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A new approach —one not based on multiple scattering or the variational principle —to the prob-
lem of the band structure for a general (i.e., non-muffin-tin) periodic potential is presented. From the
eigenvalue equation, the Bloch function is shown to be expandable as a multipole series around the
origin and the coefficients are found to be given as functionals of the Bloch function and the cell po-
tential. By introducing into this functional various representations of the Bloch function (as a super-
position in which each individual term is not Bloch periodic), we obtain previously derived band-

structure equations (some claimed to be exact). By deriving, however, a new representation for the
Bloch function (as an on-shell superposition in which each term is Bloch periodic) and using this rep-
resentation in the above functional, we obtain a new energy-band equation in which the potential can
no longer be separated from the structure. When approximations are introduced, then Korringa-
Kohn-Rostoker-type equations (in which the potential is separated from the structure) may be ob-

tained. All the steps of this new approach are illustrated in the soluble case of a constant periodic
potential. It is shown, in this case, that only the newly introduced band-structure equation is able to
generate the correct eigenvalues.

I. INTRODUCTION

The early and continuing success of the Korringa,
Kohn, and Rostoker' (KKR) approach to solving a
variety of problems for ordered and disordered solids has
fostered many attempts at generalizing their treatment to
the case of a general (i.e., non-muflin-tin) potential. In
the case of a muffin-tin potential, it is universally accepted
that the structure gets separated from the potential and
the eigenvalues are given by the KKR equation —a result
that makes possible highly efficient band-structure calcula-
tions. In the case of a non-muffin-tin, i.e., general period-
ic potential, the structure is no longer separated from the
potential and the so-called "near-field correction" should
be taken into account. These corrections, however, al-
though different from zero, are usually neglected; also,
except for an upper bound (determined by neglecting
them and comparing the result so obtained with the exact
one in a soluble case ), neither practical evaluations were
done, nor was any soluble case studied.

In contradiction to the general view, ' two refer-
ences ' conclude that in the case of closed-packed lattices,
the band-structure equation for a general potential ac-
quires the same functional form as the usual KKR equa-
tion. That is, the structure gets separated from the poten-
tial as an exact result, and the effect of the structure is ful-

ly described by means of the usual structure constant as
defined in the KKR equation. However, although Refs. 3
and 4 agree upon the separation between structure and
potential, they strongly disagree on the analytical form of
the potential contribution. Moreover, although they con-
tain quite different potential contributions, the equations
of Refs. 3 and 4 yield the same results for the empty lat-
tice test. Further, these results are systematically shifted
from the correct ones (in the sense that the error can not
be decreased by systematically increasing the L space). '

This striking feature, i.e., different equations which yield
the same results and which are systematically shifted from
the correct ones, appears to suggest that the equations in
both Refs. 3 and 4, although claimed as exact results,
reflect solely the same (hidden) approximation. In this
paper, we show that this, in fact, is the case. Finally, the
band-structure equations given in Refs. 3 and 4 have nei-
ther been proved (analytically) to yield the result as ob-
tained by the plane-wave diagonalization (which
represents the exact result) nor were they solved (analyti-
cally) in a particular (but relevant, full potential) case.
We agree, therefore, with the conclusion of Faulkner that
the existence of a KKR-type (or, more generally, L repre-
sentation) band-structure equation for a general periodic
potential still remains an open problem.

The present paper considers this problem using a com-
pletely different approach from those employed so far, i.e.,
multiple scattering and variational principle. Our philoso-
phy can be summarized as follows: if there were a
KKR-type equation for a general potential, it ought to be
derived from the eigenvalue equation of the Bloch func-
tion by means of a proper analysis (since the eigenvalue
equation contains all the necessary information). Here,
we present such an analysis. From the eigenvalue equa-
tion we infer that the Bloch function can be expanded
around the origin in a multipole series whose coefficients
are expressed as functionals of the Bloch function and the
cell potential. From this boundary condition and, again,
from the eigenvalue equation, we further derive that the
Bloch function extended (with Bloch boundary condi-
tions) to an arbitrary sphere can be written as a superposi-
tion of the regular solutions of the (periodic) potential en-
closed by that sphere. This, in turn, is shown to result
(by using a folding procedure) in representing the Bloch
function as an on-shell superposition of Bloch periodic or-
bitals. It is emphasized (by comparing with other repre-
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sentations) that only the above superposition of Bloch
periodic orbitals correctly describes the Bloch function (as
an element of the Hilbert space of Bloch periodic func-
tions). Finally, by introducing the Bloch function as
given by various representations in the functional defining
the multipole expansion around the origin, we find the
band-structure equation previously derived. ' More
significantly, we also obtain a new band-structure equa-
tion which, in contradistinction with previous ones, con-
tains the newly introduced "multipole expansion periodi-
city corrections. " The contribution brought about by
these corrections is illustrated in a soluble case: for a con-
stant periodic potential, only the newly derived KKR-type
band equation is able to reproduce the correct result.

defined by

V(r) for r & d
V r =

0 elsewhere, (4)

where V(r) is defined in Eq. (2). Obviously, V"=V
denotes the cell potential restricted to the inscribed sphere
(and zero elsewhere).

In this notation, the Bloch function W(a, E„,p), a EQ,
and p&II with the energy E„(a)&0, being an element of
the Hilbert space A'(a. ) spanned by the plane waves
(e'I"+ 'i'/v'ei)R, is defined as solution of the eigenvalue
integral equation

—1 cos(YE
~ p —R —p'

~
)

n R 4ir
I p —R—p'

I

II. MULTIPOLK EXPANSIONS
AND BAND-STRUCTURE EQUATIONS X V(p') 4'(a, E,p')d p', (5)

Let R and K be vectors of the direct and reciprocal lat-
tices, having the primitive cells 0 and Q, with the volume
~ and 6, respectively. Let p E0 and sc& Q be vectors in
the direct and reciprocal primitive cell, respectively.
Then, for any vectors r and k, in the whole space, accord-
ing to the Fig. 1, there is a unique decomposition

r=R+p,
k=I( +x .

Let V(r), be a periodic potential over Nn cells in the crys-
tal with N~~ oo, as given by a sum of cell potentials

V=+ VR
R

where the potential V~ is zero outside the cell indexed by
R, i.e.,

where the (principal value) Green function has the follow-
ing (multipole) decomposition
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where
~

r
~

=min(r, r'),
~

r
~

=max(r, r'), and L =(I,m)
and, as usual, the Bessel (jL ) and Neumann (nL) func-
tions are products of the spherical Bessel and Neumann
functions and spherical harmonics.

Now, by using in Eqs. (5) and (6) the behavior of the
Bessel and Neumann functions at the origin, we find the
following boundary condition

P(K,E„,p)~ g jI.(E„(a),p) AL (a.,E„) as p~O, (7)
L

0 for r&R+p,VRr =.
V(p) for r=R+p,

and the cell potential V(p) has the range a, a (maxz&n p
where p denotes the modulus

~ p ~

(hereafter, r will
denote the modulus

~

r
~

). In this notation, the muffin-tin
(MT) case is obtained for o. =p, where p denotes the ra-
dius of the inscribed sphere in the unit cell Q. Finally,
for any finite d, d )0, we introduce the potential V (r), as

where we introduced the abbreviations

mV E„(a)
c4 1.(K,E„)= n L ( sc,E„(a ),p )

2

)& V(p)4(a, E„,p)d p,

nl. (a,E,p) = nl (E,p)+ nL(a, E,p),
nL(a, E,p)= g e '"

nL, (E,p+R) .
R~O

(8)

(9a)

(9b)

~ X

As the (Bloch periodic) Green function in Eq. (5) is
defined only when acting in the Hilbert space &(a) of
Bloch periodic functions, it follows that the integral in the
right-hand side (rhs) of Eq. (8) is defined only for 0' being
a Bloch function. For later use, we mention the relation

E,p e'"+ '~dp

(&ir)3~vi iI'z (A')

E—(a+ K) ~&E

' I/2
(a.+K)

E (10)

FIG. 1. Coordinate representation. where%'=@+K, which is obtained by considering the ac-
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tion of the Green function that appears in Eq. (5) upon
the plane wave, using the plane-wave expansion of this
(Bloch periodic) Green function and taking the multipole
expansion in the limit p=0. The function nl (sc,E,p)
defined in Eq. (9) contains information concerning only
the geometry of the lattice; for p & minR, it can be repre-
sented as

nz. (ic E p)= nl. (E,p)+gjL (E,p)NL L(a.,E),
L'

p & minR,

'P(a, E„,p)=g &L~ (E„(a),p)AI. (x,E„), p&@
L

(12)

where the functions NL (E„(x),p) are solutions of the
(partial differential) equation

(g+E)iI)MT(Ep)LyMT(p)iI)MT(Ep)

at the energy E =E„(a) and with boundary conditions

(E,p)~jl. (E,p) as p~O .

(13)

Now, for reasons to be obvious later, we want to extend
the multipole expansion description beyond the inscribed
sphere. Thus, we introduce the function iII (a,E„,r)
defined for r =

~
p+R

~

& d and for any finite d )0, as the
prolongation" of the Bloch function with Bloch boundary
conditions

4 (K,E„,p+ R) = e '" 4(a,E„,p)'
V4"(K,E„,p+R) =e' V+(x,E„,p) . '

(15a)

(15b)

The function 4"(a',E„,r) is then given by the rhs of Eq.
(5) with p~r and E~E„and hence

(K,E„,r) =g YL (r)QL, (z,E„,r ), r & d
L

(16)

where NLI. (ir, E) is the usual structure constant. ' For
those p with p & minR, the sum in Eq. (11) is not conver-
gent however, we can isolate in Eq. (9) a finite number
of terms with R (p, i.e., the nearest neighbors, and obtain
for the remaining (infinite) sum an expression similar to
the last term in Eq. (11).

Equation (8) represents the crucial point of our investi-
gation: Provided that the Bloch function can be repre-
sented as a superposition having the coefficients
AL(a, E„), then Eq. (8) allows us to transform the (in-
tegral) eigenvalue problem, Eq. (5), into an (algebraic)
homogeneous linear system for these coefficients. Thus,
the point is now to describe correctly the Bloch function
[i.e., as an element of the Hilbert space &(a)] in terms of
coefficients AL(x, E„) defined by the boundary condition,
Eq. (7). Surely, such a description can be inferred only
from Eq. (5), as this (eigenvalue) equation contains all the
relevant information concerning the Bloch function.
Hence, we now focus on this equation.

Since, from Eqs. (5) and (6), the Bloch function admits
a multipole expansion inside the inscribed sphere and this
expansion is unique, we have for p (p

functions gl. (a,E„,r ) can be related to the multipole com-
ponents Pz', z (E, r) of the functions

@1.' (E,r) =g YL (r)QI. 'T. (E,r)
L'

which are defined by'

(6+E)41.'"(E,r) = V (r)C&L' (E,r),
C&1.' (E,r)~XI.(E,r) as r~d, (18)

at E=E„(ir) and where A, stands for either Bessel function

j or Neumann function n. Actually, by taking p~r in
Eq. (5), commuting a finite subsum with the integral and
using Eq. (6), we obtain

l/)L (K,E„,r) =g [pl.'I (E„(a), r )BI
L

+/I. 'I. (E„(a),r)CT ], (19)

Here the functions &IiL (E„(ic),r) are the regular solutions

(b, +E)+L(E,r)= V (r)@L,(E,r),

&L(E,r)~jL(E, r) as r~O,
(22a)

taken at the energy E=E„(x); they have, for r
& min(d, d'), the obvious property

@L(E,r=@I.(E,r), r &min(d, d') . (22b)

The coefficients AL (x,E„) are independent of d and coin-
cide with those defined in Eq. (8) and used in Eq. (12).
[In fact, " this was the reason for introducing the pro-
longation defined by Eq. (15).] Equation (21) says that
the function 4 (a,E„,r), which coincides with the Bloch
function only inside the sphere r & d, can be repre-
sented as a superposition of the functions 4L(E„,r) given
in Eq. (22a). Inside the unit cell, the functions NL(E, r)
satisfy the Schrodinger equation with the cell potential but
only as a (partial) differential equation. That is, irrespec-
tive of the energy E, these functions are not Bloch period-
ic; later, in Sec. IV, we will see such an example: Each
term is not Bloch periodic but their sum belongs to the
space of Bloch periodic functions. ' Obviously, the re-
striction of Eq. (21) for r=pCQ gives the values of the
Bloch function inside the unit cell

where B and C [whose dependence on a and E„(a) was
omitted] are given at E=E„(ir) by

BL = AL(K, E)— nL (E,r)V (r)% (a,E,r) dr,
~&E

(20)

CI. — f jL (E, r)V (r)@ (x,E,r)dr
2 r(d

If one now uses Eqs. (19) and (8) in Eq. (20), and after
some algebra involving the theory of the variable-phase
method, ' we conclude that for any r &d, i.e., not only for
r &p, the function 4 (a,E„,r) is given by

(K,E„,r) =g 4L, (E„(ic),r) AI (ir, E„), r & d . (21)

where use was made of Eq. (6). Further, we find that the
P(K,E„,p) =g @L,(E„(a),p) AI. (a', E„)

L
(23a)
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which, in view of Eq. (22b), requires the regular solution
of Eq. (22a) only for the case where d is equal to the ra-
dius of the circumscribing sphere, hereafter denoted by
q)elf c(E )

&L(K,E,p) =
R.

I
p+R I

(d
e '" 4L(E,p+R)

4 I. (K,E,p) = „@1.(K,E,p),
n "(p)

(26a)

(26b)

%(K,E„,p) =g +L'"(E,(K),p) AL (K,E, ) .
L

(23b)

n "(p+R)=n (p) for
~
p+R

~
&d,

n "(p)= 1,
lim n "(p)=N~=Nn~ no .

Q~oo

(24)

By now using Eq. (15a) in Eq. (21) for each R with

~

r+R
~

&d [whose number is given by n "(r)], Eq. (23)
can be written as

0 (K,E„,r) =g (I) L (K,E„(K),r) AL (K,E„)
L

(25a)

However, this is not the multipole expansion of the Bloch
function (which, in fact, does not exist) but rather (the re-
striction) of one of its prolongations. " The interesting
point about Eq. (23b) is the fact that each term is not
Bloch periodic but their sum represents a Bloch periodic
function (again, we will see an example in Sec. IV). This
suggests a very careful treatment of the AL coefficients.
Actually, let us suppose that a Bloch energy E„(K) is
given, and hence that the functions &L(E„(x),r), as solu-
tion of Eq. (22a), are known, but the corresponding Bloch
function is not known; then, how should the AL
coefficients be chosen in order that the sum in Eq. (23b),
where each individual term is not Bloch periodic, will
represent a Bloch periodic function? In this respect, is it
sufficient to consider only the system of equations ob-
tained by introducing Eq. (23b) in Eq. (8) or do we have
to consider additional equations [e.g. , obtained by intro-
ducing Eq. (21) into Eq. (15)] in order to correctly de-
scribe the Bloch periodicity? Clearly, it would be more
convenient to convert Eq. (23) into a representation in
which each individual term is Bloch periodic in which
case the periodicity conditions, Eq. (15), are identically
satisfied. We now focus on this problem.

Coming back to Eq. (21), we notice that in the limit
d = oo, it gives the multipole expansion of the Bloch func-
tion extended [with Bloch boundary conditions, Eq. (15)]
in the whole space. Then, the Bloch function inside the
unit cell can be obtained by folding back the prolongation,
Eq. (21), for d = oo. More precisely, an alternative form
of Eq. (23) is provided by the observation that for each
point p E II, there is a finite number n "(p) of translations
R that leaves this point inside the sphere with radius d.
For example, in Fig. 1 we refer to the case d as the radius
of the circumscribing sphere; in this case, n (p) can take
the value 4 (e.g. , the points denoted as 2), or the value 3
(denoted as o ), or the value 2 (denoted as X ) or the value
1 (denoted as ~). For the case d as fixed, n (p) is a piece-
wise constant function, monotonically increasing with d,
and having the properties

at E=E„(K). Equation (25) represents an attempt to
transform the rhs of Eq. (23a) into a superposition in the
Hilbert space of Bloch functions denoted above by &(K).
Actually, the functions 41.(K,E,p) (at any E) satisfy Eq.
(15a) but they are discontinuous at those points at which
the function n (p) changes its value [recall that n "(p), Eq.
(24), represents a piecewise constant function]. Thus, the
rhs of Eq. (25) is not (yet) a superposition of Bloch period-
ic functions, but for any required accuracy one can find a
d for which the functions (I) I. (K,E,p) become continuous.
Thus, in the limit d = ao, the functions 4& I. (K,E,p) satis-
fy, irrespective of E, both Eqs. (15a) and (15b), and
hence, ' Eq. (25) becomes a superposition in the Hilbert
space &(K). Then, the diff'erence between Eqs. (23) and
(25) pertains to the description of the Bloch function as a
superposition of Bloch periodic functions, i.e., as a super-
position in the space &(K). Obviously, Eq. (25) satisfies
identically the periodicity conditions, Eq. (15). Hence, the
Al. coefficients in Eq. (25) can no longer be subject to any
condition except Eq. (8) which then uniquely specifies the
Bloch function. In this sense, the AL coefficients of Eq.
(25) are on the same footing as the coefficients of the
(Bloch periodic) plane-wave expansion of the Bloch func-
tion (in which each individual term is Bloch periodic and
the coefficients are required to only satisfy the
Schrodinger equation. Notice, however, that Eq. (25) has
an on-shell character whereas in the plane-wave expansion
each term does not satisfy the Schrodinger equation with
the cell potential. More than that, on the basis of the ex-
istence of a multipole expansion, " one can combine Eqs.
(23b) and (25b) to obtain the representation

(E„(K),p) Al. (K,E„) for p &(M
'P(K, E„,p) =g

L 4& (1K,E„( ),Kp) A (LK,E„) for p E Q, p &p

(26c)

where the AL coefficients are restricted by the continuity
condition of the Bloch function and its derivative on the
surface of the inscribed sphere. Equation (26c) rephrases
the old idea' of representing the Bloch function as a mul-
tipole expansion within the inscribed sphere as a superpo-
sition of plane waves in the rest of the unit cell

(E„(K),p) AI. (K,E„) for p &(u,
L

%(K,E„,p) =;(p~~).p (26d)
ait(E„) for pEQ, p&(M

K

4(K,E„,p) =g (I) L, (K,E„(K),p) AL(K, E„), '

L

where we introduced the notation

(25b) where the two sets of coefficients are connected by a
matching condition (both the function and its derivative
on the surface of the inscribed sphere). By comparing
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Eqs. (26c) and (26d), we notice a clear advantage concern-
ing the interstitial region: Each term in Eq. (26c) satisfies
the Schrodinger equation and, moreover, satisfies Eq.
(15a) as well, whereas in Eq. (26d) we need many plane
waves to satisfy correctly the Schrodinger equation.
There is also a disadvantage, namely Eq. (15b) is satisfied
only in the limit d = ao whereas Eq. (26d) is always Bloch
periodic. However, as the band structure based on Eq.
(23), i.e., based on taking only the term R =0 in Eq.
(26b), already gives a fairly accurate result, ' we may ex-
pect that taking all the terms in Eq. (26b) for a small d,
say the radius of the circumscribing sphere, will do the
job of many plane waves in Eq. (26d). Hereafter, it will
be convenient to separate the a. dependence in Eq. (26)
[and hence in Eq. (25)] as given by

@L {K,E,p) =4L "(E,p )+yL (tr, E,p )

(26e)

[e ' '
@L,(E,p+R)yt (a,Erp) =.d = 1

n'(p) R 0, ~,+~

—4t "(E,p)) .

Now, since we have expressed the Bloch function as a
superposition with coefficients AL, (tr, E„), we come back
to Eq. (8) with the hope, as already stated, of establishing
a homogeneous linear system for these coefficients (and
hence, a band-structure equation as given by the compati-
bility condition). But now we face another problem:
Which one of Eqs. (23) and (25) is suitable to be intro-
duced into Eq. (8)'? In other words, which one correctly
describes the Bloch function in Eq. (8), i.e., as an element
of the Hilbert space &(x.)? The sums in both Eqs. (23)
and (25) have, as their result, the same Bloch function (we
will later see an example) and even worse, there is yet a
third candidate, namely the superposition (familiar in
multiple-scattering theory )

f(K,E,p) =g NL'"(E, p) AL (a,E),
I.

(27)

where @L'"(E,p) denotes the regular solutions of the cell
potential with boundary conditions Eq. (14). [These func-
tions are given by Eq. (22a) with V" replaced by V. Long
ago, ' such a superposition was considered to correctly
describe the Bloch function; recently, ' ' ' it was con-
sidered as an approximation. ]

Thus, irrespective of whether the periodic potential is of
muffin-tin type or not, we now have three expressions,
Eqs. (23), (25), and (27), for the Bloch function required
in Eq. (8): First, Eqs. (23) and (25), when introduced in
Eq. (8), surely produce a necessary condition for the
coefficients 3 but we do not know whether it is also a
sufficient one [e.g. , since in Eq. (21) each individual term
is not Bloch periodic but their sum has this property, Eq.
(21) might produce, in conjunction with Eq. (15), other
necessary conditions as well]. Second, provided Eq. (27)
represents the Bloch function, it also generates, upon in-
troduction into Eq. (8), a necessary condition which,
again, might not be sufficient. Obviously, in the muffin-
tin case, the consequences of using Eq. (27) will be the
same as using Eq. (23); still, there exists a difFerence in us-

ing Eq. (23) or (25). For completeness, and also in order
to illustrate the usefulness of Eq. (8), we now introduce
each of Eqs. (23), (25), and (27) into Eq. (8) and discuss
the corresponding results. In doing so, we will obtain
various results derived previously' (by different means)
and we will, in addition, derive a new result which, in the
soluble case of the constant periodic potential, is shown
analytically to generate the correct band structure. Final-
ly, we will show how previous results (some claimed as
exact ' ) can be obtained in the present approach as vari-
ous approximations of the same (seemingly exact) result.

By introducing Eq. (23) into Eq. (8), we obtain

g Ct'L'( c,tE„( ct)) AL (a,E„)=0
L'

(28)

where we introduced the matrices (in the L representa-
tion)

@circ( ~) I circ(~) @circ(

I LL'(E) =6LL, — nL*, (E,p)V(p)4&Ll'(E, p)dp,
2 0,

(29)

det[I ""'(E)—5""(a,E)]=0 (30a)

and, by using Eqs. (9) and (11), we notice that the separa-
tion of the structure constant pertains to the factorization
of the matrix 6""(tr,E). Thus, since the matrix 5""(~,E)
can be factorized only in the case of closed-packed lat-
tices, Eq. (11), we have (only) in this case

det[l""(E)—N(a. ,E)X""(E)]=0 .

Here we have introduced

(30b)

&17'(F)= f jL*, (F. p)V(p)+L'"''(E p)dp (31)

and N(a, E) represents the usual structure constants. ' In
Eq. (30b), the lattice structure contribution (that is, the a
dependence) was separated from the potential contribution
(akin to the KKR equation) but (in contradistinction to
the KKR equation) the matrix X""(E)[I""(E)] ' does
not represent the (principal value) t matrix of the unit cell.
The band-structure equation given by Eq. (30b) was first
derived in Ref. 3 and claimed to be exact; subsequently,
its exactness was questioned on both computational and
analytical grounds. In the present approach, Eq. (31)
refiects a necessary condition, namely Eq. (28); but as al-
ready stated, its sufficiency is doubtful [because Eq. (23b)
might generate, in conjunction with Eq. (15), other condi-
tions for the AL coefficients]. In Sec. IV it will be shown

(by examining a soluble case) that Eq. (30b) cannot
represent an exact result.

GLL (K,E)= nL(tr, E,p)V(p)4L"'(E, p)dp
2 0

(Notice the close similarity with the c and s coefficients of
the usual variable-phase method hence, the notation. )

Thus, the band-structure equation generated by the repre-
sentation Eq. (23b) is given by
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QCt't. '(a, E„(a))At. (a,E„)=0,
L'

where we introduced the matrices

(32)

By considering that the Bloch function can be described
as an on-shell superposition of the regular solutions corre-
sponding to the cell potential, Eq. (27), we obtain

(i.e. , generate the same results as that given by the plane-
wave diagonalization).

So far, we have seen that different representations of the
Bloch function can generate, upon introduction in Eq. (8),
different band-structure equations. Now, we examine the
result produced by the on-shell Bloch periodic representa-
tion, Eqs. (25) and (26).

@cell( E) I cell(E) Kc H( E)

I L'L', (E)=5LL — nL (E,p)V(p)@L', "(E,p)dp,
2 0

(33)

KL'L'(a, E)= I nL(a, E,p)V(p)+t.'"(E,p)dp .
2

III. A NEW BAND-STRUCTURE EQUATION
AND PERIODICITY CORRECTIONS

By introducing Eq. (25b) into Eq. (8), we obtain

g C LL (a,E„(a))AL (a,E„)=0,
L'

where we introduced the abbreviations

(36)

Hence, if one supposes that the Bloch function is given by
Eq. (27), then the band-structure equation is given by

det[l (E)—K (a-,E)]=Q (34a)

which, in the case of closed-packed lattices, can be further
simplified [again, from Eqs. (9) and (11)]

C (K,E)=I (K,E)—K"(a,E),

&L,t. (tr, E)=&LL
n&E nt'(E, p)V(p)@ t. (sc,E,p)dp .d,

2 0

(37)

det[l" (E)—N(a, E)g" (E)]=Q

where we introduced

(34b) KLL, (ic,E)= nt. (a,E,p)V(p)4 L, (a, E,p)dp .
2 Q

Since it follows from Eq. (25) that Eq. (36) should be
satisfied for any finite d, we have [by using Eq. (22b)]

XL'L', (E)= I jL*, (E,p)V(p)@L'"(E p)dp . (35)
2 0

In this case, the structure is not only separated from the
potential but the matrix X""(E)[I""(E)] ' represents the
(principal value) t matrix of the unit cell, in complete
analogy to the KKR equation. This result was first de-
rived in Ref. 16 on the ground that the functions
NL', "(E,r), being a complete set, can describe the Bloch
function as an on-shell superposition. While this motiva-
tion is erroneous [because the functions @L', "(E,r) form a
complete set in L (R ) whereas the Bloch functions be-
long to another Hilbert space], the above representation it-
self [and hence Eq. (34b)] might still be true. Neverthe-
less, as was shown by using various means, ' ' ' Eq. (34b)
does not represent an exact result [recently, however, as
an exception, Ref. 4 claimed to derive Eq. (34b) as an ex-
act result]. From our results, it follows that Eq. (34b)
represents an approximate result since the Bloch function
cannot be described as given by Eq. (27) for p&Q but

p &p. Actually, from Eq. (5), by using Eq. (6), one
derives Eq. (23b) which, from Eq. (22b), coincides with
Eq. (27) only for p & p, . The soluble case examined in Sec.
IV will make this point more apparent.

Finally, if we consider the particular case of a muKn-
tin potential, then Eq. (34b) coincides with Eq. (30b) and
both of them further coincide with the well-known KKR
equation. ' Even in this case, however, the problem
remains whether the periodicity condition, Eq. (15), im-
poses some supplementary conditions upon the AL
coefficients of the superposition Eq. (23). Unfortunately
(in contrast to the full potential case, see Sec. IV), there is
no soluble case of the muffin-tin type (except for the
Kronnig-Penney 6-function model, which is trivial) for
which one can test whether the above equations are exact

det[1'(a, E)—N(a, E)X(a,E)]=0,
where we introduced

(38b)

&L~L (a,E)= jt'. (E,p)V(p)@L, (~,E,p)dp . (39)
2 0

From the definition of the limit, it is clear that the equa-
tions

det[I "(v,E)—K (a,E)]=0,
det[I "(x,E)—N(a, E)X (a,E)]=0

(40a)

(40b)

offer a sequence of approximations to the band-structure
equation, and in the limit d~ao it yields the result as
defined by Eqs. (38) and (39).

Equation (38) contains our main result; it represents a
new band-structure equation which will be shown to pro-
duce, in contradistinction to the previous attempts, ' the
correct energy levels of the constant periodic potential (the
empty lattice test). While this feature suggests that Eq.
(38) represents, in fact, an exact result for a general
periodic potential, it is, however, not a proof. Therefore,
we consider, hereafter, Eq. (38) only as a necessary condi-
tion (by construction) and discuss its relation with previ-
ously derived results. Also, in discussing the soluble case
of a constant periodic potential we will try to find out the
factor that is responsible for the exactness of Eq. (38) in
this particular case. [This offers a hint in searching for

det[I (a,E)—K(a, E)]:—lim det[I' (a.,E)—K (+,E)]=0 (38a)
d~ oo

which, in the case of closed-packed lattices, becomes
[from Eqs. (9) and (11)]
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Xyl. (a,E,p)dp,
(41)

cLI. (a.,E)= ~&E
Ill. (K,E,p)V(p )q I. (a,E,p)dpd

oLL (a,E)= jl*. (E,p)V(p)pL (a,E,p)dp .
~&E d

Thus, the matrix in Eq. (38) can be expressed as [compare
with Eqs. (28) and (30a))

C(a,E)=C""(x,E)+ lim 6, (a,E) (42)

or, by using Eq. (26c) and introducing an obvious nota-
tion [similar to Eqs. (33) and (34)], we obtain

C(a.,E)= C (a.,E)
~&E—lim f,nL (a,E,p)V(p)d~ oo 2 AgS

&&41 (a.,E,p)dp,
CMT(a, E)= I (E) g(a, E)y T—(E)

(43)

(which contains the muffin-tin case). However, it should
be mentioned that in Eq. (26c) the AL, coefficients are
constrainted by a matching condition on the surface of the
inscribed sphere [whereas in Eq. (25) these coefficients are
free of any of such imposition].

Therefore, Eq. (38) introduces a specific correction to
the previous results' which correction does not appear

the exactness of Eq. (38) with a general periodic poten-
tial. ]

In comparison with earlier results, ' Eq. (38) exhibits
a supplementary x dependence, that is, a supplementary
structure dependence. More precisely, the lattice struc-
ture enters Eq. (38) not only by means of the function
n(a, E,p) defined in Eq. (9b) but also by means of the I
and X matrices. However, in view of computational re-
sults obtained in Ref. 7, the main structure dependence is
contained in the function n(a, E,p) and the a dependence
of the I and X matrices is expected to represent a correc-
tion. This correction (as a supplementary a dependence)
is introduced in Eq. (8) by the use of a representation, Eq.
(25), which, in the limit d= oo, identically satisfies the
Bloch periodicity Eq. (15). In other words, by represent-
ing the Bloch function in Eq. (8) in terms of Eq. (25), the
Al. coefficients then appear to be subject to Eq. (8) only.
This is another hint for the exactness of Eq. (38), but
again is not a proof [for even if Eq. (38) contains all the
conditions upon the coefficients AL, it may have solutions
other than the band structure]. Thus, the essential way in
which Eq. (38) differs from all the previous attempts' is
represented by the above-mentioned supplementary a
dependence [which, however, seems to indicate that Eq.
(38) is rather an exact result]. This supplementary K

dependence can be isolated by using Eq. (26e) and intro-
ducing the matrices

6"(a.,E)=y (a,E) c(x,E),—

ylL (a,E)=( —) f nL (E,p)V(p)
~&E

2 0

to be connected with the "near-field corrections" as usual-
ly discussed in the literature. [In our approach, these
"near-field corrections" are connected with the factoriza-
tion of the matrix 8 (a,E) which, in turn, relies on Eqs.
(9) and (11).] Since the corrections defined in Eq. (41)
reAect the Bloch periodicity in conjunction with the mul-
tipole expansion, " we can call them "multipole expansion
periodicity corrections" or simply "periodicity correc-
tions. " Their importance will be seen from the soluble
case discussed in the next section: The correct band
structure for a constant periodic potential cannot be ob-
tained from either Eq. (30a) or Eq. (34a) but only from
Eq. (38). [Both Eqs. (30a) and (34a) yield a systematic er-
ror which cannot be decreased by increasing the L
space. ] Finally, from a computational point of view, the
question remains how fast is the d convergence in Eq.
(42); this, in fact, reverts to the question of the nu-
merical opportunities offered by the representation Eq.
(26c) versus representation Eq. (26d). Obviously, this can
be decided only by doing the computation; however, since
the first term in Eq. (42) already gives a decent accuracy,
we might expect that the "periodicity corrections, " even
for small d, i.e., of the order of the circumscribing sphere,
might offer better computational opportunities than the
plane-wave expansion in the interstitial region.

IV. A SOLUBLE CASE:
CONSTANT PERIODIC POTENTIAL

So far, we have seen that various representations of the
Bloch function lead, by means of Eq. (8), to various
band-structure equations (some claimed as an exact re-
sult ' ); among them, only Eq. (38) considers the Bloch
function as a superposition of Bloch periodic orbitals, i.e.,
as an element of the Hilbert space &(a). However, one
can argue that all the band-structure equations mentioned
above reflect only a necessary condition, Eq. (8), and
therefore, unless the contrary is proven, they are correct
(or incorrect) on an equal footing. For this reason, it is
particularly useful to consider a soluble example and we
choose the case of a constant periodic potential. In this
sense, the present section is the analytic counterpart of
Ref. 7 which considers the same potential and very care-
fully investigates the numerical solutions of Eqs. (30b) and
(34b) for the case of closed-packed lattices.

Consider the constant periodic potential V) 0; the solu-
tions of the eigenvalue equation (5) are given by

i(a+K) p
0'(a, EK,p)= —,E~(a.)=(a+K) + V (44a)

V Q)

and the prolongation, defined by Eq. (15), is given by

i(x+ K.) -r
ql (a,EK,r)=

V Q7

=+8g ijI. [(a +K),r] Yl*. (&), r (d,
L

(44b)

where we used the decomposition of the plane wave into
spherical waves, and %=a.+K. The regular solutions of
Eq. (22) inside the sphere r (d are given by
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@I.(E,r) = E
E —V

I /2

jL, (E V—, r), «d (45a)
where the matrix JL, i.(E,r'), given, e.g., in Ref. 10, can be
easily seen to satisfy the relation

and we recall the Fourier transform g JI.L. (E,r)i'Yi*. (p)=e' ~'i' YL', (p) .
L

(48)

i(«+K) r 5(QE [( +K)2]1/2)
jL, (E,r) =g da.

(2m )

Xi 'Yi. (%) . (45b)

Then, the existence of a decomposition as given by Eq.
(21) is made obvious. Also, from Eq. (45b), we notice
that in the limit d = oo the regular solution of Eq. (22) be-
comes an on-shell superposition of the corresponding
Bloch functions. More than that, by comparing Eq. (44b)
with Eq. (45), we find

' I/2

Ai. (a.,E ) =+co i 'YI*.f(t'),
(46)

E=E~ .

On the other hand, the coefficients AI. (x,EK) are defined
by Eq. (8) where the corresponding Bloch function was
given in Eq. (44a). By using Eq. (10) we easily find that
Eq. (8) yields the same result as given by Eq. (46).

Now, in view of the construction in Eq. (26a) and (26b),
we recall the translational property

jL(E,r+r')=gjl. (E,r)JL'L(E r ) (47)
L'

In conjunction with Eq. (46), Eqs. (47) and (48) prove the
existence of the representation Eq. (25) for a constant
periodic potential.

Finally, in view of the band-structure equation as
defined by Eqs. (38) and (39), we calculate the function
41.(a.,E,p) defined by the limit d = oo of Eqs. (26a) and
(26b). First, by using the expression' for the matrix
JL 1.(E,r ), the decomposition of the plane wave into
spherical waves and the definition of the 5 function,

5(x)= f e'~"dp,
(2~)

we evaluate the sum

JL'L (K E)=g e '" JIL('E, R. )
R

~ Y„(~) ( —[( + )']' ')
Y (~)

K E

(49)

and then, from Eqs. (24), (26a), (26b), (47), and (49), we
obtain

i(]c+K) p
4L, (a,E,p) =g +co 5(&(E —V) —[(ir+K) ]' )

X~~oo Ag E —V

' I/2

i 'Yl. (%) (50)

Thus, we notice that, in the limit d = ao, the function 41 (z,E,p) defined in Eq. (26a) becomes a superposition of the
corresponding Bloch functions, and the coefficients are not numbers but rather distributions; clearly this originates in the
existence of the Fourier transform, Eq. (45b). By now using Eqs. (50) and (10) in Eq. (38), we obtain

' I/2
(a+ K) .(, V

CLL, (&,E)=5LL i 'Yl'. (%')
E E (a+K)—

+r) 5(&(E —V) —[(~+K)']' ')
-."=- X. E —V

E
E —V

' I'/2

i '
YL, (%') (51)

where we recall the usual summation relations'

ge ' ' =a)+5(k —K),
R K

—i(« —«'j R

N~ R

1 if sc=sc',

0 otherwise .

(52)

and decomposition of the three-dimensional 5 function in
spherical coordinates

From relations (52) and (53) we infer that the only non-
trivial solutions of the (homogeneous) system

g CLL, (z,E)AL, =0,
L

(54)

where AL, (a,E) and E are unknown, are given (up to an
arbitrary normalization for the AI. coefficients) by

I /2

Al. —— i 'Yl."(ft'),
5(k —k') = 5(k —k ')

IG E=EK= V+(a+K)
(55)

k'
g YL, (k)YL*, (k') .
L

(53) as expected, according to Eqs. (44) and (46). Thus, we
have seen that Eq. (38) can be solved for the case of a
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V. THE GENERALIZED
MUFFIN- TIN APPROXIMATION

So far, we have seen that there are the "multipole ex-
pansion periodicity corrections" which allow us to obtain
the correct result in the soluble case treated above. As a
way of enhancing the understanding of these corrections,
we now examine the conditions under which they may be
disregarded. Before proceeding, we notice that these
corrections appear to be directly connected with the repre-
sentation of the Bloch function as a superposition in the
space &(x), i.e., Eq. (25) and not Eq. (23) or (27); alterna-
tively, the Al coefficients in Eq. (25) appear to be con-
strained only by Eq. (8) whereas in Eq. (23) they might be
also constrained by the system of equations obtained upon
introduction of Eq. (21) into Eq. (15). Finally, the KKR
equation is obtained by simply introducing Eq. (23) into
Eq. (8) for a muffin-tin potential and disregarding other if
any, supplementary constraints coming from the Bloch
periodicity requirements (as mentioned above).

Consider the situation depicted in Fig. 2; the dashed
area is denoted by 0, and, in the limit E=O, it coincides
with the whole unit cell 0, . Now, assume that the poten-
tial V, is defined by

V(p) for pEII„V, p =.
0 elsewhere . (56)

Thus, since it is the product VO which is needed in Eq.

constant periodic potential and that it yields the correct
band structure and wave functions.

From this example we learn several things. First and
foremost, this is the first time that a KKR-type equation
gives the correct (exact) result for the empty lattice test.
Apparently, this is due to the "multipole expansion
periodicity corrections" defined in Eqs. (41) to (43); that
is, to the use in Eq. (8) of the on-shell Bloch periodic su-
perposition, Eq. (25) [and not Eqs. (23) or (27)] as well as
to the properties of Eq. (50) which, in turn, rely on Eq.
(45). Clearly, this suggests that a proof for the exactness
of Eq. (38) in the general case of an arbitrary periodic po-
tential V will consist mostly in finding the meaning of the
regular solution of Eq. (22) in the limit d = oo', actually,
suppose that in this limit the function NL(E, r) becomes
an on-shell superposition of the Bloch function corre-
sponding to the potential V,

' then the periodic orbitals,
Eq. (26), will be expressed in terms of the Bloch functions
as in Eq. (50), and therefore, the proof will follow the
same line as in Eqs. (50)—(55).

Also, we learn from Eq. (44b) that the representation of
Bloch functions as a superposition of regular solutions of
the cell potential, Eq. (27), cannot be true and hence Eq.
(34) cannot represent an exact result.

Finally, by identifying in Eq. (51) the terms which
define the corresponding matrix C""(x,E), Eq. (29), we
conclude that Eq. (30) cannot represent an exact result.
However, the intriguing point remains that (at least in the
case of constant periodic potential) both Eqs. (30b) and
(34b) give the same result which is systematically shifted
from the correct one. ' The next section addresses this
point.

FIG. 2. Generalized muffin-tin approximation.

or

V(p) for p E lntQ,limV, p =
0 for p on the boundary of Q . (58)

The situation described by Eq. (57), clearly involves the
Bloch function at the boundary of the unit cell, where
Eqs. (23) and (27) can no longer be considered as superpo-
sitions in the space &(a). Therefore, it is no longer
reasonable to introduce these equations into Eq. (8)
without considering the conditions obtained by introduc-
ing Eq. (23) into Eq. (15) which guarantees the Bloch
periodicity.

In the second case (which is not physical because the
potential has a discontinuity), we are interested only in
the interior points of 0 and hence the band structure is

(8), we are interested, for any e&0, in using Eqs. (23),
(25), or (27) only for p&lntII, i.e., the vector p does not
touch the boundary of the unit cell. Now, we recall that
at any such point, both the functions NI.'"(E,p) and
@L"(E,p) can be represented as a superposition of the
planes waves (e'I "+ '~/&co)K but this is no longer true at
the boundary. ' It follows that, at any interior point of Q,
Eq. (23b) can be (approximately) considered as a superpo-
sition in the space &(a) and the same is true for Eq. (27)
[provided the sum in Eq. (27) is convergent]. In other
words, as long as we do not reach the boundary of the
unit cell, it is reasonable to represent the Bloch function
in Eq. (8) as a superposition of the regular solution of ei-
ther the cell potential V or the potential V"" (since such
a superposition satisfies the Schrodinger equation with the
cell potential as a differential equation only, i.e., without
boundary conditions, the above two superpositions are
here on an equal footing). Thus, the band equation is
given by Eqs. (30a) or (34a) which, essentially, (partially)
breaks the Bloch periodicity [only partially, because the
Bloch boundary conditions, i.e., the ~ dependence is still
contained in the function n(a, E,p)].

Now, consider c~O; there are two possibilities

lim V, (p) = V(p) for any p E0
c.~0
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still given (on an equal footing) by either Eq. (30a) or Eq.
(34a). Thus, it appears that both these equations reason-
ably describe a potential which is zero at least in a small
vicinity around the boundary of the unit cell. Since these
band equations are obtained from Eq. (8) upon using only
Eq. (23) or (27) (in complete analogy to the obtaining of
the KKR equation mentioned in Sec. II), this situation
can be called the "generalized muon-tin approximation. "
This is the hidden approximation in both Refs. 3 and 4.

VI. SUMMARY AND CONCLUSIONS

We have considered the (integral) eigenvalue equation
of the Bloch function and, with a view towards obtaining
a KKR-type equation, we have examined various descrip-
tions of the Bloch function as a multipole expansion.
First, we have shown that the coefficients of the multipole
series of the Bloch function around the origin assumes a
particular form as a functional of the Bloch function and
the cell potential, Eq. (8).

By introducing into this functional various representa-
tions of the Bloch function, Eqs. (23) and (27), and
confining ourselves to the case of closed-packed lattices,
we find the band-structure equation as previously de-
rived ' and claimed to be exact. The examination of a
soluble case, however, shows (in agreement with a compu-
tational treatment ) that these band-structure equations
cannot represent an exact result. Moreover, the con-
sideration of the Bloch periodicity in conjunction with the
existence of a multipole-expansion series shows that these
band-structure equations express the same approximation,
namely of using in Eq. (8) a representation of the Bloch
function as a superposition which is not in the space of
Bloch periodic functions (i.e., in which each individual

term is not Bloch periodic). From the convergence prop-
erties of the Fourier series and from the need for the
product ViIi (not only qi) in Eq. (8), it follows that such
an approximation is reasonable whenever the cell potential
is zero in a small strip around the surface of the unit cell.
Since the functional form of these approximate results is
close to that of the KKR equation, we can call this situa-
tion the "generalized muffin-tin approximation. "

However, since Eq. (8) reflects a property which takes
place in the Hilbert space of Bloch periodic functions, it
seems to be suitable to use in this equation a representa-
tion of the Bloch function as a superposition in the corre-
sponding Hilbert space, Eq. (25). In doing so, we obtain a
new band-structure equation which differs from the previ-
ous results, ' by containing a very specific correction
describing the Bloch periodicity within the multipole ex-
pansion and therefore called by us "multipole expansion
periodicity corrections. " In addition, this band-structure
equation generates for the case of a constant periodic po-
tential the correct eigenvalues, a feature which is not
shared by any of the previous attempts. Thus, we have
both theoretical and practical indications suggesting that
Eq. (38) represents, in fact, an exact result (i.e., produces
the same eigenvalues as the plane-wave diagonalization).
This is borne out, in fact, by a T-operator analysis for a
general periodic potential.
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x&(0,2m) and to —'[f(0)+f(2tr)] at the end points. It fol-

lows that both the functions Ng"'(E, p) and 4P"(E,p) can be
represented at any interior point of 0 as a superposition of the
plane wave e'"+ 'I' but this superposition however, converges
on the boundary towards —,

' [@L(E,p)+e ""&PL(E,p+ R)].
~oE. Badralexe and A. J. Freeman, following paper, Phys. Rev.

B 36, 1389 (1987).


