3 ), the nonvan-

~
Eii/mrsSJSmSrSs pfrs5gSrS—s

~

=0 .

Evidently in its most general form this equation is of de-
gree 12, although it can be less if cancellation of terms
occurs. It reduces to degree 6 in the absence of piezoelec-
tric stiffening. ' '" The higher degree of the slowness sur-
face equation when there is stiffening has important impli-
cations for phonon focusing as we will show later.
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ishing Christoffel coeKcients are

I"
] (

——Clln l + Cskin 3+ 2C)5nln32 2

I 22
——C66n ~ +C44n 3+2C46n ln32 2

I 33
——C55n l+C33n 3+2C35nln3,2 2

and

I 13=C15n 1+C33n 3+(C13+C55)n ln3 .

(19)

2 2
2 E E e26+e24

zpv g —— C66+ C44+
&22

2 2 2
e26

C66 —C44+
e22

2 1/2
e 24e26+4 C46+

&22
(24)

If the only crystallographic symmetry is the twofold
axis then the point group is monoclinic 2. The nonvan-
ishing elements of the elastic constant, piezoelectric, and
permittivity matrices for this and the other crystal classes
are indicated in Table I. Using this information and tak-
ing n along the twofold axis, from Eq. (10) we obtain the
stiffened elastic constants C22=C22+e22/622, C44=C44,
C«=C66, and C46=C46. Hence, from Eqs. (16), (17),
and (18) we see that

CJJ —CJJ + (e 1Jn 1 + e3Jll 3 )(e 1Jn 1 +e 3Jn 3 )/6

Thus, the velocity of the pure T mode

pv o —C66n l +C44n 3 +2C 46n l n 3
2 E 2 E 2 E (25)

when n lies in the mirror plane C66, C44, and C46 are
unstiffened, while for the remaining elastic constants in
Eq. (14),

pv Q
=C22+e 22/~22,2 E 2 (20)

for the pure I. mode, showing that this mode is stiffened
by the piezoelectric effect, while the velocities of the two T
modes are given by

U2 (CE +CE )+[(( E ( E )2+4(( E )2]1/2 (21)

showing that these modes, on the other hand, are not
stiffened.

For n normal to the twofold axis the stiffened elastic
constants are

C66 =C66+(e16n 1+e36n3) /6,E 2

C44=C44+(e14nl+e34n3) /E,
and

C46 =C46+ (e16n 1 +e36n 3 )(e 14n 1 + e34n 3 )/eE

where

E'=6')ln 1+633n 3+26l3n]n32 2

while the remaining elastic constants remain unstiffened.
From Eqs. (16) and (19) we thus obtain

pvo ——C66n ~+C44n 3+2C46n ~n3
2 E 2 E 2 E

+ [e16n 1+(e36+e14)n ln3+e34n 3 l'« (22)

2 E
pv 0 —C22

showing no stiffening, while the velocities of the other two
modes, which are stiffened, are given by

showing that the pure T mode is stiffened. Since none of
the elastic constants entering into the expressions for I l~,
I 33 and I l 3 are stiffened, the velocities for the mixed
modes, as given by Eq. (17) are not affected by the
piezoelectric coupling.

When the only crystallographic symmetry is a mirror
plane the point group is monoclinic m. When n is per-
pendicular to this plane, the pure mode velocity is given
by

is unstiffened, while the mixed-mode velocities given by
Eq. (17) are stiffened.

To sum up, in general when n lies along or is perpen-
dicular to a twofold axis the pure mode undergoes
piezoelectric stiffening, while the other two modes are
not stiffened. When n lies in or is normal to a mirror
plane, the converse is true, i.e. , the pure mode is
unstiffened, while the other two modes are stiffened. If
there is additional crystallographic symmetry, the re-
duced number of independent elastic, piezoelectric, and
permittivity coe%cients results in a simplification of the
expressions for the stiffened elastic constants and veloci-
ties. Unstiffened modes remain unstiffened, but it can
happen that through the elimination and cancellation of
certain terms that a stiffened mode becomes unstiffened.
For example, taking n~~[100] in a tetragonal 4mm crystal
(e.g., barium titanate), the pure L mode is unstiffened be-
cause n is perpendicular to the (100) mirror plane
(pu =C11). The pure T mode polarized in the [010]
direction is also unstiffened because n lies in the (010)
mirror plane (pv =C«). It is only the T mode polar-
ized in the [001] direction that is stiffened
(PU =C44+e15«»).2 E 2

Figure 1 depicts a set of principal plane sections of the
phase velocity surface of Rochelle salt (orthorhombic
222), illustrating the effect of piezoelectric stiffening on the
pure T modes, and absence of stiffening on the mixed
modes. (Most of the materials constants used in this and
subsequent calculations reported in this paper are listed in
Table II.) Actually, the stiffening of the pure T mode for
n lying in the (100) plane can barely be discerned. This is
because the change in pv for this mode is proportional to
(e25+e36) which happens to be fairly small. The changes
in pU for the pure T modes in the (010) and (001) planes
are proportional to (e36+e14) and (e25+e14), respective-
ly. Both of these factors contain the coe%cient e~4, which
for Rochelle salt is extremely large, hence, the very large
stiffening of the T modes for these two planes. A twofold
axis, which in addition is normal to a mirror plane, im
plies the existence of a center of inversion, and thus there
can be no piezoelectric effect.
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(001 ) where

G =—'A;IA;I,

H =—'e„„A)„Ap,A3t,

(3 l)

(32)

(010)

mixed
modes

(100)

and e„„is the alternating symbol. The three solutions to
Eq. (30) can be written in the form

A.„=2G' cos(g+ —,
'm.n ), n =0, 1,2,

where

(33)

L

0
g= —,'arccos(H/G ) . (34)

(100I
(001)

6

(010)

In the computation of a phonon image the constant ten-
sors F and 8 need to be calculated only once, at the
outset. These are then contracted with each value of n
with respect to four indices to obtain T and A;I, G and H
are then calculated, and U is obtained from Eqs. (26), (33),
and (34).

phase velocity (km/sec)

FICx. 1. Principal plane sections of the phase velocity surface
of Rochelle salt: the un stiffened modes, ——— the
stiffened pure T mode.

C. Calculation of group velocity

The group velocity V=BE/Bk is required for the evalu-
ation of phonon flux. In the absence of dispersion V is
given by

B. General solution

tvV= v —n
C)Il

Bvn+

In general, when n does not lie along a symmetry axis
or in a symmetry plane, all three modes are of mixed
character and the secular determinant for the Christoffel
equations does not factorize. In this situation it is con-
venient to solve the cubic equation for v by the method
of trigonometric functions. ' In phonon imaging calcula-
tions quantities such as phase and group velocities and
polarization vectors, etc. , have to be computed for a very
large number of wave normals. One therefore seeks to
structure the solution in a form which makes for easy
translation into efficient computer code. The method out-
lined below, we have found, is reasonably satisfactory in
this regard.

Making the replacement

It is evident from Eq. (13) that U is a homogeneous func-
tion of degree 1 in the components of n. It follows from
Euler's theorem therefore that the term in parentheses
vanishes, and hence that

V=
Bn

(36)

1
V = U;UI.

2pv ~ll a
(37)

One way of evaluating V is by implicit differentiation
on the Christoffel linear equations. Differentiating Eq. (8)
with respect to n, multiplying the result by U; and using
the normalization condition U;U;=1 one arrives at the
expression

A, +T
Epv

3
(26) From the defining Eqs. (9) and (10) for Christoffel tensor

I;I it follows that
in Eq. (13), where

Fjmrs nj nm &ms

and Fj „=E;;~„,one arrives at the equation

(27)
E a

Va — 2~ialm &m +
Bn

jlr j r Ims m s

Epq 71p nq

U;Ul

2pv

(38)

! A;i —A5i! =0,
where

(28)

Ail =~ijlmrs nj&m nr ns (29)

is a traceless tensor and 8'/j:3Elj O'IFj . On ex-
panding the determinant in Eq. (28) one obtains the equa-
tion for A. in the form

aT aA.

6pv e (3n Bn

v
eapn p, (39)

Another method, which obviates the need to calculate
the polarization vectors for the modes, is to obtain Bv/Bn
by implicit differentiation on the Christoffel secular equa-
tion. Proceeding in this manner, making use of Eqs. (26)
and (30), one obtains

A, —3GA, —2H=O, (30) where
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TABLE II. Values taken for the elastic constants, relative permittivities, piezoelectric stress coefficients, and densities of the crystals
treated in this paper. They have been taken from Refs. I, 9, 12, and 13. In some cases where several values of the same quantity were
available, an average or interpolated value has been adopted.

C (GPa)

C22

C33

Css

Ci2
Ci3
Ci4
C23

&22

633

e (C/m )

e14
e ls

e22

e24

e2s

e32

e33

Bi~2Ge020

125.0

25.3

33.0

38

1.0

CUCl

45.4

13.6

36.3

0.41

LiIO3

81.2

52.9
17.8

31.8
9.2

7.9

5.9

0.10
0.89

0.65

0.97

AlPO4

64.0

85.8
43.2

7.2
9.6

—12.4

—0.54
—0.16

LiTa03

230

276
95.9

42
79

—11

43

43

2.7
2.0

—0.1

2.0

BaTi03

275

165
54.4

113
179
152

1970

109

21.3

—2.74

3.70

LiGa02

140
120
140
57.1

47.4
69.0
14
28

31

7.0
6.5
8.3

—0.32

—0.34

—0.17
—0.31

0.96

Ba2NaNbsO~s

239
247
135
65
66
76

104
50

52

222
227

32

2.8

3.4

—0.4
—0.3

4.3

Rochelle
salt

39.8
55.3
63.2
11.9
3.05
9.95

24.3
31.9

23.8

115
8.4
9.4

4.00

—0.15

0.11

Density
(kg/m )

Crystal
class

References

9200

23

9,12

4140

43m

9,12

5402

9,12

2566

32

12,13

7450

9,12

6017

4mm

1,9,12

4187

mm2

9,12

5300

mm2

9,12

1767

222

9,12

aX aG 2 aH
Bn 8n 3 Bn

+ (&' —G) . (40)

The derivatives BT/Bn, BG/Bn, and BH/Bn are ob-
tained in a straightforward manner from the defining Eqs.
(27), (29), (31), and (32) for T, G, and H. For instance,

(&):Fairs nIn, n, (41)
Bn

where

(1)Fairs =Fairs +Flars +FIras +FIrsa

is a constant tensor for a material.

(42)

IV. PHONON FOCUSING

A. Monte Carlo phonon image calculations

A phonon image portrays the directional dependence of
the phonon Aux emanating from a localized heat source in

a crystal. We will follow a common procedure used in
the Monte Carlo calculation of phonon images which is to
assume a uniform distribution of wave normal directions,
calculate the ray vectors V for each of these normals, and
then sort these V's in direction to form a polar plot of the
phonon intensity, summing over phonon branches as
desired. ' This procedure ignores the role of surface
directivity effects, ' and takes no account of directional
and branch dependence of the mode heat capacity. It
does, however, have the advantage of simplicity, and it
emphasizes the role of phonon focusing which is the ma-
jor source of anisotropy in the phonon Aux.

A number of intensity plots calculated in this way are
provided in later sections of this paper. Each of these is
composed of approximately 3 X 10 ray vectors. The
acoustic symmetries' of the crystals considered have been
used to map each ray vector into its symmetry equivalent
positions thereby considerably reducing computational
time. The calculations have been done on an IBM 3083
mainframe computer and take approximately 1 min of
CPU time per image where there is a high degree of sym-
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metry to be exploited, and proportionality more where
there is less symmetry.

B. Phonon focusing and the slowness surface

'=[S VEi (43)

The slowness surface for a typical crystal will possess neg-
atively and positively curved regions. The zero curvature
or parabolic lines separating these regions map on to
focusing caustics. The topology of the slowness surface is
of considerable interest in understanding phonon-focusing
patterns. The curvature of this surface is given by

4

4 (P22P33+P33P11+P11P22 P12 P23 P31) (44)

where

The phonon flux emanating from a point heat source in
a crystal is, in general, highly anisotropic, and caustics
along which the flux is mathematically infinite are a com-
mon occurrence. ' ' This phenomenon has a simple in-
terpretation in terms of the shape of the phonon constant
frequency or slowness surface. Phonon ray vectors
V=BE/Bn are required to be perpendicular to this sur-
face, and so the extent to which these rays are bunched or
focused in any particular direction is inversely proportion-
al to the Gaussian curvature K of the surface. The pho-
non focusing or enhancement factor A describing this
efFect is given by' ' '

rameters, the elastic constant ratios a =C I ~ /C44 and
b=C~2/C44. Two of the five cubic crystal classes, 43m
and 23, are permitted a piezoelectric effect. In both cases,
as shown in Table I, the piezoelectric matrix has the same
form, comprising only one independent coefficient e~4. It
is therefore sufficient to define a single electromechanical
coupling constant %44=(e14/e11C44)' . Rather than at-
ternpt here a complete classification of all the focusing
patterns that can exist subject to the three control parame-
ters a, b, and E44, we will limit the discussion to some ac-
tual materials and their neighboring regions of parameter
space.

Figure 2 shows the location on an (a,b) plot of the
more strongly piezoelectric crystals that are known based
on data from the tabulations of Cook and Jaffe, Hear-
mon, ' and Cook. ' The crystals essentially fall into three
main categories. A few are nearly elastically isotropic,
i.e., have a =b+2; there are some of fairly large and posi-
tive elastic anisotropy 6=a —b —2, and a number of fair-
ly large and negative elastic anisotropy A.

The influence of piezoelectric stiffening is greatest when
a crystal is elastically isotropic or nearly so. We will dis-
cuss this category of crystals in some detail because they
display phenomena which differ markedly from those of
nonpiezoelectric media. Crystals falling into this category
are Bi4Ge3012, Bi4Si3012 and K2Mg2(SO4)3.

In the limit 6=0 and K~ ——0 the ST and FT phonon
branches are completely degenerate and all three sheets of

U

an;an, -
(45)

These second-order derivatives are obtainable in a
straightforward way by implicit differentiation on Eqs.
(26) and (30) and expressions similar to, but somewhat
more complicated than, those in Eqs. (39) and (40)
emerge. We have used these results to locate the regions
of different curvature on the slowness surface depicted
later in Fig. 1 1(d).

A fundamental constraint on phonon focusing in non-
piezoelectric crystals in the long-wavelength continuum
limit is that the fast phonon branch (which is usually, but
not always, associated with longitudinally polarized
modes) cannot form focusing caustics. In order to do so,
the inner sheet of the slowness surface would have to pos-
sess negatively curved regions, and hence it would be pos-
sible to find a straight line passing eight or more times
through the complete three-sheeted surface. Since the
equation of the slowness surface is of degree 6, this is not
possible.

This constraint does not apply to piezoelectric crystals
for, as we have seen, the equation for the slowness surface
for such crystals is, in general, of degree 12. Later in this
paper we provide two examples of crystals which do
indeed have fast phonon branch caustics.

V. PHONON FOCUSING IN CUBIC CRYSTALS

Phonon focusing in nonpiezoelectric cubic crystals has
been the subject of a number of investigations.
The focusing patterns of these crystals depend on two pa-

I

-2

FIG. 2. Elastic constant ratios of the more strongly piezoelec-
tric cubic crystals (a =C~~/C44 and b =C~2/C44).
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the slowness surface are spherical. There is no focusing
whatsoever. With 5=0 and K44 allowed to deviate from
zero the ST sheet remains spherical, with radius
(p/C~)'~ while the FT sheet contracts inwards every-
where except in the ( 100) and ( 111) directions where it
maintains tangential contact with the ST sheet. There are
not the familiar conical degeneracies in the (111) direc-
tions that exist when K44 ——0 and h&0. The polarization
field for the two modes possesses singularities at the de-
generate points. In a small circuit around one of these
degenerate points the polarization field rotates by 2mn,
where the rotary index n =+1 or —1. Near the (111)
degenerate points the FT polarization field points radially
outwards while the ST polarization is circumferential.
The rotary index of this degeneracy is therefore n =+1.
For the (100) degeneracies the polarization field has ro-
tary index n = —1. For moderate values of K44 (provid-
ing 6 remains zero) all three sheets of the slowness sur-
face are entirely convex and there are no focusing caus-
tics.

If K44 is now fixed at some value and 6 allowed to de-
viate from zero, each (111) tangential degeneracy is
transformed into an n = ——,

' point of conical degeneracy
in the (111) direction and three n =+—,

' conical points
symmetrically positioned around that ( ill ) direction in
the [ 110J planes. For b, ~ 0 and increasing, the three
n = + —,

' conical points move towards the neighboring
(110) directions. Figure 3 depicts the ST sheet of the
slowness surface and the associated polarization field at
this stage. The elastic, piezoelectric, and permittivity con-
stants for the calculation are those of Bi4Ge30~2, except
that the value of C~~ has been reduced from 116.0 to
114.21 GPa. The conical points are labeled C and are

clearly the location of singularities in the polarization
field. As 6 increases further, pairs of conical points ap-
proaching from opposite sides meet in the ( 110) direc-
tions, break apart again, and then move along the I 100)
planes until finally merging with the (100) degeneracies,
labeled D, to form n =+1 tangential degeneracies. It is
interesting to note that the value of the electromechanical
coupling constant used in the calculations for Fig. 3,
K44 ——0.015, is very small and yet has a profound effect on
the topology of the slowness surface, establishing acoustic
axes (the additional conical points) where none occur for
nonpiezoelectric cubic crystals. The reason for this is that
the piezoelectric stiffening is in direct competition with the
residual elastic anisotropy in lifting the degeneracy of the
transverse sheets of the slowness surface. Well before C~~
reaches the value 116.0 GPa of Bi4Ge30~2 the elastic an-
isotropy becomes dominant, and the effect of the elec-
tromechanical coupling is "quenched. " For 5 &0 and in-
creasing in magnitude, the three n =+—,

' conical points
move towards their nearest ( 100 ) directions where they
merge with the n = —1 degeneracies there to form n = + 1

tangential degeneracies.
The emergence of the conical points for either b, &0 or

6 & 0 is accompanied by the formation of ST branch caus-
tics. For small 6 and K44 these caustics are very faint,
however, on account of the deviation of the slowness sur-
face from spherical being so slight. A polar plot of the ST
phonon intensity of a hypothetical sample where both

and It44 are of moderate size is shown in Fig. 4.
The pairs of prominent cusps, located approximately mid-
way between the ( 100) and neighboring ( 111) direc-
tions, are positioned alongside conical points.

The second category comprises crystals such as
Bi~2Ge02o, NH4C1, and NaC103 which have large and

FIG. 3. The ST sheet of the slowness surface of a medium
with C~ 1 = 114.21 GPa, C~2 =27.0 GPa, C~ =43.6 GPa,
e &4 =0.038 C/m, and relative permittivity e» = 16. Conical
points are labeled C, and tangential degeneracies are labeled D.

FIG. 4. Polar plot of the ST phonon intensity for a medium
with C»/C44=2. 39, Cl~/C44=0. 62, and K44=0.4. Phonon in-
tensity corresponds to the darkness of the plot.
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positive elastic anisotropy. We have not found any crys-
tals in this category for which the piezoelectric stiA'ening

is large enough to change the topology of the slowness
surface and the focusing pattern. The changes that do
occur are merely qualitative alterations in the positions
and shapes of the focusing caustics. As an example,
Bi~2GeG2O (class 23) is a crystal with a particularly large
piezoelectric eff'ect, having K44=0.34. Figure 5(a) shows
the calculated ST and FT focusing pattern of this crystal
when piezoelectric stifFening is neglected. This type of
focusing pattern is displayed by numerous crystals such as
CaF2 and CsC1, etc. , and has been discussed in detail by
Every and Hurley and Wolfe. Figure 5(b) shows the

Aux pattern of Bi~2Ge020 when piezoelectric stifFening is
included. The most significant changes are to the shapes
of the ST caustics. These form much narrower structures
than before, and are more rounded, particularly near to
the (111)directions.

A large proportion of piezoelectric cubic crystals fall
into the third category, having negative anisotropy h. Ex-
amples are III-V and II-VI compounds such as CxaP,
InAs, and CdTe and the copper halides CuC1, CuBr, and
CuI. The latter group of crystals are interesting for their
anomalous dynamical properties, and all have particu-
larly large electromechanical coupling. Figure 6(a) shows
the calculated FT and ST phonon intensity pattern for

(bj

1$ V

I
. . r

. ~

FICs. 5. Polar plot of the ST and FT phonon intensity pattern
of Bi~2Ge020 (a) with the piezoelectric effect ignored, (b) with
piezoelectric stiffening included.

FIG. 6. Polar plot of the ST and FT phonon intensity pattern
of CuCl (a) with the piezoelectric effect ignored, (b) with
piezoelectric stiffening included.
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CuC1 (class 43m) with the piezoelectric effect ignored. It
is the well known pattern displayed by Ge, Si, and
numerous other cubic crystals. ' ' ' Figure 6(b) shows
the modified intensity pattern when the piezoelectric effect
is taken account of. In spite of the very large elec-
tromechanical coupling constant (K44 ——0.42) there are no
new topological features, merely qualitative changes to the
existing caustics. The pairs of FT caustics running be-
tween neighboring (100) directions are further apart and
somewhat distorted in shape. The ST boxlike structure
around the [001] direction has a more rounded appear-
ance, and the "Maltese-cross" structure inside the box is
more highly developed.

As shown by Every, ' the piezoelectric matrices for
classes 6 and 6m 2 are not rotationally invariant about the
Z axis, and so these classes lose their transverse isotropy
under stiffening of the elastic constants. The acoustic
symmetry for both these classes reverts to 6/mmm. The
effects are most dramatic for crystals like GaSe for which
the two transverse sheets intersect in the absence of the
piezoelectric effect. Stiffening of the elastic constants
causes these lines of wedge-shaped degeneracy to be re-
placed by a small number of points of conical degeneracy,
and an associated pattern of caustics emerges.

VI. PHONON FOCUSING
IN OTHER CRYSTAL SYSTEMS

For crystals having several independent piezoelectric
coe%cients there are numerous different electromechanical
coupling constants that can be defined, none of which
solely provide a complete characterization of the inAuence
of the piezoelectric stiffening. It is desirable, however, to
choose a single suitable parameter by which the strength
of the piezoelectric coupling can roughly be gauged.
Since most of the materials we will be discussing in this
section are drawn from crystal classes for which e&4 ——0 so
that K44 ——0, we will be making reference instead to the
values of K33 —(e33/e33C33)' or Kjj=(ejj/e'jjCjj)'
whichever happens to be nonzero. In the case of Rochelle
salt (class 222) we will quote K44 since Kj j

——K33 —0.

A. Hexagonal system
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As can be seen in Table I, the elastic constant matrix
has the same form for all seven of the hexagonal crystal
classes. This form of the elastic constant matrix is in fact
invariant under all rotations about the Z axis, and conse-
quently, in the absence of the piezoelectric effect, hexago-
nal crystals possess transverse acoustic isotropy. The
phonon-focusing patterns that nonpiezoelectric hexagonal
crystals display have been described by McCurdy and
Every.

Five of the hexagonal classes lack a center of inversion
and are permitted a piezoelectric effect. Classes 6, 6mm,
and 622 have piezoelectric and permittivity tensors which
are invariant under rotations about the Z axis. These
classes therefore retain their transverse-acoustic isotropy
under piezoelectric stiffening of the elastic constants. Fig-
ure 7(a) depicts a meridian section of the slowness surface
of LiI03 (class 6) both with and without piezoelectric
stiffening. Because of the very large electromechanical
coupling (K33 —0.58), there is a substantial difference be-
tween the two cases. With stiffening the quasi-T slowness
curve is pulled inwards to such an extent that it no longer
intersects the pure-T curve, and the angular widths of the
negatively curved regions of this curve are reduced from
22' to 5. Figure 7(b) shows the corresponding section
through the group velocity surface. The effect of
stiffening on the quasi-T velocity curve is to cause it to
bulge outwards near the [100] direction and to bring the
pairs of cusps so close together that they can not easily be
resolved.
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FIG. 7. (a) Meridian section of the slowness surface of LiIO3
without piezoelectric stiffening, ———with piezoelectric

stiffening. (b) Corresponding group velocity curves.



1442 A. G. EVERY AND A. K. McCURDY 36

B. Trigonal system

Two of the technologically most important piezoelectric
crystals, quartz and LiNb03, belong to the trigonal sys-
tem. Phonon imagining has been carried out on both
these materials by Koos and Wolfe. In the case of
LiNb03 the effects of piezoelectric stiffening of the elastic
constants are quite dramatic. The FT phonon branch ac-
quires a prominent set of caustics that meander above and
below the (001) plane, while the ST caustics become frag-
mented and reduced in extent. Quartz, on the other
hand, has appreciably smaller electromechanical coupling
constants, and piezoelectric stiffening has a barely percep-
tible effect on the focusing pattern. ' ' Three other trigo-

nal crystals which are exceptional as regards the large size
of their electromechanical coupling constants are A1PO4,
tellurium (Te), and LiTa03.

The ST and FT phonon intensity pattern for A1PO4
(class 32) in the absence of the piezoelectric effect is
shown in Fig. 8(a). It is almost indistinguishable from
that of quartz. However, the electromechanical coupling
constant for AIPO4 (K~~ =0.293) is much larger than that
of quartz (K» =0.093), and the focusing pattern, as
shown in Fig. 8(b), is considerably changed by stiffening.
The caustics labeled 3 bulge out much further than be-
fore and the ridge of large but finite phonon intensity (pre-
cursor) labeled 8 has evolved into a pair of caustics.

The phonon intensity pattern of tellurium (class 32)

i ~

FIG. 8. Polar plot of the ST and FT phonon intensity of
AlPO4 {a) without piezoelectric effect, (b) with piezoelectric
effect.

FIG. 9. Polar plot of the ST and FT phonon intensity of
LiTa03 {a) without piezoelectric effect, {b) with piezoelectric
effect.
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also bears some resemblance to that of quartz. The effect
of the piezoelectric stiffening for Te (K~I =0.34) is even
greater than for A1PO4. The bulging out of feature A is
more pronounced, and there is a considerable
modification to the focusing structures in the vicinity o
the Z axis.

The phonon intensity pattern of LiTa03 (class 3m) be-
fore and after the inclusion of the piezoelectric effect is
shown in Figs. 9(a) and 9(b) (K33=0.195). The most no-
ticeable result of the stiffening is the transformation of the
FT structure A into a pair of caustics that meander above

and below the (001) plane. The intense band thus formed
is almost identical in appearance to the corresponding
feature in LiNbO3. The ST focusing structure labeled B
has no counterpart in LiNbO3. The effect of the stiffening
is to cause it to become narrower and more elongated.

C. Tetragonal system

Phonon focusing in nonpiezoelectric tetragonal crystals
has been surveyed by Winternheimer and McCurdy.
Five of the tetragonal classes, namely 4, 4, 422, 4mm, and
42m, lack a center of inversion and are permitted a
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FICx 10 Polar plot of the ST and FT phonon intensity of BaTi03 (a) without piezoelectric effe, , pffect (b) with iezoelectric effect. (c) ST~ ~

sheet of the slowness surface of BaTi03.
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piezoelectric effect. To date, the only tetragonal crystal
on which experimental phonon imaging has been reported
is TeO2 (class 422). This material is unusual in its ex-
ceptionally high degree of elastic anisotropy. As a result
the phonon images which Hurley, Wolfe, and McCarthy
have obtained depend very much on where the time gates
are set for acceptance of the arriving phonon flux. As
noted by these authors the electromechanical coupling is
small, changing the elastic constants by 1ess than 1% and
having little influence on the phonon focusing.

Of the crystals on which data is available, the one
whose phonon focusing is most strongly influenced by
piezoelectric stiffening is BaTi03 (class 4mm). Figure
10(a) shows the ST and FT phonon intensity pattern
when the piezoelectric effect is ignored, and Fig. 10(b)
shows the modified pattern when stiffening of the elastic
constants is included (IC33 —0.29). The largest changes
come about in a region extending approximately 30 on ei-
ther side of the (001) plane, and affect both the ST and
FT branches. This phonon intensity pattern bears a re-
markable resemblance to the focusing patterns of the neg-
ative anisotropic cubic crystals such as CuC1 discussed
earlier, particularly in the region of the Z axis. The simi-
larity is brought home even more by an inspection of the
slowness surface of BaTi03. Fig. 10(c) shows the ST
sheet of this surface. The topology of this surface and the
associated polarization field are almost identical to that of
crystals like GaAs and CuC1, except that in place of
n =+1 tangential degeneracies in the [100] and [010]
directions there are pairs of n =+—,

' conical points labeled

C~ and C2 to either side of these directions in the (001)
plane.

There are a number of crystals related to BaTiO3 which
have even larger electromechanical coupling coefficients.
Complete sets of piezoelectric stress coefficients are, how-
ever, not available for most of these. We note in passing
that the material Sr4KLiNb~0030 (class 4mm) has very
large electromechanical coupling (E33 —0.54) but exhibits
little phonon focusing and no caustics either with or
without piezoelectric stiffening. This is partly attributable
to the fact that the elastic constants satisfy the condition
for transverse isotropy, C66= —,'(C~~ —C~2), and so do the
piezoelectric and permittivity coefficients.

D. Orthorhombic system

Several of the most strongly piezoelectric crystals be-
long to the orthorhombic crystal classes 222 and mm2.
The best known of these is Rochelle salt (class 222). Fig-
ures 11(a) and 11(b) show the ST and FT phonon intensi-
ty patterns before and after the inclusion of piezoelectric
stiffening (I ~ = 1.15). While there are some features
which are recognizably shared by both patterns, stiffening
of the elastic constants has the effect of eliminating the
very prominent crescent-shaped structures 3, which are
slightly unfolded lips events, and rendering the overall
pattern of caustics much more complex. Even more re-
markable is the effect that electromechanical coupling has
on the longitudinal phonon branch. The intensity pattern
for this branch coupling included is shown in Fig. 11(c).
It is dominated by the set of four crescent-shaped focusing

VII. NONLINEAR EFFECTS

The constitutive relations for piezoelectric media can be
extended by incorporating terms which are quadratic or
higher order in the electric and elastic variables. These
nonlinear terms lead to various consequences. Phonon-
phonon scattering and anharmonic decay are governed
largely by the third- and higher-order elastic constants but
are also influenced by the higher-order piezoelectric cou-
pling coefficients, nonlinear permittivity coefficients, and
various cross terms. These anharmonic processes all fall
off rapidly with decreasing phonon frequency and thus
can be rendered negligible by operating at sufficiently low
temperatures.

Another consequence of these nonlinear terms is that
the electric polarization P and electric displacement 0 do
not average out to zero for a thermal distribution of pho-
nons, and thus there is a pyroelectric effect. The most ob-
vious terms to consider in this context are those involving
the second-order piezoelectric stress coefficients
e„'IJ——Be„i/BSJ. As a rough estimate on this basis, the po-
larization of a medium is given by

P-e' '(S ) -e' 'uyC, (46)

where e' ' and C are suitable averages of the e,'z~ and CIJ,
respectively, and u is the thermal energy density. One
therefore expects the localized heat pulse in a phonon im-
aging experiment to be accompanied by a net dipole mo-
ment,

p-e'"UJC, (47)

structures 8. Figure 11(d) shows the corresponding (in-
nermost) sheet of the slowness surface. The oval, shaded
areas are regions of negative Gaussian curvature. The
parabolic lines bounding these regions map onto the cres-
cent caustics 8. As pointed out earlier, the fast phonon
branch cannot display caustics when the elastic constants
are unstiffened. These crescent caustics only come about
because of the very large electromechanical coupling in
Rochelle salt.

Another orthorhombic crystal which has fast phonon
branch caustics is Ba2NaNb50~5 (class mm2). Figure 12
shows the /=0 section through the slowness surface of
this material (E33 =0.70). There is a pronounced indenta-
tion centered on the [001] direction which leads to strong
focusing in the region of this axis. Interestingly, although
there are points of conical degeneracy between the outer
two sheets, and therefore necessarily ST caustics, the
overall intensity of the transverse focusing structures is
much less than that of the L caustics.

LiGa02 and Li~Ge03 are two other orthorhombic crys-
tals with large electromechanical coupling. Figure 13
shows the ST and FT focusing pattern of LiGa02 (class
mm2), taking account of this coupling (%33—0.30).
Without stiffening of the elastic constants the caustics la-
beled A are absent, structures 8 and C are joined togeth-
er, and structures C and D are separated Li2G. e03 (class
mm2) has a similar focusing pattern to LiGa02 and also
comparable electromechanical coupling effects
(K33 —0.34).
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(c)

FIG. 11. Polar plot of the ST and FT phonon intensity of Rochelle salt (a) without piezoelectric effect, (b) with piezoelectric effect.

(c) The L branch phonon intensity pattern, and (d) the L sheet of the slowness surface of Rochelle salt.

where U is the total energy contained in the pulse.
Surrounding this dipole there would be a long-range

electric field,

47TE'1' 47TEr C
(48)

which could conceivably produce a measurable signal in
the bolorneter. Taking LiNb03 as an example, with
e' '=

~
e333

~

—21 C/m, C=C44=6X10' N/m, and
@=@~I——0.392 X 10 F/m, U= 10 J, and r = 10 m,
one obtains E=0.007 V/m. Assuming an active bolome-
ter length of 10 m yields a signal of 1 pV. Since this
signal depends on the integrated energy content of the

heat pulse, it would remain essentially unchanged during
the initial expansion of the heat pulse. Also p would have
a specific orientation in any crystal, and the directional
dependence of the bolometer signal would give an indica-
tion of this orientation. Equation (47) also implies that an
individual phonon in a piezoelectric medium is endowed
with a dipole moment p-e' '%co/C. Perhaps the ex-
istence of this dipole could have observable consequences.

VIII. CONCLUSIONS

Using available data, we have shown that in a small but
significant proportion of crystals piezoelectric stiffening of
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FIG. 12. The /=0 meridian section of the slowness surface
of Ba2NaNb~0~5.

FIG. 13. Polar plot of the ST and FT phonon intensity of
LiGa02 with piezoelectric stiffening.

the elastic constants has a pronounced influence on pho-
n on focusing and other acoustic properties. On the
whole, the effects of stiffening tend to be important only
when the electromechanical coupling constants exceed
-0.1. For crystals which are nearly isotropic however,
the piezoelectric effect is in direct competition with the re-
sidual elastic anisotropy and can play the dominant role
even when the electromechanical coupling is much less
than 0.1.

One of the important consequences of piezoelectric
stiffening is that the equation for the slowness surface is
raised in degree from 6 to 12. It thus becomes possible
for the innermost sheet of this surface to possess regions
of negative Gaussian curvature, and consequently for the
fast phonon branch (normally longitudinal) to display
focusing caustics. We have identified two crystals, Ro-
chelle salt and Ba2NaNb50j5, in which this phenomenon
does indeed occur.

Our results underline the importance of taking into ac-
count the stiffening of elastic constants in the calculation
of phonon focusing patterns. Although in many cases the
results of stiffening are small, there are too many exam-
ples where the contrary is true for the effect to be ignored.
The methods we have described for solving the Christoffel
equations, and calculating group velocities and phonon

focusing factors are sufficiently general to be applicable to
crystals of any symmetry.

In conclusion, phonon imaging has an important role to
play in the study of piezoelectric materials. In principle,
it provides a means of measuring elastic constant ratios
and electromechanical coupling constants and also of
probing microscopic and macroscopic defects and other
phonon scattering processes. An interesting question
that needs to be resolved is whether free-carrier shorting
of the piezoelectric effect is operative and observable at
thermal phonon frequencies. The strong electron-phonon
coupling in piezoelectric semiconductors could make it
difficult to achieve ballistic phonon propagation over ex-
perimentally significant distances. Another important is-
sue for phonon imaging is that many of the more exotic
piezoelectric materials have large unit cells or small elastic
moduli and dispersive effects can therefore be expected in
these materials at frequencies well below 1 THz.
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