
PHYSICAL REVIEW B VOLUME 36, NUMBER 2 15 JULY 1987-I

Indirect, quasidirect, and direct optical transitions in the pseudomorphic (4 X 4)-monolayer
Si-Ge strained-layer superlattice on Si(001)
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Estimates are presented for the lower-lying optical transitions in the pseudomorphic (4x4)-
monolayer Si-Ge strained-layer superlattice on Si(001). These lower-lying q =0 superlattice tran-
sitions tend to cluster into groups having energy centroids near 0.76, 1.03, 1.2, 1.6, and 2.3 eV,
for light polarized in the plane of the interface. The transitions near 0.76 and 1.03 eV are in-
direct. Transitions near 1.2 and 1.6 eV arise from zone-folded bulklike bands and have a partially
direct character, whereas the transitions near 2.3 eV are strictly direct. Surface steps and inter-
valley phonons would tend to relax the in-plane (k~~) momentum conservation rule, and thus allow
zone-folded quasidirect character transitions near 0.76 eV.

There is considerable interest at present in ultrathin
pseudomorphic heterostructures of Ge and Si, stimulated
in part by (i) evidence for a strain-induced order-disorder
transition in (Ge, Si) alloys, (ii) determination of the
maximum (critical) layer thickness for pure Ge on Si,
and (iii) predictions of zone-folding induced quasidirect
gap optical transitions in the (Ge, Si) system. Zone-
folding eAects are expected to occur when the periodicity
of a superstructure equals an integral number of bulk lat-
tice constants. In the case of Ge and Si, which crystallize
in the cubic diamond structure, one lattice constant is
composed of four monolayers along (001) directions. It is
therefore apparent that the alternating four-monolayer
[hereafter denoted as the (4X4) monolayer] Si-Ge het-
erostructure is the most likely candidate of the pseu-
domorphic monolayer structures which should exhibit
zone-folding induced modifications of the superlattice
band structure.

In the present Rapid Communication, estimates are
given of the lower-lying optical-transition energies for the
(4 && 4)-monolayer Si-Ge strained-layer superlattice.
These results were stimulated in part by recent electro-
reAectance measurements on this strained-layer hetero-
structure, indicating the occurrence of direct-character,
superlattice optical transitions at energies of 0.76, 1.25,
and 2.31 eV. These direct-character transitions are
characteristic of neither the cubic Si or the coherently
strained Ge. We use an efective-mass envelope-function
model to calculate of the lower-lying superlattice optical
transitions, incorporating the eAects of coherency strain,
and assuming continuity of the one-dimensional wave
function, f(z), and m ' (df/dz), as outlined by Bastard
and Brum. We find superlattice optical transitions which
tend to cluster near 0.76, 1.03, 1.2, 1.6, and 2.3 eV (for
light polarized in the plane of the interface). It is shown
that the transitions near 1.2 to 2.3 eV have some direct
character. However, the transitions near 0.76 and 1.03 eV
are indirect, since they arise from bulk extrema which are
either unaffected by the superlattice potential or which
are folded but not into the zone center.

A full self-consistent interface calculation (SCIC) of
the ground-state properties of the (4 x 4)-monolayer

structure has shown that charge densities and potentials
within this supercell are identical to those of cubic bulk Si
and strained bulk Ge, except for a transition region
confined to one monolayer on either side of the heteroin-
terface. This result is extremely important in that it im-
plies that no new crystal structure is formed in the
(4 X 4)-monolayer superlattice, and further that the
respective material components may be characterized by
their associated bulk parameters. In light of these results,
superlattice potential diagrams may be established by use
of the bulk band extrema energies of cubic Si and phe-
nomenological deformation potential estimates of the
strained band edges for Ge, '' along with the SCIC re-
sults for the valence-band oA'set. '

We have considered band extrema associated with the
r,'5 valence-band along with the I2 and I ~5 conduction
bands for the cubic Si and coherently strained Ge. In gen-
eral, strain and spin-orbit efects induce numerous split-
tings of these extrema. The question of which states may
act as barriers for a given well state is determined by re-
quiring that (i) in-plane crystal momentum (k~~) is con-
served, and (ii) wave-function overlap between barrier
and well states is allowed by symmetry. The latter issue is
readily addressed using elementary-group theoretic tech-
niques.

For a superlattice potential alon (001), the six lowest
Si conduction-band minima, Si(h ), may be grouped
into two classes. The first class consists of the two valleys
along (001) in momentum space, Si(h~ ), while the second
class consists of the four (in-plane) valleys normal to
(001), Si(AI). Similar considerations apply for the X
points. In the case of the (4&&4)-monolayer superlattice
(having period =2an) the bulk band structure along
(001) experiences a single folding approximately midway
between the I and X symmetry points as illustrated in Fig.
1. Single-group representatives associated with cubic Si
are used for identification purposes only. Note that at
k —0.7 the distance between I and L the zone-folded A2

band (solid curve) would intersect the not yet folded 5&

band originating from I iq. Although such a intersection
is allowed under cubic symmetry, it is strictly forbidden
under the reduced (C2,, ) symmetry associated with the A
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FIG. 1. Schematic of a single folding of the bulk conduction
bands of cubic Si. X and X denote the (001) Brillouin-zone
boundary of Si in the bulk and under the superlattice potential,
respectively.
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FIG. 2. {001)surface Brillouin zone for cubic Si and coher-
ently strained Ge on (001) Si.

direction for the (4 & 4) strained-layer superlattice.
Indeed d ~ and hz both transform as the totally symmetri-
cal (8 t) representation of Cz„. Note that the zone-folded
Si(hr ) bands have extrema near, but not at, k 0. The
four in-plane Si(ht) valleys will be unaff'ected by the
(001) superlattice potential, so that their conduction-band
minima have large k [—0.9k(X)], as illustrated in Fig. 2.
When estimating superlattice energies we assume that the
various Si-folded and non-zone-folded conduction-band
extrema are initially degenerate. The lowest conduction-
band minima of the coherently strained Ge are also de-
rived from 6&-conduction states, " and may be grouped
into the two classes previously described for Si. One ma-
jor diff'erence exists, however; namely, the coherency
strain splits the Ge(hr ) and Ge(ht) extrema by approxi-
mately 0.7 eV, with the Ge(AI ) lying lowest in energy.

The in-plane crystal momentum associated with the
various band extrema is readily obtained by considering
the projected two-dimensional Brillouin zone of the super-
lattice as shown in Fig. 2. All zone-folded L~ conduction
states are assumed projected onto k=O; h~ states are
folded to a point near but not at k=0, whereas the in-

plane AI and Xr' states retain wave vectors k —0.9k(X)
and k(X), respectively. Due to the krr conservation rule, it
is apparent that the Ge(AI') states can act as a barrier for
the Si(BI) states only, and further that the corresponding
superlattice conduction states have large k values. A
number of allowed couplings between the direct and/or
zone-folded conduction-band extrema are shown in Fig. 3,
under the D2d superlattice symmetry at the I point
(T=300 K). The energy positions of the various extrema
shown in Fig. 3 reflect a valence-band off'set in which the
upper ( —', , + —', ) valence-band edge of Ge lies 0.84 eV

higher than the Si (J —', ) valence-band edge. Spin-orbit
eff'ects have been included in these estimates. ' It should
be noted that the coherency strain completely decouples
the J=

2 valence-band edge of Ge. " The barrier
heights and confinement energies for the various con-
duction- and valence-band superlattice potentials are list-
ed in Table I. Mass parameters used are measured values
where available or calculated k. p curvatures. ' ' Extre-
ma energies in the unstrained bulk materials are given in
Ref. 16.

In brief, we find that the q =0 (lower-bound) energy for
the superlattice subband associated with the Ge(AI) bar-
rier and the Si(AI ) well, denoted by E,( )(hI ), lies 0.06 eV
above the Si(AJ ) conduction-band edge (see Fig. 3).
The q = ~ n/d solution (which defines the subband width)
lies above the Ge(hr') band edge. This result was ob-
tained assuming an in-plane well and barrier electron
masses are given by the conductivity eAective masses for
Si and Ge; i.e., 0.26mo and 0.12mo, respectively. In like
manner the zone-folded Ge(hr ) band edge forms a bar-
rier of 0.765-eV height for the hr electrons in Si (Fig. 2)
giving rise to the subband denoted E,( )(d,

r ), whose q =0
(lower-bound) energy lies 0.32 eV above the Si(AI l)
conduction-band edge. The width of the E, (At ) sub-
band is =0.17 eV. The Ge I 2 and X& states are nearly
degenerate. Both these states act as a barrier for the
zone-folded quasidirect Si(Xr ) state and give rise to a su-
perlattice state 0.38 eV above the Si(Xr ) band edge. The
Bz component of the Ge(I rs) states also forms a barrier
for the Si(Xr ) state of 2.37 eV height. This gives rise to
the subband denoted E, ISi(Xr ), I rs) at 0.79 eV above
the Si(Xr ) band edge and having a miniband width of
0.14 eV.

The Si (12) state forms a barrier for both the Ge(I z)
and the nearly degenerate zone-folded Ge (Xt ) state.
The energy position of the Si(I 2) barrier relative to the
Ge(I 2) well is based upon our estimate that the I z band
gap for the strained Ge is 1.175 eV, for growth on
Si(001). We have used the measured Ge(I z) mass
0.04mo along with an assumed Si(I 2) barrier mass of
0.64mo. The I 2 superlattice potential gives rise to a
bound state at 0.76 eV above the Ge(1 2) band edge, hav-

ing a miniband width —0.24 eV. Therefore a set of direct
transitions at energies of 2.30 and 2.41 eV are obtained
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FIG. 3. A number of symmetry allowed couplings under D2p superlattice symmetry at the I point, for I &5, h. &, and A' conduction
states; T=300 K.

for light polarized in the plane of the layers. Correspond-
ing transitions for the Ge(X) ) well lie -0.04 eV higher
in energy.

Calculated superlattice optical transition energies are
listed in Table II. We also list the character of these tran-
sitions along with the decay length of the associated con-
duction state. Note that the transition near 1.6 eV is
strongly localized within the Si quantum well, whereas the
L~ component at 1.2 eV and the I 2 transition at 2.30 eV
are only partially localized with the respective Si and Ge
well layers. If we denote the superlattice-induced I char-
acter of a zone-folded conduction state as p, then
p- ((())(I z) I VsL I

p(X))//(. Er ~l Here (() d.enotes bulk
conduction wave functions of specified wave vector, V~L
the (001) superlattice potential, and AEr ~ the energy
separation between the I 2 and X bulk band extrema.
Fourier expansion of VsL in terms of the superlattice
zone-boundary wave vector G, shows that the dominant
contribution to the matrix element in p arises from the
term V(L exp(iG r). Since V(L —2Vp/3~ —25Eg/3x
and /(.Er ~ —2 eV, we see that P —0. 1 for a band-gap
diA'erence /(.Eg —I eV (as applies in the present case).
The quantity we call the relative absorptance is a rough
estimate of the relative oscillator strength for a vertical
(no-phonon) transition at k=Q. Assuming an estimated
10% superlattice-induced I character in a zone-folded
(well or barrier) state, ' the quantity given is then the
square of the product of the I -state character in the well

and barrier states. Since phonon-assisted processes are ig-
nored, the relative absorptance of the h, i and Ai states
remains indeterminant. Uncertainties in transition ener-
gies —~ 50 meV are expected, originating primarily
from combined uncertainties in the strained band gaps "
and valence-band offsets. ' Note that a factor of 2 in-
crease in mass arameters gives rise to changes in the
E, (6(') and E, (5( ) confinement energies -0.003 and
0.030 eV, respectively, indicating that the binding energy
of these states are rather insensitive to the mass parame-
ters used. In like manner, increasing the Ge(I 2) well
mass by a factor of 2.5 (to 0.10mp) results in a decrease
of the E, (I 2) confinement energy by 0.015 eV.

In summary, we have calculated a number of lower-
lying optical-transition energies (for light polarized in the
plane of the layers) in the (4&&4)-monolayer Si-Ge
strained-layer superlat tice on Si(001). These results
reflect a full self-consistent calculation of the ground-state
electronic properties of the (4X4)-monolayer supercell,
and in particular reflect the bulklike character of the su-
perlattice constituents. Calculated direct-character tran-
sitions near 1.2 and 1.6 eV are identified with weakly and
strongly localized zone-folded states in the Si layers
confined by the Ge(I z, X) ) and Ge(I (5) conduction-band
edges, respectively. Transitions near 2.35 eV are iden-
tified with the lowest totally direct superlattice transition,
arising from I 2 bulk states. Two other sets of indirect
transitions centered near 0.76 and 1.03 eV are also pre-

TABLE I. Parameters used in calculating q =0 subband energies for the (4X4)-monolayer Si-Ge
strained-layer superlattice. All energies are relative to the bottom of the associated well.

Subband
designation

Well parameters
m*/m, Width (A)

Barrier parameters
Height (eV) m /m,

Subband
energy (eV)

E(0)(3 +. 3 )

E (0) (p II )
Z (0) ~~'~

~

E0(si(x~), (r,',x,~ )l
E,'(si(x, ),r„J
g (0)(1-~)

0.21
0.067
0.26
0.98
0.50
0.50
0.04

5.8
5.8
5.43
5.43
5.43
5.43
5.8

0.84
0.69
0.115
0.765

(o.7g,o.g s)
2.37
1.99

0.49
0.16
0.12
0.53

(o.o4,o.~)
0.53
0.64

0.37
0.32
0.06
0.32
0.38
0.79
0.76
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TABLE Il. Lowest-energy q 0 superlattice optical transitions for the (4X4)-monolayer Si-Ge
strained-layer superlattice on Si(001), for light polarized in (x,y) plane. VB and CB mean valence-
band and conduction-band states, respectively.

Conduction-band state
E,"'(5| ) F. ' 'lsi(x ), (I 2,X )l E,"'lsi(x| ),I |sl &,' '(l 2)

( —, , + —, ) VB (eV)
( —', ,

+' —,
' ) VB (eV)

0.71
0.82

0.97
1.08

1.15
1.26

1.56
1.67

2.30
2.41

Character Indirect ZF indirect Quasidirect Quasidirect Direct

CB state
decay length (A)
Relative
absorptance

24.0 4.0 (15.3,4.3)

10

2. 13

10

4.86

—:1.0

dieted. In the absence of intervalley coupling interactions
the transitions centered near 0.76 eV are indirect and
arise entirely from non-zone-folded bulk bands. Possible
intervalley coupling mechanisms include (i) intervalley
phonon scattering' ' and (ii) the presence of surface
steps, which destroy the in-plane translational symmetry,
thus relaxing the k~~ conservation rule. Intervalley phonon
scattering does not appear to be very plausible in view of
the fact that the superlattice states involved in such cou-
plings are widely separated in energy in comparison to
k~ T at room temperature. The presence of ~ 1-
monolayer surface steps, however, would relax the in-
plane k~~-conservation rule. Note that the zone-folded
Si(X~ ) state is degenerate with the Ge(BI) state, as

shown in Fig. 3. In the absence of k~~ conservation these
states would mix strongly, thus giving rise to a quasidirect
superlattice transition near 0.8 eV. Further, such surface
steps give rise to an overlap in the ( —,', +' —', ) and
( —', , + —,

' ) valence-subband levels, resulting in a distribu-
tion of initial states having an energy width —0.2 eV.
This is highly suggestive in view of the -0.2 eV measured
width of all superlattice-related transitions given in Ref. 6.
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