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T operators and their matrix elements for a general periodic potential

E. Badralexe and A. J. Freeman
Department of Physics and Astronomy, Northwestern University, Fvanston, Illinois 60201

(Received 29 December 1986)

A new approach for the treatment of the T operator is provided which cures the difficulties of the
multiple-scattering approach to the general (non-muffin-tin) periodic potential problem. Solely from
potential periodicity, i.e., without discriminating between muffin-tin and non-muffin-tin cases, the T
operators are shown to admit a direct integral decomposition in terms of the reduced T operators.
This feature is further exploited by introducing "Bloch periodic scattering states" which finally re-
sults in a closed (compact) expression for the on-shell matrix elements. In the L representation, their
functional form is related to that derived within multiple-scattering theory for the muffin-tin case but
irrespective of whether the potential is muffin tin or not, the structure dependence cannot be separated
from that of the potential (as known in the multiple-scattering approach for the muffin-tin case) ~

However, this separation can be restored by introducing various approximations which partially
break the Bloch periodicity. Hence, the separation between structure and potential, even in the
muffin-tin case, is shown to be an approximate result.

I. INTRODUCTION

The rapid growth of experimental determinations of the
electronic structure of both ordered and disordered solids,
surfaces, and interfaces has brought into sharp focus the
need for local-density energy-band methods which can
provide solutions for these systems with general poten-
tials. A particularly successful approach has recently
been developed —the fu11-potential linearized augmented
plane-wave (FLAPW) method' —which has been shown to
provide precise solutions for a large class of problems. Its
very success calls additional attention to a need for a simi-
lar development of an energy-band method based on
finding the T matrix or the Green function for a general
periodic potential. In doing this we face the question of
either using multiple-scattering theory or inventing anoth-
er, more convenient, theory.

As is well known, multiple-scattering theory has played
an important role for ordered solids since the work of
Korringa, Kohn and Rostoker, Beeby, and that of
Soven, Stocks et al. , and Faulkner and Stocks in devel-

oping the KKR-coherent-potential approximation (KKR-
CPA) for substitutional disordered materials. A crucial
role in these methods is played by the imposition of the
muffin-tin (MT) approximation to the (general) periodic
potential. This imposition allows the use of the well-
known decomposition of the Green function between two
adjacent cells which, in turn, results in the exact separa-
tion of the lattice structure (expressed as the KKR struc-
ture constants) from the crystal potential. Specifically (see
Appendix), the on-shell total T matrix for a MT periodic
potential is described in terms of a structure constant and
the on-shell T matrix for a single MT, which can be fur-
ther described by means of the phase shifts produced by a
single MT potential. The (rather striking) feature of this
result raises the question of whether the appearance of the
structure constant is characteristic of the MT approxima-
tion or is instead connected with the periodicity. More
than that, one can ask if it is possible to describe a general

(non-MT) periodic potential in a formalism similar to the
variable-phase method ' (which generalizes the phase-
shift description to the nonspherical symmetric potential).
Finally, one can ask for the expression, should it exist, of
the total T matrix for a general (non-MT) periodic poten-
tial. (Alternatively, one can ask for the existence of a
band-structure equation of the KKR type; obviously, this
is less general than the existence of the T matrix. )

To the best of our knowledge, these questions have not
yet been answered. A number of attempts have been re-
ported, using multiple-scattering theory and the variation-
al principle, among which we cite the most recent. ' "
[References 9 and 10 claim to have derived exact results;
Ref. 11 derives the (same) result given in Ref. 10 as an ap-
proximate result and also discusses the accuracy of this
approximation. ] As mentioned by Faulkner, ' however,
"This problem cannot be considered as solved because the
algebraic arguments that have been advanced lead to con-
tradictory conclusions. " It has even been argued that the
problem of the total T matrix for a non-MT periodic po-
tential is not tractable, as the ofF-shell T matrix of the sin-
gle cell is involved and the corresponding Born series can
no longer be summed analytically. ' Of course, a formal
solution can be easily produced, as discussed by Lloyd
and Smith, ' by first solving for the interstitial contribu-
tions, and thus reducing the problem to the muftin-tin
form. In this solution, the interstitial contribution already
contains part of the structure, and therefore the relation
between structure and potential is obscured.

Apart from multiple-scattering theory, Nesbet'
developed recently a new line of investigation. By using a
variational principle, an R-matrix formalism is established
for an arbitrary unit cell; after introducing an approxima-
tion concerning the trial function [relation (2) in Ref. 15],
the result is a KKR-type equation which essentially coin-
cides with that presented as an exact result by Gonis, '

and as an approximate result by Nagano and Tong. "
In a previous paper, ' we have shown for the case of a

general periodic potential that the eigenvalue equation of
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the Bloch function (which leads to the usual plane-wave
diagonalization) can be converted into a KKR-type
equation. Essentially, this was done by introducing a
(Bloch periodic) prolongation of the Bloch function in a
sphere with arbitrary large radius and finding its mul-
tipole expansion. Then, the Bloch function in the unit
cell is obtained by a folding-back procedure which finally
results in a KKR-type equation. Unlike the MT case, in
this equation the structure is no longer separated from
the potential; instead, a supplementary structure depen-
dence appears, which reflects the folding procedure
which, in turn, takes into account the periodicity. This
equation reproduces, in the soluble case of a constant
periodic potential, the correct band structure (as given
by the plane-wave diagonalization). Finally, it was
demonstrated that (i) the separation between structure
and potential can be restored by introducing various ap-
proximations, and (ii) this separation becomes an exact
result within the "generalized muffin-tin approximation'
which assumes the potential is zero in a small vicinity
near the cell boundary. '

Here we address the problem of the total T matrix for a
general periodic potential without using the traditional
tool of multiple-scattering theory, namely the on-shell
decomposition of the Bloch periodic Green function be-
tween two adjacent cells. ' ' "' Instead, we consider a
general periodic potential, and derive from the periodicity
alone (hence, without discriminating between MT and
non-MT potentials) that the [L (R )] kernel of the T
operator can be expressed as an integral over the Brillouin
zone of a reduced kernel which is defined in the Hilbert
space of Bloch functions. Further, the reduced kernel can
be analyzed in a formalism akin to that of the usual
scattering theory, ' i.e., one can define (Bloch periodic)
"in" and "out" states which are related to the (Bloch
periodic) free states by means of the on-shell T matrix. In
finding these states we use the previous idea' of finding
the multipole expansion of the (Bloch periodic) prolonga-
tion of a Bloch periodic function and subsequently finding
the function by a folding-back procedure. Thus, the on-
shell matrix elements of the total T operators are calculat-
ed and their poles are shown to generate the energy-band
structure as given by a previously determined band equa-
tion' (shown, as stated, to be equivalent with the result of
the plane-wave diagonalization). Finally, by introducing
various approximations (which essentially break the Bloch
periodicity), one can easily obtain previous results derived
with multiple-scattering theory. In particular, it is worth
mentioning that the separation of structure and potential,
which is derived by multiple-scattering theory for the
muffin-tin periodic potential is shown to be only an ap-
proximation (which partially violates the Bloch boundary
conditions) and hence is not, as long believed, an exact
result.

II. T—(E) OPERATORS AND THEIR KERNELS

Let R, KE:Z be vectors of the direct and reciprocal
lattices, having the primitive cells A and A, with the
volumes co and co, respectively. [R.K=2ir )& integer,
coco=(2') J. Let p&Q and ir&O be vectors in the direct

and reciprocal primitive cell, respectively. Then, for any
vectors r, k in the whole space R, there is a unique
decomposition

r=R+p,
k=K+sc .

Let V(r), r&R, be a periodic potential over Nn cells
in the crystal with X&~ op, as given by a sum of cell po-
tentials

V= gVR,
R

(2)

where

0 for r&R+p&Rr=
V(p) for r=R+p, (3a)

and the function V(p) (which has an arbitrary range a,
a (max Enp) defines the potential (in the whole space)

0 otherwise'Vr =
V(p) for r E A. (3b)

In this notation, the muffin-tin case is obtained for a =p,
where p denotes the radius of the inscribed sphere in the
unit cell A. Finally, for any finite d, d )0, we introduce
the potential V"(r), as defined by

t
V(r) for r &dV(r= ~

0 otherwise, (4)

where V(r) is defined in Eq. (2). Obviously, V" denotes
the muffin-tin part of the cell potential V.

Assume that the equation of the T (E) operators is-
given by

T (E)= V+ VGO (E—)T—(E), (5)

where the potential V was defined in Eq. (2) and the ker-
nel of the Green function is given by'

e+i+E
I
r —r'

Go (E,r, r')=
4~

gjI (E,r&)hL *(E,r& ), (6)
2 L

where L =(l, m) and, as usual, the Bessel (jI ), Neumann
(nl ), the Hankel functions hL (E,r) =jL (E,r)+in—L (E,r)
are products of the spherical Bessel, Neumann, and
Hankel functions and spherical harmonics.

We first want to find the way in which the operators
T (E) defined by Eq. (5) r—efiect the periodicity of the po-
tential V defined in Eq. (2). We suppose, for the moment,
that the potential is weak enough so that Eq. (5) admits a
perturbative series expansion, and write it in the coordi-
nate representation
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T (E—,R+p, R'+p') =V(p)5(p —p')5zz + V(p)GO (E,p, R' R—+p')V(p')

+V(p) f g Go (E,p, R" R—+p")V(p")Go (E,p",R' —R"+p')dp"V(p')+
Q

where use was made of Eqs. (1) and (3).
It is then advantageous to use the relation'

8K ix"(R—R') =~RR'
Q Qj

(8)

and to introduce the (Bloch periodic) Green function
Qo(a. ,E) whose kernel (in the Hilbert space of Bloch
periodic functions' ) is given by '

G (E)=—Go (E)+Go (E)VG (E)—

which apparently satisfies the relation

(15a)

T (E)=—V+ VG (E)V- (15b)

We now want to extend these results for the case of a
general periodic potential. To do this, we define the total
Green function

Qo (~,E,p,p')= g
R

~iK R- ++&
I v—R—n'

I

4' /p —R —p'/
and can be shown to satisfy, for a perturbative periodic
potential, relations similar to Eqs. (6)—(13),

e

E+ie (~+—K)

By using Eqs. (9) and (8), Eq. (7) becomes

(9) G +(E,R+—p, R'+p') = f e'" '0 (a,E,p—,p'),
Q7

( K,E ) = Qo (a,E ) + Qo ( ir, E )V9 ( ir, E)— (16)

T+(E,R+p, R—'+p') = f e'"' 'l (a,E,p, p'),
0 Q)

(10)

Alternatively, the kernel 7 (a,E,p, p') ca—n be thought of
as the solution of

'r '(a, E,p,p') = V(p-)6(p p')—
+V(p) f Qo (~,E,p,p")

X 'l '(x, E,p",p')dp"—, (12)

and, in turn, defines an operator W(a, E) (in the Hilbert
space of Bloch periodic functions) which is given by

'I='(x, E)=V+VQO ((r,E)'I '(~, E) . — (13)

So far, we have shown that the T—+ operators defined in
Eq. (5) by a perturbative (weak enough) periodic potential
has a particular structure as given by Eqs. (10) and (13),
where the operators 'l '(a, E) can be call—ed the reduced
T operators. In fa—ct, Eqs. (10) and (13) assert the ex-
istence of the lattice Fourier transform

'l='(x, E,p, p') = g e '"' 'T (E,R+p, R'+p'), —
R —R'

(14)

or, in other words, the left-hand side (lhs) of Eq. (7) de-
pends not on R and R' but only on R—R'.

where we introduced the kernel 'i —'(x,E,p,p') as defined
by

"C '(K, E,p,p')—

=V(p)5(p —p')+ V(p)QO (a,E,p, p')V(p')

+V(p) f Qo (a.,E,p,p")V(p")

X Q (0a.,E,p",p')dp"V(p')+ .

Now, suppose that the potential V is no longer a perturba-
tion, but can be written as a sum

V= Vi+ V2,

V=V, +Vp,
(17)

where Vz or Vz represents a perturbation to the potential
V, or V„respectively. Then, Eq. (15a) can be written in
the form

G+—(E)=Gi (E)+Gi (E)VpG —(E), (18)

m= f (19)

then we learn from Eqs. (10) and (13) that the T (E)—
operators defined in Eq. (5) admit a continual direct-sum
decomposition. Such a decomposition was exhaustively
discussed by Reed and Simmon' for the case of the Bloch
periodic Hamiltonian, and in fact, was known long ago
but in a primitive form concerning only the on-shell ma-

where the Green function G i (E) takes into account only
the potential V&. Further, by repeating the analysis given
in Eqs. (6)—(13), and by using Eq. (15b), we see that the
Fourier transform, Eq. (14), exists irrespective of whether
the potential is perturbative or not. Then, by taking the
lattice Fourier transform of Eq. (5), we conclude that the
decomposition, Eqs. (10) and (13), holds irrespective of
whether the potential is perturbative or not. Obviously, in
the last case, the series in Eq. (11) is no longer convergent,
and therefore Eq. (13) should be solved by means other
than the Born series.

Thus, we have shown that the study of the T (E)—
operators defined by Eq. (5) [in L (R )] can be simplified
to the study of the reduced 'l '(v, E) operators —defined by
Eq. (13) (in the Hilbert space of Bloch functions). [Com-
pare also Eq. (13) with Eq. (A3) in Appendix A of the
usual scattering theory for a finite range potential. ] If we
now introduce the Hilbert space &(a) spanned by the
plane waves (e'"+ 'e/&co)K, and the Hilbert space & as
defined by the (continual) direct sum'
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trix elements (i.e. , only for the on-shell component of the
T operators) and only in the muffin-tin case. Recently,
this type of decomposition was used for asymptotic expan-
sions (at high energy) and for the soluble case of the
Kronnig-Penney model. ' It follows then, that the novel-
ty of the continual direct sum, Eqs. (10) and (13), consists
in having been proven for a general potential and for the
kernel T —+(E,r, r'), which contains both the on- and off-
shell components. Hereafter, we avoid the discussion of
general properties of such a decomposition in the favor of
explicit, clear-cut constructions. Hence, in the next sec-
tion, we calculate the matrix elements of the operators
defined in Eq. (5).

III. MATRIX ELEMENTS

We are interested in calculating the on-shell matrix ele-
ments

TLL (E)= f, f,j s* (E,r) T*(E,r, r')

The meaning of Eq. (25) is then quite obvious; the func-
tion %~(K,E,p) can also be written in the form

i(]c+K).p
Vp. (K,E,p) =co' g — 5(&E p —K —K), (27)

that is, the function +~(K,E,p) is a superposition in the
P

space &(K), and the coefficients are not numbers but rath-
er distributions. In fact, since from Eqs. (25) and (8) we
have the relation'

f f %0-(K,E,p)40-(K, E',p')dp
Q Q 0

5( — ') (28)E P —P

it follows that the function 4I~(K,E,p) is a generalized
P

element (i.e., normalized to a 5 function) of the Hilbert
space & defined in Eq. (19). The translation properties of
the function in Eq. (24) are given by

XjL (E,r')dr dr' .

For the sake of completeness, we also calculate the plane-
wave matrix elements

jL(E,r+r')= gjL (E,r)Js L (E,r')
L'

= gjL(E, r')JLL(E, r), (29)
—i&E p. r

T*,(E)= f, f, T (E,r,r')—
R3 si3 (2~)3/2

i&Ep r'

X3/2 dr dr'(2'�)
(21)

dlC, —

Ts.L (E)= 'i s.s. (K)E)
Qj

(22a)

By using Eq. (10), the matrix elements given in Eqs. (20)
and (21) become

L'

where

JL L(E,r) = g IL LjL-(E,r),
L )I

IL s ~ ——(2m. ) i'+' ' f Ys* (r) Ys* (r) Ys (r)dr,
4m

(30)

and the sum in Eq. (29) converges irrespective of the ratio
of the modulus r and r'.

A number of properties are almost evident from Eq.
(30)

T=-,(E)= f 'j--, (K,E), (22b)
JL L (E,O) =5L L,
g Js, 'L "(E,r')JL"'L(E r) =JL'L, (E r+r )

(31a)

(31b)

where we introduced the matrix elements of the reduced
operators

Vi'i.(K,E)= %0 (K,E,p)'i (K,E,p,p')
0

L"

JL L (E,r ) =JLL (E, —r ) .

Further, it is advantageous to introduce the matrix

(31c)

X 40,(K,E,p')dp dp', (23) JL'L(K, E)= g e Js.'s (E,R)
R

(32)

+, (K,E,p) =j L(K,E,p) = g e '" "jL(E,R+p),
R

i +Ep(R+ p)
'41~(K,E,p)= g e

R (2'�)
(25)

where A, stands for either L or p, and the (Bloch periodic)
functions +p (Ki, Ep) are given by

which, after some algebra becomes

5(&E —[(K+K) ]' )
JL L K, E =col ~ YL E

X YL(%), (33)

where VV=K+K and JL s (K,E) has the obvious properties

At this point it is necessary to pause and to obtain
more insight into the folding procedure used in Eqs. (24)
and (25). For this, we recall the relations'

e'" JL L(K,E)=JL L(E,R),
Q Q)

g JL L.(K.,E)JL.L (K,E)=JL s (K,E)Nn,
LI

(34b)

g e'" =c3 g 5(k —K),
R K

I
lim y e

—'"'"= .
R

1 if k=K
0 otherwise.

(26)
JL'L (K,E) =Js.L '(K„E) (34c)

where, again, Nz~ap stands for the number of the unit
cells and R denotes lattice vectors. It follows then that
the function defined in Eq. (24) can be written in the form
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% pL(K, E,P)=j L, (~,E,P)= gjL (E p)JI. L, (E,~)

e'"+ ' 5( E —[(tc+K) ]' )

K E
allo (x' E p) = Q JL,I.'(E aj)I. (E p) .

L'

(35a)

(35b)

it follows that the function %p (a.,E,p) belong to the
space gf' defined in Eq. (19).

Now since we have seen the meaning of the functions in
Eqs. (24) and (25), we come back to the T matrix and
calculate the matrix elements given in Eq. (23) and hence,
by means of Eq. (22), the matrix elements defined by Eqs.
(20) and (21). Thus, we introduce the functions
+L, (a.,E,P) and 4'-*(a.,E,P)

+i*(~,E,P) =+p (x,E,P)+ f Qp (a,E,p, p')V(p')

X +i (a.,E,p') dp' (37)

(where, again, A. stands for either L or p). Notice that if
we drop the inhomogeneous term in Eq. (37), we get the
eigenvalue equation for the Bloch functions. Then, we
can already see (by using the Fredholm alternative) that
Eq. (37) has a solution whenever E&E„(a), n =1,2, . . . ,
where E„(a) are the discrete levels for a given a E Q. Ob-

Then, similarly to the case of the function +p-(a, E,P), we
P

conclude that the function EIp (a.,E,P) is a superposition

in the space &(x) where the coefficients are not numbers,
but distributions. Also, since we have the relation [ob-
tained from Eqs. (8) and (24)]

da, 5(&E &E')—
'Elp~(~, E,P)'Pp, (~,E,P)dp= 51L,0 (g

(36)

viously, the functions qli(a, E,P) have a distributional
character [because of Eqs. (27} and (35)]; however, this is
not too troublesome since we are interested in evaluating
only integrals of these functions (and not their point by
point values). Because of its similarity to the Lippman-
Schwinger equation used in the ordinary scattering
theory, Eq. (A15), we can call Eq. (37) the Bloch-periodic
Lippman-Schwinger equation; accordingly, we can call
the functions +i (+,E,p} the Bloch periodic in and out
states. However, their existence is only connected with a
Dyson-type equation and they do not have the meaning of
asymptotic free states (as in the case of usual scattering
theory' ).

En terms of the functions given in Eq. (37), the matrix
elements (Eq. 23) which follow from Eqs. (13) and (37)
are

'l ii (~,E)= f %(),(a.,E,P)V(p)+i*(lc,E,P)dp (38)

[compare with Eq. (A14) of the usual scattering theory].
Thus, in order to find the matrix elements 'l i„i (a,E) [and
hence, by means of Eq. (22), the matrix elements Tzz (E)]
we need the solution of Eq. (37), akin to ordinary scatter-
ing theory. ' Therefore, we now focus on solving this
equation.

A. Plane-wave representation

We begin with the (easier) plane-wave case A, =p, in
which case Eq. (37) becomes [from Eqs. (9) and (27)]

i(v+K.) p
%-*(x,E,P) = g

ic

i(x+K) p'

9 '~25(v'E p —x —K)+
q f — V(p')4-*(a', E,p')dp'

E+ie (a.+K) —«co (39)

Thus, the solution %-*(a.,E,P) takes the form

i(sr+ K).p
'El-*(~,E,P) = g — a K(a,E), (40)

which, by insertion into Eq. (39), results in the algebraic
system for the coefticients

VKK'
5KK —

2
a ~ (&E)

K' Eking (z+K}—

—i(]c+K.) p i(a+K') p= f V(p) — dp
n v'pi V Qi

(42)

'l pp(a, E)=co $ 5(&E p —~—K)Egg(K, E)
K, K'

Thus, providing E&E„(~), the discrete levels for a fixed
+H Q, the coefficients a K (a,E ) can be found by taking the
inverse of the matrix in the lhs of Eq. (41). By using
these results in Eq. (38) we obtain the matrix elements

=~ ' '5(&Ep —a- —K),
where we introduced the notation

(41) X 5(&E p' —a —K'),
where XKK (a,E) denotes the matrix

(43)
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+ +K"K'
&Kic «E)= g &ice &K ic-

Kft E+i e(ic+ K")

(44)

e
—t(v+K') r'

X (45)

Apparently, from Eqs. (43) and (44), the poles of the total
operator coincide with those of its on-shell part and are
given by the usual band-structure equation (which leads to
the plane-wave diagonalization).

Equations (43) and (44) give the on-shell matrix elements
in the plane-wave representation; it is easy to see, by using
the K expansion from Eq. (9), that the off-shell matrix
elements can be calculated in a similar way. Thus, the
kernel T—(E,r, r') of the operator defined in Eqs. (5), (10),
and (13) is given by

i(v+ K).r
T (E,r,—r')= I g — &icic(~,E)

ic, ic'

ous possible prolongations, the function VL*(a.,E,r) has a
privileged position. Being given by the right-hand side
(rhs) of Eq. (46) by taking p~r [from Eqs. (9) and (24)],
the coupled-channel equation for its multipole expansion
can be easily derived. Thus, by using essentially the same
arguments as in Ref. 16, we conclude from Eq. (46) that
the prolongation defined by Eq. (48) can be given in the
form

( K,E,r ) = g 4L (E,r ) A L+L, ( lc, E—
), r (d

L'
(49)

X'4II. (a,E,P)dp .

(50)

[Note that the coefficients Al——. I. (ic,E) are independent of
d.] Here we introduced the abbreviation [compare with

Eq. (24)]

where the coefficients AL—
, I. (a,E ) are functionals of

+L(a,E,P),

AL'L (& E)=~L'L (& E)+ f hL' "(& E p)&(p)
+in&E.

2 0,

B. Angular momentum representation

X 0'1. (Ic,E,p')dp' (46)

We now turn to the case A. =I.. Here we have to solve
the equation

+L, (Ic,E,P) = %o (a,E,P)+ J Qo (a,E,P,P')V(p')

nL(ic, E,P) = g e '" nl. (E,p+R),
R

hLL—(a,E,P) =jL (sc,E,P)+inL (a,E,P),
and the functions 4L, (E,r) are defined by

(b, +E)&L(E,r)= V &bl (E,r),

(51)

(52a)
[compare with Eq. (A15) of the usual scattering theory].
Obviously, by using the K expansion given in Eqs. (9) and
(35), one can express the corresponding matrix elements
in terms of the matrix X&ic defined in Eq. (44). Howev-

er, an alternative, more interesting solution is made possi-
ble by the use of the L expansion in Eq. (35). Actually,
from Eqs. (6), (9), and (35), the lhs of Eq. (46) takes the
form

0 L, (ic,E,p) = g Yl. (p)XL I(ic,E,p), —.
L'

(47)

where the functions XI—I (a, E,P) are to be determined
from Eq. (46). But here is the essential point: One can-
not establish a coupled-channel equation for the
coefficients Xl—L(lc,E,P) because the spherical functions

YL (p) are orthogonal on the surface of the sphere and,
therefore, for p ~ p, the radius of the inscribed sphere, one
cannot introduce Eq. (47) into Eq. (46) and use the ortho-
gonality of the spherical functions.

It turns out that this difficulty can be overcome by con-
structing a prolongation of %i. (a, E,p) in a spherical
domain which includes the unit cell, and by finding the
multipole expansion of this prolongation. Obviously,
one can choose various prolongations, but we focus here
on the Bloch-periodic prolongation %L (a,E,r) as defi—ned

by

C&1 (E,r) ~jL(E,r),r~o

with the potential V" defined in Eq. (4), and have the ob-
vious property

4L(E, r)=&L(E,r) for r(min(d, d') (52b)

C& I. (ic,E,P) =
d g e '"

4&1.(E,p+R)
(P) R,

~
p+R~ d

=NI'"(E,p) + Ag~ (lc,E,p), (53a)

cIii, (a,E,P)= lim 41(lc,E,P)d~ oo

=@I"(E,p)+ lim bl (a.,E,P),d~ oo

(53b)

[compare Eqs. (49), (50), and (52a) with those of the usual
scattering theory, Eqs. (A18), (A17), and (A19), respec-
tively].

Obviously, in the limit d~ oo, Eq. (49) gives the Bloch
periodic extension of the function +L(a,E,P) in the whole

space. Then, the Bloch function in the unit cell, which is

needed in Eq. (50), can be obtained by a folding-back pro-
cedure. We introduce the (Bloch periodic) functions (for
d larger than the radius of the circumscribing sphere)

'PL +(Ic,E,P+R)=e' O—'L(~, E,P),
&'pg (ic,E,P+R) =e'"~V—VL(x, E,P),

(48) hi (a.,E,p) = [e '" 4L(E p+R)
(P) R~o,

~
p+R

~

d

for any r=p+R with r &d and arbitrary d. Among vari- —4 L'"(E,p)], (53c)
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where n (p) represents the number of translations R
which leave the point p inside the sphere with radius d,
4L"(E,p) corresponds to d, the radius of the circumscrib-
ing sphere, and the property (52b) was taken into ac-
count. ' Then, the function O'L(ir, E,p) can be represent-
ed as a superposition of Bloch periodic functions

+L(ir~E~p) g CL' (Kp) AL'L(iriE)
L'

(54b)

or as a superposition in the linear space of regular solu-
tions of Eq. (52a)

q'L, (a,E,p) = g 4'I. (a,E,p) AL
—I. (a,E)

L'

lim g 4& r. (a,E,p) Al—. I. (ir, E),
d~ oo

(54a)
Here the coefficients AL—i. (a,E) are given by [from Eqs.
(50) and (54)]

+im/E. +fiL'L" + hL, ' (a.,E,p)V(p)&L, "(ir,E,p) Ac "I.(a,E ) =Ji. I. (a.,E),
L lt 2 0

(55a)

which, providing E&E„(a), can be solved' by taking the
inverse of the matrix in the lhs of Eq. (55a). Thus, Eq.
(38) now becomes [compare with Eq. (A21)]

T

'l I. I. (x,E)= g f +0,(a.,E,p)V(p)
L II

X+L-(&,E,p)dp AI L, (ir, E), —

tain information on both the structure [from Eq. (53a)]
and the potential [from Eq. (52)] inside the sphere with
radius d~00. In other words, these matrices contain a
supplementary sc dependence which comes from the
correct use in Eq. (50) of the Bloch periodic superposition
Eq. (54a) and not of Eq. (54b). However, they can be
expressed in the form [from Eqs. (53a) and (53b)]

(55b)

~L'L (ir~E ) oL'Ld ~&E
nl*. (E,p)V(p)%1 (a., E,p)dp,

(56a)
XL L (~,E)= f j L (E,p)V(p)@ L, (&,E,p)dp,

as well as the matrix [cf. Eq. (A23)]

0 *(ir,E)=X (a,E)[I "(a.,E)+iX"(a,E)] (56b)

The limit d~ oo in Eqs. (56) is denoted by removing the
index d. In contradistinction to the muffin-tin case, Eqs.
(A22) and (A23), the matrices X"(a,E) and I "(x,E) con-

where we recall the definition Eq. (24) and properties
(35). [Notice the fact that, in general, Eq. (49) or (54b)
cannot be introduced into Eq. (50) and integrated term
by term to give a linear system for the coefficients
AL 1(a,E). Instead, for d~oo we can use Eqs. (53a)
and (53b) in Eq. (55) to obtain successive approximations
for the coefficients AL L(a, E) which, in the limit,
represents the exact result. Obviously, a natural approx-
imation would be to retain only the first term in Eq.
(53b) and thus obtaining' the "generalized muffin-tin ap-
proximation. " In particular, this includes the case of a
muffin-tin potential. A more detailed discussion of the
efFect of various approximations is given in Sec. IV,
below. ]

Following the line of Ref. 16 (and in view of the com-
parison with the muffin-tin case described in the Appen-
dix), it is advantageous to introduce the matrices X (a, E)
and I "(N,E) having the matrix elements [compare with
Eq. (A22)]

XL L(a,E)=XLrL(E)+ jL (E,p)V(p)
2 0,

X 61 (a,E,p)dp,
(57)

I L, I (a,E)=I L'r'(E) — nL (E,p)V(p)
2

X b L (ir, E,p)dp,

where the matrices

~L'L(E)= f jL (E p»(p)c' I."(E,p)dp2

I I."L(E)=5LL — f nL'(E, p)V(p)@L (E p)dp

(58)

= g Jl I"(a,E)XL"L,(x,E) . .
L"

(59)

and similarly for 0""(ir,E), now express only the poten-
tial (but within the inscribed sphere) akin to the muffin-tin
case, Eqs. (A22) and (A23). The second term in Eq. (57)
(which still contains both the structure and the potential)
is expected to represent a correction. ' [We notice in ad-
vance, that this term rejects the correct consideration of
the periodicity and, therefore, it is not related with the
usual "near-field" corrections, "' which are mostly con-
nected with the convergence of the multipole expansion of
the Green function defined in Eq. (A5).] Finally, from
the translational properties of the Bessel and Neumann
functions we always have

~&E
2 Sl

jr*. (ir, E,p)V(p)C& L, (x,E,p)dp
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By contrast, the matrix

Kl L(K,E)= I g e '" nl'*(E,p+R)
2 0 . R~O

&& V(p)4 L (K,E,p)dp

can be written (factorized) in terms of the structure con-
stants

(8), (31), and (34a), we obtain in the case of close-packed
lattices [compare with Eq. (A9)]

T (E—) = —g J(E, —R)r —(E,R—R')J(E,R'), (67)
R, R'

where 'Z (E,—R R'—) denotes the matrix (lattice Fourier
transform) [cf. Eq. (A10)]

'Z —(E,R —R')

5 (K,E)=N(K, E)X (K,E) (61) =0—(K,E)[5,+iH —(E,R—R')0 —
(K,E ) ] (68)

NI. I (K,E)= g e '" "NL, I (E',R),
R~O

Ni. I. (E,R)= + II I, NL "L(E,R)
L tt

(62)

only in the case of close-packed lattices, i.e., max«~
p & minR, which includes the muffin-tin case. In Eq. (61)
we introduced the structure constant ' Ni L(K,E) as
defined by

and the inverse is taken in the site representation. (So far,
we have encountered only inverses in the I representa-
tion. ) In fact, Eq. (68) represents a generalization of the
(muffin-tin) scattering path operator. ' Finally, one can
see that the poles of the T +(E) ma—trix represent the ener-

gy levels as given by the band-structure equation derived
in Ref. 16 (and proven in the soluble case of constant
periodic potential to yield the correct solution).

[compare with Eqs. (30) and (32)], and which satisfy simi-
lar properties to that expressed by Eqs. (31c) and (34c).
Clearly, the troubles with the existence of the factoriza-
tion, Eq. (61), come from the contribution of the nearest
neighbors; in this view, the existence of Eq. (61) is con-
nected with the usual near-field correction (as discussed in
Ref. 12 and references therein).

Now we come back to the matrix element, Eqs. (55b),
(23), and (22a) which, by using the notation Eqs.
(56)—(62), can be written as [compare with Eq. (A12)]

rri E n Q7

T (E}= —j J(K,E)'Z (K,E)J(K,E),—

where L (K,E) denote—s the matrix

'Z —(K,E)= [0—(K,E)

+i [J(K,E) 1+iK(K,E )—X(K,E ) ']
I

(64)

In the case of close-packed lattices, i.e., max«~ & minR,
by using Eq. (61), Eq. (64) further becomes [compare with
Eq. (A13)]

X—(K,E)=[0—(K,E) '+iH (K,E)]-
where we introduced the structure constant

(65)

HLI (K,E)= g e '" HLI. (E,R)'
R~O

=JI.L (K,E) oLL, +iNLI (K,E)—,

Hrc (E,R)= g ILL "hI."(E,R) for R&0
L"

HLL (E,R) =0 for R=O .

(66)

Since the quantities which appear in Eq. (63) depend on
K only by means of a sum, gee '"' f(R), it is possible to
express the integration over the Brillouin zone as a sum-
mation over the lattice vectors R. Actually, by using Eqs.

IV. EFFECTS OF VARIOUS APPROXIMATIONS
AND THEIR RELATION

TO PREVIOUS APPROXIMATE RESULTS

Equations (63)—(65), (67), and (68) represent our main
results. They give the on-shell matrix elements of the
T (E) opera—tors in the L representation for a general
(non-muffin-tin) periodic potential. These equations have
the advantage of describing the periodic potential in
spherical coordinates and thus avoiding the plane-wave
expansions (which are slowly convergent). [Recall that it
is the folding procedure, Eqs. (24), (25), and (53), which
ultimately allows for this description in spherical coordi-
nates. ]

The poles of the matrix elements, Eqs. (64) or (65), gen-
erate the same band-structure equation as that derived in
Ref. 16 and proven (in contradistinction to the previous
attempts, ' claimed as exact) to generate correct results
in a soluble case. Further, being an exact result, Eqs.
(63)—(65), (67), and (68) contribute to a better understand-
ing of the periodic potential problem in relation to the
usual case of a potential which falls down at infinity. In
particular, they illustrate the extent to which the notion of
the phase-shift operator of the usual scattering theory sur-
vives in the case of a periodic operator which does not al-
low for asymptotic free regions. Also, their close similari-
ty to the corresponding equations of the muffin-tin case
suggests further investigations for the existence of a
Friedel-type sum rule or for possible expressions of the
charge density in terms of the matrices X(K,E) and
I (K,E) akin to the muffin-tin case. Finally, being an ex-
act result, Eqs. (63)—(65), (67), and (68) may serve as a
base for further approximations which we now discuss.

Let us first examine the essential difference between the
general periodic potential and the muffin-tin case. Com-
pare then Eqs. (63)—(65}, (67), and (68) for the general
periodic potential with Eqs. (A12), (A13), (A9) and (A10)
for the muffin-tin case, respectively. In the case of close-
packed lattices, the only distinction is made by a supple-
mentary K dependence of the matrix 0—(K,E), Eq. (56b),
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i.e., by the presence of "Bloch periodicity corrections"
discussed in detail in Ref. 16. In other words, the
geometry of the lattice is not only contained in the struc-
ture constants but also in the matrix 5 which no longer
represents the t matrix of the unit cell, Eq. (All). [In
fact, this supplementary ~ dependence of the cell potential
contribution represents, ultimately, our main result; previ-
ous attempts tried to produce results (claimed exact) by
using, in one way or the other, the decomposition Eqs.
(A5) and (A6) in Eqs. (A 1)—(A3), whereas the present
formalism relies on Eqs. (10), (13), (50), and (54b).] In the
general case there is an additional difference caused by the
matrix K which cannot be factorized, Eq. (61), unless the
condition maxz~nii(minR is satisfied. (By the way, this
clearly shows the relation between structure and potential
in the case of a general periodic potential. )

By confining ourselves to the close-packed lattices, the
problem is how to approximate in a simpler form the sc

dependence of the matrix 0—(a.,E) in Eq. (65). [As was
mentioned before, this ~ dependence comes from a correct
consideration of the periodicity, that is, in Eq. (50) one
should use Eq. (54a) and not Eq. (54b).] An easy way
will be to drop this dependence, that is to neglect the
second term in Eq. (53a) and hence in Eq. (57); in this
case, the structure becomes separated from the potential
but, unless the potential is of muon-tin type, the corre-
sponding matrix 0""(a,E) is not yet the t matrix of the
unit cell. While it yields a band-structure equation (de-
rived in Ref. 9 by other means and believed by these au-
thors to be an exact result) this approximation violates the
Bloch periodicity of the function 4&(a,E,p) in Eq. (55a)
on the boundary of the unit cell; in this respect, it is
equivalent' to the approximation made by replacing the
functions 4&"" (determined by the potential in the cir-
cumscribed sphere) with the regular solutions, Eq. (52a),
of the cell potential V. In this approximation the struc-
ture is not only separated from the potential, but the cor-
responding matrix 0""becomes the t matrix of the unit
cell, as in the muffin-tin case (see also the final remarks in
the Appendix). This approximate result was derived pre-
viously, by other means, in Refs. 11 and 15; in Ref. 10 it
is given as an exact result. From the computational point
of view of the band-structure calculations, these two ap-
proximations are equivalent and in the particular case of a
constant potential and a cubic lattice, they yield satisfacto-
ry accuracy. ' However, these approximations also give
a systematic displacement (from the correct values) which
cannot be diminished by increasing the dimension of the
L space. ' In fact, these two approximations express the
same physics, namely, the "generalized muon-tin approx-
imation, " when the cell potential is zero near the bound-
ary of the unit cell. Actually, in this case we need the
function 4'r—(v, E,p) in Eq. (50) only for an interior
domain of the unit cell, where this function can be equally
represented by Eq. (54a) or Eq. (54b) or as a superposition
of the regular solutions of the cell potential. ' '

A better approximation is to consider a reasonably
large d in Eq. (53a). In particular, the choice of the ra-
dius of the circumscribing sphere [when the function
n (p) takes only the values 2 or 3 for a square lattice] re-
quires essentially the same computational effort as do pre-

vious approximations, but represents a first attempt to
correctly consider the periodicity, when described in
spherical coordinates by means of multipole expansions.

V. SUMMARY AND CONCLUSIONS

We considered a general periodic potential and derived
(from the periodicity alone) that the T*(E) operators, as
defined in Eq. (5), can be written as an integral over the
Brillouin zone, Eq. (10), from the reduced 'l '(a, E—

)

operators defined in Eq. (13). Thus, the study of the total
operators T (E) —was simplified to the study of the re-
duced operators 'l '(a., E—). In particular, the matrix ele-
ments Ti—i (E), cf. Eqs. (20) and (21), where X stands for
L or p, are given, Eqs. (22), in terms of the reduced ma-
trix elements 'l ii (~,E). These matrix elements are calcu-
lated in a formalism which is very close to that of the usu-
al scattering theory: By introducing the Bloch periodic in
and out states, Eq. (37), the reduced operators 'l='(a, E)
(on-shell part) are shown to transform Bloch periodic
"scattering states" into Bloch periodic "free states, " Eq.
(38). Both these Bloch periodic free and scattering states
have a distributional character but this is not too trouble-
some because we are interested in calculating only in-
tegrals, and not point-by-point values. Finally, the on-
shell matrix elements were worked out in both the plane-
wave representation, Eqs. (43)—(45), and in the L repre-.
sentation, Eqs. (63)—(67).

In the L representation, the functional form of the ma-
trix elements, cf. Eqs. (63)—(67), is very close to that of
the muffin-tin case, Eqs. (A9) —(A13), but the contribution
of the structure is no longer separated from that of the po-
tential. In the case of close-packed lattices, Eqs. (61) and
(65), the structure constants appear in the same way as in
the case of the muffin-tin potential, Eq. (A10), but the ma-
trices X"(a,E), I (a,E), and 0 (a, E) depend on both a
and E (i.e., on both the structure and the potential). This
supplementary v dependence comes from a correct con-
sideration of the periodicity it is therefore different from
the usual near-field corrections which are instead connect-
ed in this formalism with the factorization of the matrix
K(a, E ), Eqs. (60) and (61), and then with convergence of
the L series. ' Further, this supplementary dependence
can be given a considerable simplification by introducing
various approximations into Eq. (53) [and hence in Eqs.
(57) and (58)] and then, rediscovering previously known
(approximate) results "' (and claimed by several au-
thors ' to be exact). Finally, the poles of the on-shell T
matrix give the same band structure as a previously deter-
mined band structure-equation' which, in turn, was prov-
en (analytically) to be equivalent to the usual plane-wave
diagonalization (taken as an exact result).
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APPENDIX: ON-SHELL T4 MATRIX
FOR THE MUFFIN-TIN POTENTIAL

As a way of enhancing the generality (and hence the
power) of the present approach, we briefiy recall here the
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usual multiple-scattering derivation of the on-shell T—
matrix for the case of a muffin-tin periodic potential. ' '
(This also serves to indicate its novelty and its ability to
overcome the difficulties of the multiple-scattering ap-
proach. ) We present this derivation using the same nota-
tion given in the main text so as to facilitate (i) easy com-
parisons between the two cases and (ii) an understanding
of their differences as well as of the limitations of the
multiple-scattering approach.

Consider then a periodic potential as defined in Eq. (2)
and notice that Eq. (5) can be put in the form

T*(E)=$ tit(E)+ $ tit(E)Gp (E)tg'(E)+
R R~R'

tt L, (E)= fjr*, (E,r)t '+(E—, r, r'j)L, (E,r)dr (A7)

are involved, where the superscript mt emphasizes the
muffin-tin case. Further, by using Eqs. (29) and (31c), as
in Ref. 3, we find the matrix elements

TL, L—, (E)= f jL*, (E,r)T '+(E,—r, r'j)L(E, r)dr (AS)

in the form (hereafter, the bold letters denote matrices in
the L representation),

T '*(E)= —g J(E,—R)X '*(E,R—R')J(E,R'),
R, R'

(A9)

where the [L (R )] kernel of the Green function G —(E)
is given in Eq. (6) and tit(E) denotes the T operat—or cor-
responding to the potential Vit (as if all the other cells
were absent); hence, the [L (R )] kernel t~ (E,r, r') of the
operator t R (E) has the property

tr t E, r, r' = . t (E,p, p') —if r=R+p and r'=R+p'
0 otherwise,

(A2)

' —(E,R —R')

=8—(E)5 ~ + t $8+—'(E)H+—(E,R —R')8 —(E)+
R, R'

=8—(E)[5 +iH +—(E,R, R')8 +—(E)] (A 10)

Here the inverse is taken in the site representation and
8—(E) denotes the matrix [see Eq. (A7)]

where the matrix J(E,R) was defined in Eq. (30) and we
introduced the matrix

t*(E)=V+ VG p (E)t (E), — (A3)

and the function t +(E,p,p') defin—es the [L (R )) operator

2
-' (A 1 1)

where V is the potential defined in Eq. (3b). Apparently,
the operator t +(E) has the p—roperty

t (E,r, r')=0 —for those r or r' for which

V(r) or V(r') is zero
(A4)

[Recall also that the matrix H +—(E,R) is zero for R=O, cf.
Eq. (66).]

Alternatively, by using Eqs. (32), (34a), (66), and (S),
the sum in Eq. (A9) can be written as an integral over the
Brillouin zone

t —(E,r, r')&0 otherwise . T ' (E)= —— f J(tr, E)X '—(Ir, E)J(a,E), (A12)
77 0 Q)

Now, Eqs. (Al) —(A3) hold irrespective of whether the
periodic potential is of muffin-tin type or not. However,
in the muffin-tin case, i.e., V(r) =0 for r & p in Eq. (A3),
Eqs. (Al) —(A3) can be further exploited to result in a
closed expression for the on-shell matrix elements. Actu-
ally, in this case, Eq. (Al) involves the Green function
[from Eq. (A4)]

where we introduced the matrix

(a,E)= [8—(E) '+—iH (a,E]—. (A13)

and now the inverse is taken in the I representation. It
remains then to find the matrix elements tL, L—, (E), Eqs.
(A7) and (All). Clearly, the calculation of these matrix
elements pertains to the ordinary scattering theory' [from
Eq. (A3)] and has nothing to do with the muffin-tin or
non-muffin-tin imposition. Therefore, in what follows we
keep the superscript mt only for the potential and for the
matrix tL L (E) but remove this—index from the scattering
states and regular solutions (because their calculation does
not depend on the muffin-tin imposition). Thus, from Eq.
(A3), we have'

RWR', (A5)

only for the interior points of the muffin-tin spheres, i.e.,
p,p' (p, for which situation we have the (on-shell) decom-
position

Gp (E,R+p, R'+p')

+in&E.$jL, (E,p)HLL, (E,R R')jt* (E,p'), —
L,L'

tL, 'L—+(E)= fjL (E,r)V '(r)ipL (E,r)dr,

where the scattering states +L, (E,r) are given by

(A14)

G +—(E,R+p, R'+p')= 1 e ' E lP+R R' P I——
4n

I
p+R —R' —p'

I

(A6)

where the matrix (structure constant) HLt. (E,R) is given
in Eq. (66). Then, by using Eq. (A6) in Eq. (Al), we find
that only the on-shell matrix elements

qIL(E, r)=jL(E,r)+ f Gp (E,r')V '(r')4~+(E, r')dr' .

(A15)

Then, we need to solve Eq. (A15); by using Eq. (6) and
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the behavior of the Bessel and Neuman functions at the
origin, we find

and o(E). as given by

VL(E,r) ~ gjL, (E,r)aL, L(E),
r~O

(A16)
~&E

y L L. (E)= oL, L,
— nL' (E,p)V '(p)@L, (E,p)dp,0

where the coefficients are functionals of O'L, (E,r) ~&E
oLL, (E)= jr' (E,p)V (p)C'L, (E,p)dp,2 0

(A22)

at—.L, (E)=5L t. + f hL, *(E,r)V (r)%'L(E, r)dr+ +t~ E +e mt

2

(A 17)

and the potential V(r) is allowed to have a singularity at
the origin behaving, at most as r +', e)0. Since the
function VL, (E,r), as solution of Eq. (A15), is uniquely
defined, we easily find [from Eqs. (A15) and (A16)]

iPt (E,r)= g@L (E,r)at*I, (E),
L'

where the functions iI&L, (E,r) represent the solutions of

(b, +E)NL, (E,r) =V '@L,(E,r),
NL, (E,r) ~jL(E,r),

r~O

(A19)

and are (relatively easily) computable with the variable
phase method. ' We therefore carry on the analysis in
terms of these functions. By introducing Eq. (A18) into
Eq. (A17), we obtain a linear system for the coefficients

f}L'L"
L lt f hL, *(E,r)V(r)

XiIiL, (E,r}dr at. t. (E)=6LL

(A20)

tL t (E)= g fjL*(E,r)V '(r)
L"

X@L-(E,r)dr aL-t (E) . (A21)

It is then advantageous to introduce the matrices y(E)

which has a unique solution if the energy E is not a
bound state for a single muffin-tin potential. Then, Eq.
(14) becomes

and to write Eqs. (All), and hence Eqs. (A14) and (A21),
in a compact form

0 (E)=o—(E)[y(E)+io (E)] (A23)

[It is worthwhile mentioning that the matrices 8(E), a(E),
and y(E) can be found by solving Volterra-type integral
equations; the equations for o(E) an. d y(E} are linear
and the equation for 6(E) is quadratic. ]

In conclusion, in the expression for the on-shell matrix
elements of the total T ' operat—ors within the multiple-
scattering approach ' ', Eqs. (A9) and (A12), the struc-
ture (geometry) of the lattice is described only by means
of the structure constants HL

—t (a.,E) and Jt L(tc,E).—In
this case, then, the structural aspects are decoupled from
the potential which enters only by means of the on-shell
t ' matr—ix of a single muffin-tin potential, Eqs. (A10),
(Al 1), and (A13). In its turn, this matrix is described in
terms of the matrices cr(E) and y(E), Eqs. (A21)—(A23)
and (Al 1), which here stand for the "s" and "c"
coefficients of the variable phase method. (These
coefficients represent the generalization of the sine and
cosine of the phase shifts in the usual scattering theory for
a spherical symmetric potential. '

)

Now, one might naturally ask, what happens if we in-
troduce in the rhs of Eqs. (A9) and (A12) the t matrix of a
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