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Two-dimensional virial and spin-wave coeScients of spin-polarized gases (Ht, Dt, He)
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We present a quantum phase-shift calculation of the two-dimensional second virial coefficient Bz
and spin-wave characteristic parameters for spin-polarized quantum gases H &, D T, and 'He. Em-
phasis is put on the study of quantum exchange effects which become essential in the 1-K range and
below. The dependence of Bz upon the nuclear polarization is analyzed. The calculation of
statistics-independent coefficients is extended up to 50 K. The effect of a reduced dimensionality on
the second virial and spin-wave coefficients is discussed and demonstrated by a comparison between
2D and 3D results. Two-dimensional bound states of helium dimers are estimated with the best
present potential of Aziz et al. to be E~('He-'He; 2D) = —0.88 & 10 ' K and Ep( He- He;
2D) = —3.38 mK.

I. INTRODUCTION

Spin-polarized quantum fluids such as H&, D&, and He
are the subject of considerable interest, both theoretical
and experimental, because these systems exhibit enhanced
indistinguishability when only one spin state is occupied.

Such effects are well known to be present in dense de-
generate phases but their analysis is then difficult because
of the strong correlations due to the interatomic interac-
tion. It was recently pointed out that even in dilute,
nondegenerate gases, particle identity has nontrivial mac-
roscopic consequences' " which affect both equilibrium
properties of the gas (e.g. , second virial coefficient, spin
susceptibility) and transport properties. A prominent
feature of the theory is the prediction that "spin waves"
(oscillatory spin diffusion) should exist in spin-polarized
gases. Experiments have been recently performed which
demonstrate the existence of spin waves in H t (Refs. 12
and 13), in He diluted in He (Ref. 14), and in pure gase-
ous He&. ' All the work mentioned above is related to
three dimensional (3D) systems but similar effects are
indeed predicted to occur in two dimensions. ' '

Concern with two-dimensional phases came along with
the achievement of spin-polarized gases. In particular, the
effect of the nuclear polarization on the static and dynam-
ic properties of the adsorbed phases still needs to be stud-
ied thoroughly. Two-dimensional phases indeed play a
crucial role in experiments on spin-polarized fluids be-
cause the presence of an adsorbed phase cannot be avoid-
ed (as long as electromagnetic trap confinement is not
achieved). Relaxation of the nuclear polarization (and
recombination in the case of hydrogen and deuterium)
occurring in the adsorbed phases is usually minimized by
means of cryogenic coatings which reduce binding ener-
gies. ' But, in spite of special attention to this prob-
lem, one can never prevent the formation of an adsorbed
layer at low temperatures. Whether or not this adsorbed
layer can be considered as a two-dimensional phase de-

pends on the nature of the adatom-substrate pair. Rather
good for He atoms on solid substrates (Hq, Ne) (Ref. 21)
this hypothesis becomes more questionable in the case of
the adsorption of H& on superfluid helium where one
should take into account the width of the wave function
perpendicular to the surface and eventually the dynamic
response of the He surface to the presence of an adatom.
The first of these two problems has been already ad-
dressed in great details' ' ' and our own study of the
two-dimensional phase of H & is, in this respect, more
academic. We nevertheless include it here for the sake of
comparison of the static and dynamic properties of H&,
D&, and He in two dimensions.

Section II is devoted to the study of the equation of
states of submonolayers of adatoms by a virial expansion.
Although B~ has already been calculated for He and
H), ' the quantum effects of statistics have not yet been
thoroughly analyzed and the role of the nuclear polariza-
tion remains to be studied in these two-dimensional sys-
tems. This is done in Sec. II where the second-virial-
coefficient formalism is presented, taking explicitly into
account the dependence of Bq on the nuclear polariza-
tion. Numerical results concerning H&, D&, and He are
presented and discussed with comparison to the 3D case.

Section III is devoted to the study of the two-
dimensional spin-wave characteristic coefficients p, their
quality factor, and D, the spin diffusion coefficient related
to the damping of these waves. As was already noted in
Ref. 17 for the case of HI, the dimensionality is shown to
influence strongly the order of magnitude of these
coefficients at low temperatures. Besides, our results
show that any tentative scaling procedure is doomed to
failure because of the extreme nonlinear sensitivity of col-
lisions of light quantum gases to dimensionality and to
the de Boer parameter. All technical details and physical
comments about interaction potentials, 2D scattering
phase shifts, and bound states are given in Appendices A,
B, and C.
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II. TWO-DIMENSIONAL SECOND VIRIAL
COEFFICIENT OF Hf, Df, AND HE:

EFFECTS OF THE NUCLEAR POLARIZATON

A. Second-virial-coeScient formalism

The virial expansion of the pressure P in two dimen-
sions is defined by a series in powers of the density, the
leading terms of which are

PS 2D N=1+B2 (T)—+
Nkg T S

where N is the total number of atoms of the two-
dimensional gas, S is the surface offered to this system, T
is the temperature, k~ is the Boltzmann constant, and
B2 (T) is the 2D second virial coefficient.

The major feature of this expansion is that the second
virial coe%cient is entirely determined by the two-body
properties of the gas so that it can be deduced from the
study of a fictitious system containing only two atoms (see
for instance Ref. 26 about cluster properties). The Pauli
principle requires a proper symmetrization of the wave
function of the two atoms with respect to the electrons
and the nuclei. The case of He is the simplest: at the
low energies considered here, the two electrons of each
ground-state atom can be considered, on the whole, as a
nondissociable boson. As a consequence, the symmetry
properties of the electronic wave function do not interfere
with the symmetry requirements on the nuclei, as they
will below in the case of H). Each of the two He nuclei
of spin —,

' behaves like a fermion. Therefore, when the nu-

clear spins are coupled in the antisymmetric singlet state
I =0 of the total nuclear spin, their orbital wave function
must be symmetric and conversely, when the nuclear
spins are coupled in the symmetric triplet state I = 1, their
orbital wave function must be antisymmetric to satisfy the
global antisymmetry required for fermions.

From this argument, it can be shown that

('He) = (Ps )B' + + (Pr )B' (2)

B2D(Ht) (P )B2D+ + (P )B2D— (2')

Formulas (2) and (2') can be merged under the general
form (equally valid for Ht):

B2 = —,
' (1+@11)B~+ + —,

' (1—@II )B2 (3)

where II is the nuclear-spin-permutation operator and
where e= + I in the bosonic case (Ht) and e'= —1 in the
fermionic cases ( He, D t ).

Qualitative and quantitative effects of statistics are more
easily discussed with the following alternative form of Eq.
(3)

B2 B2,dir +&( 11)B2,exch (4a)

with straightforward definitions of B2 d;, and B2,„,h in
terms of B2 + and B2

From the treatment of Ref. 26 transposed to the 2D
case in Ref. 24, it is not difticult to establish the following
expressions for B2djg and B2,„,h in terms of the two-
dimensional scattering phase shifts 6 (k) associated with
the mth partial wave [see Appendix 8 for details about
5 (k)]

where (Ps ) and (Pr ) are the quantum average values of
the projectors on the singlet and triplet states of the total
nuclear spin. The two coe%cjents Bp

+ pr Bp are the
second virial coefficients of spinless boson (with sym-
metric orbital wave functions) or spinless fermions (with
antisymmetric orbital wave functions).

The case of H& is easily analyzed with the same ap-
proach: the only difference is that the orbital electronic
wave function of the pair of colliding atoms, being an-
tisymmetric in the exchange of the spin-polarized elec-
trons, is also, as a consequence, antisymmetric in the ex-
change of the protons alone. Because of this extra change
of sign, Eq. (2) is replaced by

4 +co
B2,d;, (T)=

z g J k dk 5 (k)exp( /3A k /2p), —
m ——oo

l4 +-
B2,,„,h(T)= — g ( —1) f k dk 6 (k)exp( /3A k /2p), —

4 om = —oe

(4b)

(4c)

where the phase shifts 6 (k) are required to be continu-
ous functions of the wave number k with the boundary
conditions 6 (0)=nor (n is the number of bound states
with azimuthal quantum number m ). Normally, the
second virial coefficient also contains a contribution of the
two-particle bound states. We have omitted it here be-
cause the best known H)-H~ potential does not allow any
bound state. In the case of He, the Aziz potential ac-
comodates a bound state, but its binding energy is so
weak (less than 10 K) that its contribution to Eqs. (4) is
absolutely negligible in all regions of physical interest (see
Appendix C).

In these equations, k is the de Broglie wavelength of a

H or He atom of mass m at temperature T,
A, =h /(2mmkg T)' p is the reduced mass of the relative
particle, p=m /2.

Formula (4) calls for some general comments
(i) It is easily shown that

&(II)&1,2I +1—
the lower value being obtained for the unpolarized system
and the higher one for the totally polarized one. In other
words, nuclear polarization does reinforce the effects of
quantum statistics.

(ii) For the spin- —,
' cases (Ht, He)
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B2 (Dt, M =0)=B2

BP(D&,M = l)=-'B'o-+-'B'o+
(6a)

(6b)

(iii) The coefficient B2,„,h has a physical meaning: It is
directly related to the magnetic susceptibility 7 in low
magnetic field of a dilute nondegenerate gas. One can

(~) 1+M
2

where M is the nuclear polarization 0 (M ( 1. The case
of Dt' is in general more involved as it depends on two
spin variables, the nuclear polarization, and alignment.
Let us quote the result for the two extreme cases (zero or
complete polarization)

easily show (see for example Ref. 24):

(X—Xp) IXp= —eB P~„h IS

(iv) Bq,„,h contains two contributions: The first one
comes from the statistics of indistinguishable ideal parti-
cles. It is obviously negative at all temperatures so that
the pressure of an ideal gas of bosons is always lower than
that of an ideal gas of fermions. This is also true when
the effect of the interparticle potential is taken into ac-
count (second contribution). It is a general property of
2D as well as 3D systems which has been demonstrated
in Ref. 28. As an illustration, Tables I, II, and III show
that 82,„,h is negative for the three gases considered here.

(v) Bq,„,h, being an alternate function of the phase

TABLE I. Virial and spin-wave coeScients for H& vs temper-
ature.

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.12
0.14
0.16
0.18
0.20
0.24
0.28
0.32
0.36
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00

10.00
20.00
40.00
50.00

2D& Z, dir

(A )

2289.6
1492.6
1095.5
870.49
725.54
624.04
548.82
490.72
AAA 43
406.65
348.57
305.94
273.27
247.38
226.36
194.22
170.78
152.90
138.80
127.39
106.50
92.32
82.05
74.26
68.14
63.22
55.76
50.39
46.34
43.16
40.62
36.77
34.02
31.94
30.32
29.02
21.85
19.18
17.36
16.85

Hf
Bexch
(A }

—5244.3
—2261.3
—1398.8
—994.24
—761.65
—611.61
—507.31
—430.88
—372.63
—326.86
—259.80
—213.26
—179.22
—153.35
—133.09
—103.56
—83.23
—68.51
—57.43
—48.84
—34.16
—25.07
—19.04
—14.83
—11.78
—9.50
—6.41
—4.49
—3.23
—2.38
—1.78
—1.04
—0.64
—0.40
—0.26
—0.17
—2.10-'
—3.10

—2.51
—2.31
—2.17
—2.07
—1.99
—1.93
—1.87
—1.82
—1.78
—1.74
—1.67
—1.61
—1.56
—1.51
—1.46
—1.39
—1.32
—1.26
—1.21
—1.16
—1.06
—0.97
—0.89
—0.83
—0.77
—0.71
—0.62
—0.54
—0.47
—0.41
—0.36
—0.28
—0.22
—0.18
—0.14
—0.12
—0.01

—10
—2.10

Don
(109 —l

)

2.44
4.20
5.65
6.93
8.11
9.20

10.24
11.22
12.15
13.04
14.72
16.29
17.76
19.16
20.50
23.02
25.37
27.58
29.70
31.73
36.50
40.94
45.13
49.13
52.96
56.65
63.66
70.25
76.48
82.42
88.09
98.75

108.66
117.96
126.74
135.09
231.89
346.11
518.93
592.16

T
(K)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.12
0.14
0.16
0.18
0.20
0.24
0.28
0.32
0.36
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00
5.00
6.00

2D~ 2, disc

(A )

380.70
197.79
127.72
90.95
68.39
53.22
42.39
34.32
28.11
23.22
16.08
11.23
7.80
5.32
3.48
1.07
0.30

—1.06
—1.44
—1.59
—1.39
—0.82
—0.13

0.59
1.29
1.96
3.16
4.21
5.13
5.92
6.63
7.80
8.74
9.S2

10.17
10.71
11.78
12.55

D)
2D~ 2, exch

(A )

—3270.4
—1563.3
—1004.5
—728.16
—563.80
—455.11
—378 ~ 11
—320.84
—276.67
—241.66
—189.85
—153.58
—126.94
—106.69
—90.86
—67.95
—52.41
—41.36
—33.22
—27.08
—17.03
—11.25
—7.71
—5.43
—3.90
—2.86
—1.60
—0.93
—0.56
—0.35
—0.22
—0.09
—0.04
—0.02
—0.01
—5 ~ 10

—10
—5.10

—7.89
—6.49
—5.52
—4.82
—4.30
—3.90
—3.57
—3.31
—3.09
—2.91
—2.62
—2.39
—2.21
—2.06
—1.93
—1.73
—1.57
—1.44
—1.33
—1.23
—1.03
—0.87
—0.75
—0.64
—0.55
—0.48
—0.36
—0.27
—0.21
—0.16
—0.13
—0.08
—0.05
—0.04
—0.03
—0.02
—0.01
—5.10-'

Don
(10's-')

18.04
23.10
24.66
25.02
24.95
24.75
24.54
24.35
24.20
24. 10
24.02
24.09
24.27
24.54
24.87
25.69
26.65
27.68
28.77
29.89
32.75
35.60
38.38
41.07
43.67
46.19
50.95
55.41
59.61
63.59
67.39
74.51
81.12
87.32
93.20
98.79

111.79
123.70

TABLE II. Virial and spin-wave coefFicients for D& vs tem-
perature.
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shifts, rapidly goes to zero when the temperature in-
creases: When more and more partial waves interfere, the
collisions become quasiclassical and the eff'ects of particle
indistinguishability fade away.

20

(A )
400-

TABLE III. Virial and spin-wave coefficients for 'He vs tern-

perature.

T
(K)

2DB2,di&

(A )

He
2DB2, exch

(A')
Dpn

(10's-')

B. Results and comments

Using the 2D scattering phase shifts 5 (k) calculated
as described in Appendix 8, we computed the two con-
tributions Bqd, ,(T) and B2«,h(T), as well as the total
second virial coefficient B22D(T) for several values of the
nuclear spin polarization, and for temperatures T between
0.1 and 50 K. The results are displayed in Fig. 1 and

300.

200.

)00,

,
'

I
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0
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-200 ~
I

I
I

I-300 ~
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0.03
0.04
0.05
0.06
0.07
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0.09
0.10
0.12
0.14
0.16
0.18
0.20
0.24
0.28
0.32
0.36
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00
5.00
6.00

10.00
20.00
40.00
50.00

—1032.1

—568.80
—389.38
—296.83
—240.82
—203.44
—176.77
—156.80
—141.30
—128.91
—110.31
—96.97
—86.90
—78.99
—72.59
—62.77
—55.54
—49.93
—45.41
—41.67
—34.57
—29.48
—25.61
—22.54
—20.03
—17.94
—14.62
—12.10
—10.10
—8.48
—7.12
—4.99
—3.38
—2.11
—1.08
—0.23

1.37
2.50
4.93
6.88
7.76
7.88

—3444.5
—1718.4
—1118.0
—815~ 55
—634.19
—513.72
—428. 14
—364.35
—315.10
—276.00
—218.04
—177.37
—147.45
—124.63
—106.74
—80.75
—62.99
—50.28
—40.86
—33.68
—21.78
—14.79
—10.41
—7.52
—5.55
—4. 16
—2.44
—1.49
—0.94
—0.61
—0.40
—0.18
—0.09
—0.04
—0.02
—0.01
—0.01
—6.10
—5.1O-4

2.53
2.70
1.55
2.02
1 ~ 16
0.16

—0.77
—1.49
—1.99
—2.31
—2.57
—2 ~ 59
—2.51
—2.41
—2.30
—2.09
—1.92
—1 ~ 77
—1.65
—1.54
—1.33
—1.16
—1.02
—0.90
—0.79
—0.70
—0.55

0 44
—0.35
—0.28
—0.23
—0.15
—0.10
—0.07
—0.05
—0.04
—0.02
—9.1O-'
—2.10
—3.10

2.79
7.96

15.55
24.98
34.68
42.70
47.86
50.24
50.60
49.78
46.80
43.75
41.25
39.34
37.92
36.16
35.35
35.14
35.31
35.74
37.47
39.72
42. 18
44.73
47.30
49.85
54.82
59.58
64. 12
68.45
72.60
80.41
87.68
94.51

100.98
107.13
121.43
134.51
179.20
265.31
395.54
450.46

-400

FIG. 1. Second virial coefficient B2 of electronically-
polarized hydrogen H& vs temperature —effect of its nuclear po-
larization M. M =0 ———. M =0 3'

M =0.6; ———,M =1.

g20
2

(A')

150

I
I
I
l
I

)oo
I
I
I
I
I
I
I

50—

e", &v =o)

---- 8 (M=1 )
2D

FIG. 2. Second virial coefficient of D & vs temperature.

s M =0: B2 (D't ) =B2dir —B2 exch) ———
) M = 1:

B2 (Dl ) =B2,dir B2,exch.
2D 2D 2D

Table I for H), in Fig. 2 and Table II for D), and in Fig.
3 and Table III for He.

For these three systems, it is seen on Tables I, II, and
III that the exchange contribution becomes significant
around 1 K and below. This comes from a counterbal-
ance between the pure quantum-statistics term and the in-
teraction contribution. Above 2 K, exchange eff'ects be-
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~2D
2

(A )
200—

He 20

He. This potential has a smaller well depth (10.22 K in-
stead of 10.8 K) and a smaller hard core (2.55 A instead
of 2.63 A) than the Aziz potential of Ref. 29 that we used
here. It is thus not surprising that the virial coefficient
listed in their work, though in good agreement at high
temperatures, lies roughly 30% above our values where
Bq is minimum. This disagreement is explained by the
long-recognized sensitivity of Bq in this region to the de-
tails of the potential, near the minimum of the well.

III. SPIN-WA VE CHARACTERISTIC
COEFFICIENTS IN TWO DIMENSIONS

A. Formalism

2
j—

T(K)

-30

FIG. 3. Second virial coefficient Bq of 'He vs temperature—effect of the nuclear polarization. , I=0;
M =0.3;,M =0.6; ———,M = 1.

come negligible and the virial coefficient is dominated by
B~ d;,. Although of restricted physical interest, the com-
putation of Bq above 10 K shows that the virial
coefficient approaches the semiclassical value (pro /2) of a
gas of hard disks of radius a.

The role of the nuclear polarization appears in Figs. 1,
2, and 3. As expected it is noticeable at low temperatures
as soon as the exchange contribution manifests itself. The
weight of the quantum exchange term increases. with the
nuclear polarization and the fact that Bi (M =1) stands
below BP(M =0) for Ht and above Bq (M =0) for He
and D& is a mere illustration of the attractive or repulsive
character of Bose-Einstein or Fermi-Dirac statistics.

Although we have neglected here the influence of a sub-
strate of Hq or He on which experiments are usually
done, its effect on Bq should be rather small. The M
dependence of Bz displayed here should lead to a
nuclear-polarization-dependent coverage of H &, D &, or
He atoms on the surface. Whereas the nuclear polariza-

tion should favor the adsorption of H& atoms, polarized
He atoms tend to be excluded from the surface with

respect to unpolarized He atoms. (The latter is also true
to Dt.) This effect might be used experimentally to
enhance the nuclear polarization of the bulk vapor.

For H), we compared our results with those of Ref. 25.
The unphysical behavior of the quantum statistics effects
in this reference probably explains most of the 10%
disagreement with our results.

For He, we compared our results to the leading work
of Siddon and Schick. " These authors computed the
two-dimensional virial coefficient of unpolarized He
(M =0), using the Lennard-Jones 6-12 potential fitted to

Because spin waves originate from indistinguishability
effects occurring during a binary collision, it is possible to
derive their characteristics from the quantum Boltzmann
equation established in Ref. 11 for nondegenerate bosons
(or fermions). This equation which has the same form in
two and three-dimensions describes the evolution under
the effect of binary collisions of the spin-density operator.

In the restricted range of validity of the Boltzmann
equation, i.e., in the range of temperature and density
where the molecular-chaos assumption is legitimate, there
is no special pathology associated with the Boltzmann
equation in 2D. Difficulties with regards to a transport
equation in 2D arise for increasing density when the
molecular-chaos assumption breaks down, urging for the
taking into account of various memory effects. When
these effects can be neglected, it is possible, like in 3D, to
introduce the so-called spin-diffusion coefficient defined as
the proportionality coefficient between the current of mag-
netization driven by the gradient of the nuclear polariza-
tion M. As well as in 3D diffusion, the parallel and
transverse components of M behave quite differently. For
a given polarization M, =M, the general form of the po-
larization current is

J(M, ) = DpVM, , —

J(M )= —Di(VM +epMVMy),

J(My)= Di( epMVM—„+V—M ) .

(8a)

(8b)

(8c)

k 4dp f36 k Img— (9a)

k dk e ~~~k~™,. +w'"
0 l&g ]p= "I 'dk e-i'"" ™g(

0

Di Dp I( 1+p M ), ——

(9b)

(9c)

It is clear on these equations that p governs the
efficiency of exchange effects to create an oscillatory
response of the gas to gradients of its polarization,
whereas Do and Di reflect the damping of these spin
waves. We refer the reader to Ref. 11 for further com-
ments on these equations.

The coefficients Do, Dq, and p can be expressed with
the help of collision integrals involving various angle-
averaged cross sections given in Appendix A. A good ap-
proximation of these coefficients is then
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he two-dimensional number d yensit of the gas, P ts

The angle averaged cross-sections are e ne

2 d8(1 —cos8)&1"(8
[~1 I o

1 ~ ( 1) [ sin[2(5 +( —5m 1k

(k) = d8(1 —cos8)crq(8

+ OO

sin (5 —5 +~),k
(loa)

+2 sin(25 )),
which, combined with (9c), leads to

(lob)

0.2—

p
T(K)

0.5—

—1 —I
I

I
I
I
I
I

-2~

(a)

D1 n,

(lQ s ")

100

50

nd l,t are also shown to throw
fH ()T

ntributions pf q an plat a
rse(b) Co

'
o bet th % i t i 2Da

dinal s in
PP

l 1spin diffusion coefticient ~n, =
~ ~ ~diffusion coefficient.
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Q(...)
+ rr„"g———g ( —1) sin[2(5 —5 + ) )] .

m =0
(10c) 0.5 1.5

T(K)

The above expressions call for two comments.
(i) They can be simplified in some cases by neglecting

the Q( ..
1

contribution. From a physical point of view

this amounts to neglecting the coherent lateral scattering.
Going further and leaving out all the phase shifts other
than 6O leads to -5-

I"k dj( e ~"" sin(25O)
p=

2 f"k eke (i~k ~ singo
0

(10d)
o f (2D)

(which incidentally takes the same form as in three di-
mensions). It is the kind of approximation done in the
"molecular-field" approaches. ' "' ' ' Justified in the
case of weak interactions, at sufficiently low temperature,
this approximation can break in the intermediate tempera-
ture range. One of the aims of the present calculation is
to set the limit of validity of this approximation in the 2D
case.

(ii) Most of the differences between the 2D and 3D
cases will originate from the low-energy s-wave phase-shift
behavior as will be discussed in detail below.

B. Spin dift'usion in 2D polarized quantum gases:
Results and comments

Before discussing the specific characters of these
coefficients for H&, D&, and He, we wish to comment on
some common features which emerge from our results
shown in Figs. 4—6 and Tables I—III.

First, it can be noticed from Figs. 4(b), 5(a), 5(b), and
6(b) that "quantum exchange effects, " from which p origi-
nates, appear at lower temperatures in 2D than in 3D.
The physical explanation of this feature is the following:
The "negative centrifical barrier" which enters the 2D
Schrodinger equation [see Appendix B Eq. (B3)] has siz-
able effects at intermediate distances where it can be
viewed as an increase of the mass of the particle under
study. This makes a two-body collision, at intermediate
energies, more "classical" and tends to reduce its quan-
tum nature. (In Appendix C, we give some orders of
magnitude of this negative barrier compared to the actual
interaction potential. ) This character of 2D scattering ex-
plains why the spin-wave quality factor p becomes
significant at lower temperatures than in 3D. This feature
also influences the anisotropy of the spin diffusion
coefficient (measured by Do/Di= 1+@M ) which ap-
pears on Figs. 4(c) and 6(c).

We also show on Figs. 4(a) and 6(a) an analysis of the
various contributions to p originating, respectively, in
coherent, lateral, and backward-forward scattering. These
figures allow to specify the validity of a "molecular-field"
type of approximation which neglects the effects of lateral
scattering. This approximation overestimates quantum
exchange effects and it can lead to appreciable errors on
the magnitude of p in the temperature range of experi-
mental interest. This restriction of validity appears more
markedly in 2D than in 3D (Ref. 31) since two dimen-
sionality is less favorable to quantum exchange as already
discussed above.

0.5 1.5
I

nO

(10 s ')
80—

40

20

Q5
I

1.5

FIG. 5(a) p for DT in two dimensions as a function of T. (b)

p for D & in three dimensions as a function of T. (c) Longitudi-
nal spin diffusion coefficient of D& in two dimensions.



148 LEFEVRE-SEGUIN, GUIGNES, AND LHUILLIER 36

Our results all together allow discussion of the possibili-
ty of dimensional or mass scaling that was used by Bash-
kin' and discussed at the beginning of this article. For
instance, it is possible to define from the longitudinal
spin-diffusion coefficient Do an average cross section of
collision Qt „l in three and two dimensions (for which

this quantity is actually a length). At 4K in 3D, this
average cross section is found from Ref. 11 to be 40 A
for H& and 23 A for He, whereas in 2D, we find an
average cross length of 6.7 A for H~ atoms and 4.6 A for
He at 4 K. These values are therefore in good agree-

ment from a naive dimensional analysis. Besides, Table
II leads to a cross length of 6.4 A for Dt atoms at 4 K
which shows that a change of the mass has a small effect
and that this cross length is mainly determined by the in-
teraction potential which is the same for the two isotopes.

This is no longer true at low temperatures where di-
mensional or mass scaling appears to be bound to failure
because the properties of light quantum gases result from
a delicate balance between interaction and quantum ex-
change effects. The spin-wave quality factor p of deuteri-
um atoms is a striking example of this statement since the
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FIG. 6(a) p for He in two dimensions as a function of temperature [same comment as in Fig. 3(a)]. (b) Comparison between p. in 2
and 3D for 'He. (c) Transverse spin diffusion coefficient Dina =Dona /(1 1p'M') for several nuclear polarizations of 'He. The M =0
case gives the longitudinal spin diffusion coefficient. M=O' ——.—.M=03 . - M=06 ———M=1.
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shape of p(T) is completely different in 2D and 3D. [See
Figs. 5(a) and 5(b).]

We now turn to specific comments for each of the gases
studied.

(a) H1
Our results must be compared to those of Koelman

et al. ' As discussed in the introduction, the model of
these authors is more sophisticated and more physical
than ours insofar as it takes partially into account the z
extension of the wave function (2—,

' D model ). On the
other hand, they used an s-wave approximation that
should be checked at intermediate temperatures. The
comparison between the two sets of data and the detailed
analysis of our results show that the s-wave approxima-
tion is entirely valid up to 500 mK, that is in most of the
experimental range of interest. Above this temperature,
contributions other than the s wave cannot be disregard-
ed.

(b) Dt
Spin-polarized deuterium is a very good illustration of

the dramatic changes that dimensionality can induce in
the properties of a quantum gas. This was already point-
ed out just above but it deserves some further comments.
The comparison of Fig. 5(a) and (b) showing p in two and
three dimensions gives an opportunity to discuss under
what conditions p is positive at low temperatures. From
Eq. (10d), this obviously happens when 0&60&~/2 In.
3D, such behavior is encountered in D& and He for
which the effect of the interaction is weakly attractive at
low energy. In 2D, the scattering phase shift 60 becomes
positive only when it goes to ~ when k tends to 0, that is
to say, when there is a bound state. This is due to the
logarithmic behavior of 60(k) which forbids the scattering
length to be negative or, equivalently, the slope of 50(k) to
be positive. This specific feature of 2D scattering ex-
plains why p remains negative for D& atoms in 2D; while
the slightly attractive potential is able to yield a positive
low energy 60(k) in 3D, it is yet not strong enough to sus-
tain a bound state in 2D so that this phase shift remains
negative and tends toward zero when k~0.

(c) 'He
The He case is precisely an example where the ex-

istence of a loosely bound state (Eb & 10 K) leads to
positive values of p at low temperatures as seen in Fig.
6(a). In fact, from a physical point of view, it appears
that a measurement of p would be an extremely sensitive
test of the quality of the interatomic potential as it could
sign unambiguously the existence, in a real physical situa-
tion, of a two-dimensional bound state.

It appears in Fig. 6(b) that the range of temperature
where p is measurable is shifted from around 2 K in 3D
down to 1 K in 2D. This phenomenon was explained to
be due to the more "classical" behavior of quantum gases
in 2D, at intermediate temperatures. However, this does
not prevent the minimum of p to be more pronounced in
2D than in 3D.

The transverse spin diffusion represented in Fig. 6(c) for
different values of the nuclear polarization M, exhibits a
peak around 0.1 K. It is a remainder of the quantum os-
cillations of the cross section crk(9) due to the diffraction
by the interaction potential. This feature is visible for all

polarizations. It is more contrasted for M =1 since in-
terference effects then affect both o. I, and ~f"d. As a re-
sult, spin diffusion is strongly anisotropic in this tempera-
ture range.

The results presented here and their comparison with
the 3D counterpart show that experimental measurements
on spin waves in a He vapor can be affected by the be-
havior of the nuclear polarization in the adsorbed phase
from 2 K and below. However, quantitative predictions
about this effect require an elaborate model for the cou-
pling of the adsorbed and bulk phases. Moreover, mea-
surements on the vapor' are probably more sensitive to
"classical" effects induced by the magnetization of an ad-
sorbed He layer. In order to check the existence of two-
dimensional spin waves in He, it seems more adequate to
design an experiment where most of the He atoms are
adsorbed by using a sample with very large surface
volume ratio. Such an experiment would also require
high quality substrate to avoid the damping of spin waves
by the diffusion of He atoms by defects or impurities.

IV. CONCLUSION

We have computed the virial coefficients and spin
diffusion coefficient of Ht, D&, and He in two dimension
and their dependence on the nuclear polarization. This
dependence —entirely related to statistics —becomes no-
ticeable in the Kelvin range and below. The results for
coefficients which do not depend on statistics (DQ, Bd;, )

have been extended up to 50 K.
As a general qualitative feature, the weight of quantum

exchange effects tends to be reduced with decreasing
dimensionality. Moreover, the specific "more classical"
behavior of 2D dynamics which explains the existence of
a two-dimensional dimer of He, for example, equally
contributes to the decrease of the exchange effects in 2D
versus 3D.

Finally, we have shown to what extent and why mass
scaling or dimensional scaling is inefficient to estimate the
order of magnitude and sometimes even the sign of the
statistical effects. The results presented here show that,
on the contrary, a detailed knowledge of the phase shifts
is generally required to compute these coefficients.
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APPENDIX A: 2D COLLISIONAL
CROSS SECTIONS AS FUNCTIONS

OF THE T-MATRIX ELEMENTS
AND SCATTERING PHASE SHIFTS

In this appendix, we want to summarize the relevant
formulas for the description of exchange effects in spin-
polarized gases in two dimensions. We shall not develop
here the theory of quantum scattering in two dimensions,
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and refer the reader to didactical papers which cover most
of the features of interest. Nor shall we repeat the
detailed analysis of a collision between particles with
internal degrees of freedom given in Ref. 11. Like in
three dimensions, the description of a collision taking into
account indistinguishability efI'ects involves four indepen-
dent real numbers that we call "cross sections" (although
in 2D these quantities have actually the dimension of a
length) and which can be expressed in terms of the
transition matrix elements T~ (k;, kf ). From the
knowledge& in the two-dimensional case of the relation be-
tween T(, (k;,kf) and the phase shifts 5 (k):

Tq(k;, kf)= — g e' (e —1) .
~ m=—

[k; and kf are the initial and final momentum vectors; be-
cause the energy is conserved, the T-matrix elements de-
pend only on k=

~

k;
~

=
~
kf

~

and on 0, the angle be-
tween k; and kf. It is then easy to derive the following
expressions of the four real cross sections o.~, o.g", ~~", and

as functions of the two-dimensional phase shifts
5 (k):

J (kR, )
tan5

(kR, )

At high energy (kR, » 1), these phase shifts are given by

tan5
m!(m —1)!

kR,
2

2m

+ . for m&0,

where C =0.577215. . . is Euler's constant.
Equation (B1) highlights the specificity of 2D scattering.

Whereas, in 3D the s-wave phase shift for a hard-core po-
tential would be everywhere equal to —kR, this phase
shift in 2D tends logarithmically slowly towards 0. Al-
though its derivative tends to infinity, this phase shift is
always greater in magnitude than kR, .

5 = —kR, +—(m ——,') .
2

On the other hand, their behavior at low energy
(kR, «1) is

1 0 k
2 ln(kR, /2)+C

~„(e)= "
~

z;(k, , kf )
~

'
e4k

i (m —m')9( 2~sm
1 )(

~'sm'

2~k

8m p A A A A
tr(,"(0) i rI,"(6—) = T(, ( —kf, k, ) Tl,*(kf,k; )

X4k

i(m —m')9( 1 )m
2mk

X (e —1)(e 2™—1),

4 2

rfwd= [Tp( —k;, k; )+ Tp*( —k;, k; )]
k

= —g ( —1) sin(26 ),2
k

where the azimuthal quantum numbers m and m' vary
between —oo and + oo . As a consequence of their
specific k dependence and of the logarithmic behavior of
6o, these 2D cross sections diverge at low energy.

b. Scattering length and effective range the-ory

After some controversy it has recently been shown
(Refs. 17, 36, 37, and references therein) that for any
finite-range potential, the low energy behavior of 60 can be
approximated by

2 ka r, k
cotan5O ———ln +C +

2 277
(B2)

2. 2D Phase shifts of Hg, Dg, and He

where a is the scattering length and r, the effective range
in two dimensions. Contrary to the three-dimensional
case where positive and negative infinite values of the
scattering length equivalently signal the appearance of a
bound state, here in two dimensions the scattering length
is always positive. The existence of a loosely bound state
is accompanied by the abrupt change of a from 0 to + oo.

Certainly valid at sufIiciently low energy, and for weak
potentials the open question raised by this approach, is its
numerical range of validity in a case of a not-too-weak po-
tential. The quantum phase-shift calculation done below
will give a pragmatic answer to this question.

APPENDIX B: 2D PHASE SHIFTS OF Hf, Df', AND He

To introduce and comment on our results on the two-
dimensional shifts of Hg, D&, and He it seems useful to
collect and recall the analytical results that have been ob-
tained in various limiting situations.

1. Some analytical results

a. Hard disk phase shifts-

It is straightforward to show that the phase shifts for
the hard-disk potential (with radius size R, ) are deter-
mined mod(nor) by

v' + — v +(U —k )v =0.(m —1/4) z

r2
(B3)

For the sake of comparison, we recall here that in 3D,
v =rR (r) would satisfy

The interaction potential between H& or D& atoms was
chosen to be the fit to the Kolos-Wolniewicz potential
given by Silvera. As for He the interaction potential is
the fit obtained by Aziz et al. , since it remains, to our
knowledge, the best potential for He up to date.

In order to calculate the phase shifts, it is necessary to
solve the radial Schrodinger equation. For that purpose,
it is convenient to define a reduced radial wave function
v (r) = (/r R (r) which obeys the following equation
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—Um+
l(l + 1)

v +(U —k )v =0.
2 Dt 2D

This shows that the only significant differences between
two and three dimensions are expected for low values of
the angular momentum and especially for m =0, in the
region kr 51.

The scattering phase shifts were computed after a nu-
merical integration of Eq. (B3) according to the standard
Runge-Kutta procedure. The results are reported in Figs.
7, 8 and 9, as functions of the reduced wave number
k*=kcr [with cr defined by V(o)=0]. We only show
here the phase shifts up to k* =7, but they were comput-
ed between k" =1/6300 and k*=14. In Figs. 7, 8, and
9, we chose to represent the phase shifts between —~/2
and +m/2. However, it is important in the calculation of
the virial coeScient to take into account the requirement
that the phase shifts should be continuous functions of the
wave number. This is easily done by subtracting m each
time a phase shift reaches —m/2.

a. Hf

At first sight, hydrogen phase shifts seem a very good
illustration of a purely repulsive hard-core potential. The
s-wave phase shift 6p closely resembles the logarithmic be-
havior described by Eq. (Bl) (see Fig. 7).

However, phase shifts for m&0 show a noticeable con-
tribution of the weak attractive potential in the region
where they are positive. Besides, the scattering length
a =1.1 A derived from our results in agreement with the
value given in Ref. 17, is much smaller than the core ra-

0
dius o. =3.68 A. This is also attributed to the attractive
part of the potential.

FIG. 8. 2D scattering phase shifts for Dt' calculated from the
Silvera triplet potential as a function of the reduced wave num-

ber k*=ko. (o.=3.687 A).

Accidentally, it happens that the scattering length has
nearly the same magnitude in two and three dimensions
(0.72 A in 3D, see Ref. 11). It is then clear that
6p= —ka in 3D is smaller in magnitude than 6p-~/2 ln
(ka/2) in 2D, when ka «1. This is essential to the be-
havior of B2, p, and Dp.

5(k )

1.6— Hl 2D

b. Dy

The heavier mass of deuterium produces significant
changes in the phase shifts. As expected, the attractive
well of the potential exerts a stronger influence than for
Hf. This is why the phase shifts other than 6p
are markedly positive at low energy (see Fig. 8). More-
over, the scattering length a-2)&10 A is very close to
zero. This indicates that the interaction potential is near-
ly strong enough to sustain a bound state.

c. He

FIG. 7. 2D scattering phase shifts for Hg calculated from the
Silvera triplet potential, (Ref. 8) as a function of the reduced
wave number k *=k o. (o.=3.687 A ). V(r) =0 for r ~ R: region III, (B5)

It can be seen in Fig. 9(b) that the s-wave phase shift at
low energy reaches m/2 at kp ——1.83&(10 . This is the
signature of the existence of a bound state. It also means
that by continuity, 5o(0) is equal to vr according to
Levinson's theorem. Besides, the wave number k p at
which 6p ——~/2 corresponds to the energy of the loosely
bound state E~ ———A k~/2p.

This feature is a specific property of two-dimensional
scattering which can be demonstrated in the simple case
of a potential V(r) defined by

V(r)=+ac for r &cr: region I,
V(r)= —Vo ———A'Wo/2p for cr &r &R: region II,
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which has the essential characteristics of a realistic poten-
tial, namely a strong hard core repulsion at short dis-
tances and an attractive well at intermediate distances).

We assume here that kR, k~R, NOR &&1 in order to
describe a situation where this potential barely sustains a
bound state. The principle of the demonstration is very
simple; it is based on the matching conditions at r =o. and

r =R of both solutions: the weakly bound state (assumed
to exist) and the m =0 diffusion state with energy
4 k /m. Because, as a first approximation, the wave func-
tion in region II has the same shape for these two states,
these matching conditions allow to relate the low-energy
phase shift 6q(k) to the binding energy by the following
formula

w/2

ln(k/kp )
(86)

'He ZD
(a&

It is obvious in (86) that within the approximation used
here, 6O is equal to ~/2 for ko ——k~. Besides, it follows
immediately from (86) that the scattering length as
defined by (82) is simply equal to

a =2 exp( —C)/k~ =( I /k~ )(1.12) . (87)

-1.6—

1.6—

Equation (86) clearly assumes the existence of a bound
state. This requires a threshold condition to be satisfied,
which will be discussed with more details in Appendix C
[see Eq. (C4)].

Returning to the case of He, the results of our compu-
tation of 6o are well described by this simple model at en-
ergies comparable to the binding energy. The scattering
length derived with the help of (82) from the values of 6o
at low energy is 1560 A within a few percent. Besides,
this phase shift is equal to ~/2 at k~ ——1.83&10 which
gives, from (87), a scattering length of 1570 A. More-
over, these values are also in good agreement with the
binding energy of about —0.9&(10 K presented below.
(Although it is not shown here, we also computed the
phase shifts of He in two dimensions. For the s wave, 6o
exhibits a similar behavior as compared to He, except, of
course, that the scattering length 24 A is shorter, which
agrees with the much higher binding energy of about —36
mK, given in Appendix C).

Being very small the exact value of the binding energy
is of little interest in any realistic experimental situation.
Nevertheless, as it was noticed earlier, it is the mere ex-
istence of this loosely bound state that determines p to be
positive up to 60 mK.

This study shows that light quantum gases cover a wide
range of scattering lengths. While Hg is well described by
a scattering length theory, 0& and He are two extreme
cases, just below and above the threshold for binding;
consequently, their scattering lengths (2. 10 A for D&
and 1570 A for He) are extremely sensitive to
small changes of the potential and are only useful in a
very restricted range of temperature. One must therefore
conclude that a numerical computation of the phase-shifts
cannot be avoided in order to get reliable predictions
about virial and transport coefficients in these systems.

APPENDIX C: 2D BINDING ENERGIES
QF He2, He- He, He2 DIVERS

FIG. 9(a) 2D scattering phase shifts for He calculated from
the HFDHE 2 potential of Aziz et al. (Ref. 29) as a function of
the reduced wave number k*=ko. (cr=2. 556 A). (b) Very low
energy scattering phase shift 6O(k) for 'He. Evidence of a loosely
bound state occurring at k~ = 1.83 & 10

While it is widely accepted that binding is easier in two
dimensions (see Ref. 40 for instance), it has also been stat-
ed that a bound state should always be present. ' These
considerations are based on the presence in the reduced
Schrodinger equation for m =0 quantum number, of a
"negative centrifugal barrier" which only appears in 20,
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and which acts as an efFective attractive interaction. It
can indeed be proved that a bound state always exists in
2D in a potential which is purely attractive whereas in
3D there is a threshold condition in the well depth and
range for binding to occur.

The aforementioned work generally assumes a non-
singular interatomic potential which excludes the very
strong, short-ranged repulsive barrier encountered in real-
istic systems. Bagchi pointed out numerically the ex-
istence of a threshold for binding in 2D as well as an ex-
ponential variation of the binding energy versus mass for
Lennard-Jones potentials; however his formal demonstra-
tion of these features relies upon the assumption of a
non-singular potential.

%e show formally in Sec. 1 that this assumption can be
released and that, in the presence of a hard-core repul-
sion, there is a threshold condition for binding and an ex-
ponential dependence of the binding energy with the cou-
pling constant. Our numerical results are given in Sec. 2.

1. Simple model: Hard-core repulsion plus attractive we11

We consider here the interaction potential V(r) already
defined in Appendix B Sec. 2c, consisting of a hard-core-
repulsive potential of radius o. and a square attractive well
of depth —Vo —— fi Ao/2p l—ocated between r=cr and
r =R)cr.

The existence of a bound state in such a potential and
its binding energy Ez ———A k~/2p are determined by the
matching of the logarithmic derivatives of the wave func-
tion describing this bound state in regions II and III. The
equation to be solved is

Rett(1) &0.
II(r) r =R (C3)

En loose binding situations, when AoR « 1, (C3) then
reads

1+(A'oR) /2
lnR /o.

or equivalently,

(AoR )

2
&0 (C4)

R 2—& exp[1+ ] .
(%'oR)'

(C5)

As stated earlier, this establishes the threshold in the
extent of the potential well below which there is no bound
state.

If one makes o. tend to zero to suppress the hard-core
repulsion, this threshold vanishes to zero. In other
words, in two dimensions, even a vanishingly shallow at-
tractive well is able to sustain a bound state, provided that
there is no impenetrable region near the origin. This
feature has already been mentioned earlier by Landau.

The presence of a hard core repulsion bends the wave
function towards the horizontal axis in the region r ~o..
This, at the same time, increases the kinetic energy and
decreases the potential energy. To compensate these
efFects and maintain a bound state, it is then necessary to
increase the range or depth of the attractive well, or alter-
natively, the mass of the particle under consideration.
This is why a threshold appears.

Just above the threshold, the binding energy is then
given by

R 1/J~~(1') RK (ok'')
g~~(r) & =~

Ko(kyar)

where, to the lowest order in ks/Ao,

Prt(r) =No(~oo )Jo(&or) —Jo(-&oo )No(&or)

(Cl)

(C2)

Eg ———fi kg/2p,

with

kgR
2

= exp( —C) exp
ln(R /cr )

R
ln ——1 —1

2 C7

clearly satisfies P~t(o ) =0. For ksR &&1, the right side of
(Cl), which is always negative, tends towards
(EnksR +C) '-0, so that the condition for a bound state
to exist is

By comparison, it is easy to establish that, in three di-
mensions as well as in one dimension, Eq. (Cl) is replaced
by

TABLE IV. Binding energies of the loosely bound dimers of helium in 2D and 3D for Lennard-Jones
and Aziz potentials.

Potential

Lennard-Jones 6-12
c= —10.22 K at
r =2.87 A
G =2.556 A
Aziz et ah, HFDHE2
c.= —10.8 K at
r =2.967 A
o.=2.63 A

3D
2D

3D
2D

4He2

—23.6 mK'

—0.83 mK
—36, 14 mK'

He- He

—1.45 mK'

—3.38 mK'

'He2

—4.63.10 ' K'

—0.88.10 -' K'

'Reference 24.
Reference 44.

'This work.
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kg R = —( %OR ) cot an[Jap( R —0 ) ] {C6)

2. Binding energy of He in t~o dimensions

The ground-state binding energy Ez ———A kz /2p is
found by solving the radial Schrodinger equation written
in its reduced form as in (B3) for m =0

1—Uo+ U — +kg Up ——0 .
4r

The presence of the "negative centrifugal barrier" intro-
duces an efI'ective potential with slightly modified core ra-
dius and well depth. In the region r=o. , the order of
magnitude of A /Spr is 0.6 K, only 6% of the well depth
e= —10.8 K of the Aziz potential. As a consequence, the
eA'ective potential is very close to the bare potential in this
region. This "negative barrier" exerts a significant

0

inhuence at r =3o.-7.5 A where it is equal to the bare

In the presence of a hard-core repulsion, there is also a
threshold %'o(R —cr ) & vr/2) below which there is no
bound state, but, contrary to the two-dimensional case,
this threshold still exists in three dimensions when the
hard core potential is suppressed. In 1D, the threshold
also disappears because the wave function can then be
finite at the origin so that (C6) is replaced by
kgR =A'oR tan{&oR ).

On the other hand, when ApR, Pi. po »1, the two-
dimensional condition (C3) meets (C6). Close to the
threshold g(o(R —o. ) =w/2, the potential looks like a nar-
row well close to a large impenetrable barrier; the 2D
"negative centrifugal barrier" then has little effect, so that
accomodate a bound state in 2D is not easier than in 1 or
3D.

Nevertheless when (C3) and (C6) are compared, it can
also be shown that, more generally, for any value of ApR,
a bound state always appears for lower values of R /o. in
2D than in 1 or 3D, which means that in such a potential
as given by (BS), binding is always easier in 2D. This
statement can be extended to Lennard-Jones-type poten-
tials since, in essence, the specificity of 2D has its origin
in the "negative centrifugal barrier" appearing in the re-
duced Schrodinger equation.

potential ( —60 mK). This of course, is even more pro-
nounced beyond this distance, since the van der Waals at-
traction —C6/r then decreases more rapidly.

On the overall, these modifications might seem negligi-
ble. Nevertheless, it must be recalled that the Lennard-
Jones potential used in the past for He with its well depth
of c= —10.22 K was not strong enough to allow a bound
state for He in 3D, whereas the potential proposed by
Aziz with e= —10.8 K led to the binding energy given by
Stwalley et al. (see Table IV). It is then not surprising
that a bound state can be found for He in 2D.

The computation of the binding energy was done by
solving the Schrodinger equation following a Numerov
process. Our program was checked to reproduce the
binding energy of He in 3D computed by Stwalley
et al. Taking into account the "negative centrifugal
barrier" specific to the two dimensional case, we then
found the energy of the bound state of two He atoms in
2D: E~ ( He- He)= —0.88X10 K. [The binding ener-
gies presented here were calculated with the 1973 recom-
mended masses m ( He) =4.002 603 267 (a.u. ) and
m ( He ) =3.016 029 306 (a.u.). But since the phase shifts
were calculated with a less recent He mass
=m( He) =3.015 30, we also computed the binding ener-

gy with this lower value of the mass and found
E~ ———0.86 X 10 K. This shows that a 2 X 10
change of the mass is able to produce a 2% change of the
binding energy. ]

This value was carefully checked against possible
changes due to the integration step which was 0.05 A, the
integration range covering at most 5000 A. We also per-
formed the same calculation for He- He and He- He.
Our results are shown in Table IV. Compared to each
other, these binding energies show a striking sensitivity to-
wards changes of the mass.

Their sensitivity toward small change in the potential is
equally large, as illustrated in Table IV by the results ob-
tained with the Lennard-Jones potential by Siddon and
Schick. This extreme sensitivity toward the mass and
small variations of the interaction was clearly announced
by the simple model of Sec. 1. It explains why any at-
tempt to design a scaling procedure is doomed to failure
in the case of light quantum gases.
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