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Analysis of giant quantum attenuation of sound waves due to spin-split Landau levels in bismuth
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In experiments of the giant quantum attenuation in bismuth, many unexplainable phenomena have
been reported so far. We have made numerical calculations including the density-of-states depen-
dence of the deformation potential in the theory of Gurevich, Skobov, and Firsov. The result shows
that the deformation potential plays the most substantial role in peculiar behaviors of line shapes of
the attenuation coefficient. We have obtained a satisfactory result which quantitatively agrees with

the experimentally observed line shapes of attenuation peaks.

Figure 1 shows the experimental results of the giant
quantum attenuation obtained by Fujimori, ' in which the
propagation directions of longitudinal sound waves and
the magnetic field are along the binary axes of a bismuth
single crystal. In this figure we show the configuration of
the magnetic field and sound waves in the experiment for
the trigonal plane of the Brillouin zone of bismuth. Here
we also define the coordinate axes and the a-, b-, and c-
electron pockets in the usual way. In these configurations
only the attenuation peaks due to the electrons are ob-
served. In the case (a) where both the sound waves and
the magnetic field are applied along the same binary axis,
an imbalance in the heights of the peaks due to a pair of
spin-split Landau levels can be observed. On the other

hand, in the case (b) where one of them is applied along a
different binary axis from the other, the imbalance seen in
(a) is not found. Later, the same result was obtained by
Matsumoto et al. for Bi& Sb„. They considered that
this phenomenon is due to "complicated unknown
eS'ects. " In Figs. 1(a) and 1(b), however, the directions of
the magnetic field are quite the same and only the
configurations of sound-wave propagation relative to the
magnetic field are different. Therefore we can easily guess
that this phenomenon is related to a deformation poten-
tial.

Giant quantum attenuation was theoretically predicted
by Gurevich et al. '

Applying their theory to the case of
bismuth we get the following equation:

where
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N ~ is the mass tensor of the jth pocket, D j is the defor-
mation potential tensor, q is the wave vector of the sound
waves, e~, e~, eq are the unit vectors of the magnetic field

direction, the polarization of the sound waves, and the
sound propagation direction, respectively, u is the sound
velocity, p is the mass density, co is the angular frequency
of the sound waves, A~ is the cyclotron frequency, and

[1+(4n +2+2 y s)A'QJt/E ]'~gfor j=a, b, c,
F~

n s 1 for j
[Et;(1+EF/Es) E„',)/( I +2Et: /Es )—

for j =a, b, c,

BJ =(q eH )r[2kq T/(eH m eH )]'

where the Fermi energy EF is determined as a function of
magnetic field by the charge neutrality, yj is the spin-
splitting factor, ~ is the relaxation time of the carriers, E~
is the energy gap between the valence band and the con-
duction band of the electron pocket, and Eo is the over-
lapping energy between the electron band and the hole
band. %'e use the Lax model for the electrons. Here the
deformation potential is considered to be constant. Goto
et al. , however, showed that when co~&&1 the deforma-
tion potential is given from the charge neutrality condi-
tion as
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(4) where nt, (k =a, b, c,h) is the density of the number of
particles on the Fermi level given as
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magnetic field of the (0+ ) peak. On the other hand, in
the case of (b), the attenuation peaks due to the a and b
electrons appear. This time the density of states of the c
electrons and that of the holes are nearly constant. In the
numerators and denominators of the expressions of D'
and D, nb and n, appear, respectively. In this case nI,
and n, are equal, therefore, the effect of the densities of
states on the deformation potentials is lessened and the
imbalance in the heights of the attenuation peaks disap-
pears.

Formerly, Matsumoto et aI. analyzed the attenuation
peaks due to the electrons. They reported the following
contradiction: The tail of the lower-field side of the at-
tenuation peak becomes too large if the full width at half
maximum of the attenuation peak is fitted to the experi-
ment, while if the relaxation time is chosen long so that
the line shape of the lower-field side of the peak might ac-
cord with the experiment, the full width at half maximum
becomes too small. To solve this paradox, Nagai et al.
gave a new theory which takes account of the vertex
correction due to the impurity effect, analyzed the result
of Fujimori, and claimed that this problem was solved.
But the paradox of the relaxation time occurred because
the magnetic field dependence of the Fermi energy was
not taken into account. Therefore, if we correctly take
into account the magnetic field dependence of the Fermi
energy and that of the deformation potentials the experi-
mental result can be quantitatively explained with the
theory of Gurevich et ar. Figure 3 shows the comparison
of the results of the numerical calculation with q~~H~~x
axis. In Fig. 3(a) the magnetic field dependence of the
Fermi energy and that of the deformation potentials are
correctly taken into account, in 3(b) Et- is taken as con-
stant, in 3(c) Et; and deformation potentials are taken as
constant. Both the changes of the Fermi energy and the
deformation potentials with the magnetic field affect the
full width at half maximum of peaks. If we neglect these
changes the full width at half maximum will become too
much narrower than the experimental results. Applying
the magnetic field dependence of the Fermi energy and
the density of states dependence of the deformation poten-
tials into the equation by Gurevich et al. , we could com-
pletely reproduce the experimental results, such as the full
width at half maximum, the line shape at the lower side
of the peaks and even the heights of a pair of spin-split
peaks which could not be explained so far.

Previously, Csoto et al. presented Eq. (7) for the defor-
mation potential of bismuth and qualitatively explained
the correlation between the attenuation peaks clue to the
electrons and those due to the holes discovered experi-
mentally by Fujimori. ' At that time, however, there was
argument about the relaxation time of bismuth and it was
pointed out that the condition co~&&1 under which Eq.
(7) is derived might be broken. ' Since the value which
we used in the calculation to reproduce the experimental
results is 5.0&10 ' sec, the condition mentioned above
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FIG. 3. Comparison of the calculated results at T =1.2 K,
7 =5.0 & 10 ' sec. (a) Correctly calculated, (b) calculated with
the Fermi energy taken as constant, (c) calculated with the Fer-
mi energy and the deformation potentials taken as constant.

The authors would like to express their gratitude to
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is fully satisfied.
Gurevich et al. predicted that the quantum oscillations

of the attenuation coefficient of the sound waves become
spikelike because of the conservation of the momentum
and energy, and the oscillations are quite different from
those of the de Haas type seen in the electric resistance
and the specific heat. But the deformation potential also
exhibits de Haas —type quantum oscillations. These two
types of quantum oscillations make the line shape of the
attenuation coefficient of the sound waves even more com-
plicated than the quantum oscillations such as in the mag-
netoresistance.
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